JPH0335369B2 - - Google Patents

Info

Publication number
JPH0335369B2
JPH0335369B2 JP58053278A JP5327883A JPH0335369B2 JP H0335369 B2 JPH0335369 B2 JP H0335369B2 JP 58053278 A JP58053278 A JP 58053278A JP 5327883 A JP5327883 A JP 5327883A JP H0335369 B2 JPH0335369 B2 JP H0335369B2
Authority
JP
Japan
Prior art keywords
alloy
resistance
biofouling
present
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58053278A
Other languages
Japanese (ja)
Other versions
JPS59179746A (en
Inventor
Yoshihisa Toda
Hiroshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5327883A priority Critical patent/JPS59179746A/en
Publication of JPS59179746A publication Critical patent/JPS59179746A/en
Publication of JPH0335369B2 publication Critical patent/JPH0335369B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Farming Of Fish And Shellfish (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は海水、河川水又は下水の中に配置した
場合に、貝類或はその他水生動植物などが極めて
付着し難い耐生物汚損性銅合金を提供せんとする
ものである。 一般に銅合金は鉄系材料に比較して海水に対し
て耐食性が優れているのみではなく、海水中に放
置しても、貝類や海草などの生物が付着しにく
く、耐生物汚損性についても他の金属に比して優
れた効果を発揮しているものである。この中でも
キユプロニツケル系合金の耐生物汚損性が他の銅
合金よりも優れているため、船舶用外板や漁業用
イケス材料として大量に使用されている。然しな
がら現在生物汚損環境で用いられているキユプロ
ニツケル系合金の組成は耐食性特に高流速の海水
に対する耐潰食性を考慮して定められているもの
であり、耐生物汚損性については必ずしも最適な
合金組成とはいえないものである。即ち高度の耐
潰食性を必要とする場合には70/30キユプロニツ
ケル(JIS、C7150合金)のような高ニツケル合
金が使用されるが、生物汚損が問題となる静止又
は低流速の海水中の環境においては、このような
耐潰食性は必要とせず且つ経済的にも好ましくな
い。通常このような使用環境においては70/30キ
ユプロニツケル合金よりも価格の安い90/10キユ
プロニツケル(JIS.C7060合金)が使用されるが
静止海水中における耐生物汚損性については十分
なものとはいえない。海生物汚損を防ぐためには
微量の銅イオンが材料側から溶出していくことが
必要であるが、耐潰食性を目的とした従来の合金
は極力銅イオンを溶出しにくいような組成からな
つているものである。 本発明はかかる現状に鑑み鋭意研究を行つた結
果、耐生物汚損性に優れ且つ耐食性を具備する銅
合金を開発したものである。即ち本発明は (1) Ni2.0〜12.0wt%を含み残部がCuからなるこ
とを特徴とする耐生物汚損性銅合金である。 (2) Ni2.0〜12.0wt%と、これにFe0.8wt%以下
とMn1.0wt%以下の範囲内でいずれか一方又
は両者を含み残部がCuからなることを特徴と
する耐生物汚損性銅合金である。 本発明においてNiの添加量を2.0〜12.0wt%に
限定した理由は2.0wt%未満の場合には耐食性が
充分でないためである。Ni量の増大と共に耐食
性は向上するが12wt%を超えた場合には、耐生
物汚損性が低下すると共に高価格となり実用に供
することが出来ないためである。 又Feを添加することにより耐潰食性が向上す
ることは知られているが、その添加量が0.8wt%
を超えるとCu−Ni合金の耐生物汚損性を阻害す
る。 又Mnを添加することにより耐生物汚損性を損
なうことなく、鋳造性及び加工性を改善すること
が出来るが、その添加量が1.0wt%を超えると耐
生物汚損性を低下せしめるものである。 なお本発明合金の銅地金としては通常の銅地金
中に含まれている不純物例えばSn、Pb、Znなど
や脱酸剤として例えばTi、Zr、Al、Si、Mgなど
を含有し、その合計量が0.5wt%以下ならば何等
差支えない。 次に本発明の実施例について説明する。 実施例 第1表に示す組成の合金をマグネシアルツボを
用いて、大気中で溶解鋳造し、得られた鋳塊を熱
間圧延した後、冷間圧延し厚さ1mmの板材に仕上
げた。この板材を700℃の温度で光輝焼鈍を行つ
て本発明合金及び比較例合金を得た。 斯くして得た合金を150mm×500mm×1mmの形状
に切断した試料について、比較的海流の弱い海岸
の海水中に夫々垂直に吊下せしめた状態にして12
ケ月間放置した。その結果は第2表に示す通りで
ある。
The present invention aims to provide a biofouling-resistant copper alloy to which shellfish or other aquatic animals and plants are extremely difficult to adhere to when placed in seawater, river water, or sewage. In general, copper alloys not only have superior corrosion resistance to seawater compared to iron-based materials, but even when left in seawater, living organisms such as shellfish and seaweed are less likely to adhere to them, and they also have excellent resistance to biological fouling. It exhibits superior effects compared to other metals. Among these, Cypronickel-based alloys have better biological fouling resistance than other copper alloys, so they are used in large quantities as outer panels for ships and as materials for fisheries. However, the composition of the Cypronickel alloys currently used in biofouling environments is determined with consideration to corrosion resistance, especially crushing corrosion resistance against high-velocity seawater, and it is not necessarily the best alloy composition for biofouling resistance. That is not possible. In other words, high nickel alloys such as 70/30 Cypronickel (JIS, C7150 alloy) are used when a high degree of corrosion resistance is required, but they are used in stationary or low-flow seawater environments where biological fouling is a problem. In this case, such corrosion resistance is not necessary and economically undesirable. Normally, in such usage environments, 90/10 Cypronickel (JIS.C7060 alloy), which is cheaper than 70/30 Cypronickel alloy, is used, but its resistance to biological fouling in still seawater is not sufficient. . In order to prevent marine life pollution, it is necessary for trace amounts of copper ions to be leached from the material side, but conventional alloys aimed at corrosion resistance have compositions that make it as difficult as possible for copper ions to be leached out. It is something that exists. The present invention has been made as a result of extensive research in view of the current situation, and has developed a copper alloy that has excellent biological fouling resistance and corrosion resistance. That is, the present invention is a biofouling-resistant copper alloy characterized in that (1) it contains 2.0 to 12.0 wt% of Ni and the balance is Cu. (2) Biological fouling resistance characterized by containing 2.0 to 12.0 wt% Ni and either or both of Fe 0.8 wt% or less and Mn 1.0 wt% or less, with the balance consisting of Cu. It is a copper alloy. The reason why the amount of Ni added is limited to 2.0 to 12.0 wt% in the present invention is that corrosion resistance is insufficient if it is less than 2.0 wt%. This is because corrosion resistance improves as the amount of Ni increases, but if it exceeds 12 wt%, resistance to biological fouling decreases and the price becomes high, making it impossible to put it into practical use. It is also known that the crushing corrosion resistance is improved by adding Fe, but the addition amount is 0.8wt%.
Exceeding this will inhibit the biofouling resistance of the Cu-Ni alloy. Furthermore, by adding Mn, castability and workability can be improved without impairing the biofouling resistance, but if the amount added exceeds 1.0 wt%, the biofouling resistance will decrease. The copper base metal of the alloy of the present invention contains impurities such as Sn, Pb, Zn, etc. contained in ordinary copper base metals, and deoxidizers such as Ti, Zr, Al, Si, Mg, etc. There is no problem as long as the total amount is 0.5wt% or less. Next, examples of the present invention will be described. Example Alloys having the compositions shown in Table 1 were melted and cast in the atmosphere using a magnesia crucible, and the resulting ingots were hot rolled and then cold rolled into plates with a thickness of 1 mm. This plate material was brightly annealed at a temperature of 700°C to obtain an alloy of the present invention and a comparative alloy. Samples of the alloy thus obtained were cut into shapes of 150 mm x 500 mm x 1 mm, and each sample was suspended vertically in seawater on a coast where ocean currents are relatively weak.
I left it for a month. The results are shown in Table 2.

【表】【table】

【表】 上表から明らかの如く本発明合金は貝類及び海
草等の生物の付着した面積が総面積に対して極め
て少く且つ腐食孔も認められず優れた耐生物汚損
性を示した。これに対し比較例合金No.8は生物付
着面積が本発明合金と殆んど変らないが腐食孔が
認められた。又比較例合金No.9及び従来合金は何
れも生物付着面積が大きく、明らかに耐生物汚損
性において劣ることが認められた。 以上詳述した如く本発明合金によれば優れた耐
生物汚損性を有するため漁業用機器材料、船舶用
構造材、給排水設備用構造材及びクラツドの表層
材等に使用して極めて有用である。
[Table] As is clear from the above table, the alloy of the present invention exhibited excellent biological fouling resistance, with the area to which living things such as shellfish and seaweed were attached being extremely small compared to the total area, and no corrosion holes were observed. On the other hand, in Comparative Example Alloy No. 8, the area of bioadhesion was almost the same as that of the alloy of the present invention, but corrosion holes were observed. Furthermore, both Comparative Example Alloy No. 9 and the conventional alloy had a large biofouling area and were clearly inferior in biofouling resistance. As detailed above, the alloy of the present invention has excellent resistance to biological fouling and is therefore extremely useful for use in fishing equipment materials, structural materials for ships, structural materials for water supply and drainage equipment, and surface layer materials for cladding.

Claims (1)

【特許請求の範囲】 1 Ni2.0〜12.0wt%を含み残部がCuからなるこ
とを特徴とする耐生物汚損性銅合金。 2 Ni2.0〜12.0wt%と、これにFe0.8wt%以下
とMn1.0wt%以下の範囲内でいずれか一方又は
両者を含み残部がCuからなることを特徴とする
耐生物汚損性銅合金。
[Claims] 1. A biofouling-resistant copper alloy characterized by containing 2.0 to 12.0 wt% of Ni and the balance being Cu. 2. A biofouling-resistant copper alloy containing 2.0 to 12.0 wt% Ni and one or both of Fe 0.8 wt% or less and Mn 1.0 wt% or less, with the remainder being Cu. .
JP5327883A 1983-03-29 1983-03-29 Copper alloy having resistance to fouling with organism Granted JPS59179746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5327883A JPS59179746A (en) 1983-03-29 1983-03-29 Copper alloy having resistance to fouling with organism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5327883A JPS59179746A (en) 1983-03-29 1983-03-29 Copper alloy having resistance to fouling with organism

Publications (2)

Publication Number Publication Date
JPS59179746A JPS59179746A (en) 1984-10-12
JPH0335369B2 true JPH0335369B2 (en) 1991-05-28

Family

ID=12938267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5327883A Granted JPS59179746A (en) 1983-03-29 1983-03-29 Copper alloy having resistance to fouling with organism

Country Status (1)

Country Link
JP (1) JPS59179746A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235527A (en) * 1985-03-26 1986-10-20 Nippon Steel Corp Copper alloy for preventing fouling of marine life
JPH01136945A (en) * 1987-11-20 1989-05-30 Dowa Mining Co Ltd Corrosion-resistant and soil-resistant copper alloy in sea water
JP2791130B2 (en) * 1989-09-18 1998-08-27 株式会社東芝 Fuel cell power plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043126U (en) * 1973-08-22 1975-05-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043126U (en) * 1973-08-22 1975-05-01

Also Published As

Publication number Publication date
JPS59179746A (en) 1984-10-12

Similar Documents

Publication Publication Date Title
CN101278065B (en) Free-cutting aluminum alloy extrudate with excellent brittle resistance at high temperature
US4402906A (en) Metallic material proof against attachment of marine organisms
Kundig et al. Copper and copper alloys
JPH0335369B2 (en)
JPS5952223B2 (en) Copper alloy for aquaculture cages
JPH0823052B2 (en) Antifouling structure and antifouling method
JPS6250538B2 (en)
JPH02232332A (en) Highly corrosive magnesium alloy
JP2841270B2 (en) Copper base alloy excellent in corrosion resistance and hot workability and valve parts using the alloy
JPS5834154A (en) Corrosion-resistant copper alloy with high strength
JPH01136945A (en) Corrosion-resistant and soil-resistant copper alloy in sea water
JPS62224650A (en) Copper alloy having resistance to bio-contamination
JPS6148547A (en) Corrosion resistant copper alloy for ocean
JPS63100144A (en) Copper alloy excellent in corrosion resistance
JPS6256223B2 (en)
JPH05117812A (en) Steel material having excellent antifouling property
KR0183041B1 (en) Antifouling structure and method thereof
JP2595180B2 (en) Sea life adhesion prevention device
JPS6285937A (en) Aluminum alloy composite material having excellent corrosionresistance
JPS6331532B2 (en)
JPH0764694B2 (en) Method of manufacturing biofouling prevention tube
JPS61223148A (en) Corrosion resistant copper alloy for marine use
JPH0466683A (en) Sacrificial anode made of aluminum alloy for corrosion protection for steel structure
FR2243269A1 (en) Corrosion resistant magnesium alloy - contg. aluminium, zinc, manganese, titanium, and zirconium, and low percentages of unavoidable impurities
JPH11131157A (en) Apparatus concerning to warm water, electric and machine parts and parts for ship using copper base alloy excellent in corrosion resistance and hot workability