JPH0335192A - Cathode for exothermic reaction to form tritium by electrolysis method - Google Patents
Cathode for exothermic reaction to form tritium by electrolysis methodInfo
- Publication number
- JPH0335192A JPH0335192A JP1169970A JP16997089A JPH0335192A JP H0335192 A JPH0335192 A JP H0335192A JP 1169970 A JP1169970 A JP 1169970A JP 16997089 A JP16997089 A JP 16997089A JP H0335192 A JPH0335192 A JP H0335192A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- palladium
- uranium
- metal
- tritium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 30
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 title claims abstract description 22
- 229910052722 tritium Inorganic materials 0.000 title claims abstract description 22
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 14
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052770 Uranium Inorganic materials 0.000 claims abstract description 34
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims abstract description 33
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 claims abstract description 22
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 21
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 7
- 239000000956 alloy Substances 0.000 claims abstract description 3
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 3
- 239000008151 electrolyte solution Substances 0.000 claims description 5
- 230000020169 heat generation Effects 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 16
- 239000002184 metal Substances 0.000 abstract description 16
- 239000003792 electrolyte Substances 0.000 abstract description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 4
- WMFOQBRAJBCJND-DYCDLGHISA-M 12159-20-5 Chemical compound [Li+].[2H][O-] WMFOQBRAJBCJND-DYCDLGHISA-M 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 2
- 239000000203 mixture Substances 0.000 abstract 1
- 230000004927 fusion Effects 0.000 description 19
- 229910052805 deuterium Inorganic materials 0.000 description 11
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000010585 Ammi visnaga Nutrition 0.000 description 1
- 244000153158 Ammi visnaga Species 0.000 description 1
- 235000010654 Melissa officinalis Nutrition 0.000 description 1
- 244000062730 Melissa officinalis Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- -1 deuterium ion Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、重水素を含有する液体を室温下で電気分解す
ることにより、電気分解に要するエネルギーよりも大な
るエネルギーを液体中社発生するトリチウム生成発熱反
応用に使用する陰極に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention generates energy greater than the energy required for electrolysis by electrolyzing a liquid containing deuterium at room temperature. It relates to a cathode used for an exothermic reaction to generate tritium.
[従来の技術]
将来のエネルギー源としての制御熱核融合の研究開発は
、専ら超高温プラズマを成る空間に閉じ込めることを核
融合実現の前提条件として進められている。[Prior Art] Research and development of controlled thermonuclear fusion as a future energy source is proceeding with the prerequisite for realizing nuclear fusion being exclusively to confine ultra-high temperature plasma in a space.
このプラズマ閉じ込めによるflJtR熱核融合として
は、超高温プラズマを電磁的に制御する磁場閉じ込め方
式と、高エネルギー密度の電磁波や粒子線を核融合燃料
の小球に照射して爆縮する慣性閉じ込め方式とが考えら
れている。flJtR thermonuclear fusion using plasma confinement includes two methods: a magnetic field confinement method that electromagnetically controls ultra-high-temperature plasma, and an inertial confinement method that implodes a fusion fuel sphere by irradiating it with high-energy density electromagnetic waves or particle beams. It is believed that
先ず磁場閉じ込め方式によるものでは、トカマク装置を
採用したものが有望視されている。これは、重水素やト
リチウムを1億度以上の高温にして、強力な磁場により
超高密度でドーナツ状のトーラスに閉じこめ、原子核ど
うしを衝突させて融合させるものである。この方式の核
融合実現の前提となる臨界プラズマ条件の達成を目的と
して、例えば日本原子力研究所の臨界プラズマ試験装置
JT−60に代表されるような大型トカマク装置の開発
が進められている。First, among the magnetic field confinement methods, those employing tokamak devices are seen as promising. This involves heating deuterium and tritium to a high temperature of over 100 million degrees Celsius, trapping them in an ultra-high density donut-shaped torus using a strong magnetic field, and causing the atomic nuclei to collide and fuse. With the aim of achieving critical plasma conditions, which are a prerequisite for realizing this type of nuclear fusion, large-scale tokamak devices, such as the critical plasma testing device JT-60 of the Japan Atomic Energy Research Institute, are being developed.
一方、慣性閉じ込め方式としては、レーザ核融合が代表
的なものである。このものでは、重水素とトリチウムか
らなる燃料小球に高出力のレーザを照射して瞬間的に爆
縮すると、超高温プラズマが生成され、核融合反応が起
こると期待されている。その実現に向けて高出力レーザ
の開発が進められている。On the other hand, laser fusion is a typical example of an inertial confinement method. In this project, a high-power laser beam is irradiated onto a fuel globule made of deuterium and tritium, causing it to instantaneously implode, creating ultra-high temperature plasma, which is expected to trigger a nuclear fusion reaction. Development of high-power lasers is underway to achieve this goal.
[発明が解決しようとする課題]
但し、現状では何れの方式も核融合反応の持続達成には
至っておらず、その実現の時期についても不確かである
。更に、何れの方式も超高温条件達成のために国家規模
の巨額な投資が必要とされ、産業規模での制御熱核融合
の実現を困難としている。[Problems to be Solved by the Invention] However, at present, none of these systems has been able to sustain a nuclear fusion reaction, and the timing of its realization is uncertain. Furthermore, both methods require a huge investment on a national scale to achieve ultra-high temperature conditions, making it difficult to realize controlled thermonuclear fusion on an industrial scale.
ところが1989年3月、米国ユタ大学のボンズ教授と
英国サラサンプトン大学のフライシュマン教授等は、簡
単な実験装置による室温下の核融合実現(いわゆる常温
核融合)の可能性を報告した。However, in March 1989, Professor Bonds of the University of Utah in the US and Professor Fleischman of the University of Sarathampton in the UK reported the possibility of realizing nuclear fusion at room temperature (so-called cold fusion) using a simple experimental device.
同教授等によれば、重水(電導性を与えるために少量の
塩基物を添加)を満たしたガラス容器内に、白金(陽極
)とパラジウム(陰極)の電極を入れて電気分解を行な
うと、核融合のような特異なトリチウム生成発熱反応の
発生が観測されるという、この反応の原理の詳細は未だ
明らかでないが、現状では次のような見解もなされてい
る。According to the professor, electrolysis can be carried out by placing platinum (anode) and palladium (cathode) electrodes in a glass container filled with heavy water (with a small amount of base added to give it conductivity). Although the details of the principle behind this reaction, in which a unique tritium-generating exothermic reaction similar to nuclear fusion is observed, are still unclear, the following opinions are currently available.
重水が電気分解されると、負に荷電した酸素は白金(陽
極)に引き寄せられ、正に荷電した重水素はパラジウム
(陰極)に引き寄せられる。ここでパラジウムは軽い元
素を取り込む性質があるので、水素原子はパラジウム格
子中に追いやられる。このパラジウム格子中に閉じ込め
られた重水素が超高密度となると、重水素核どうしがト
ンネル効果で融合して”H(d、p)’H反応が生じる
と推定される。When heavy water is electrolyzed, negatively charged oxygen is attracted to platinum (the anode), and positively charged deuterium is attracted to the palladium (the cathode). Since palladium has the property of incorporating light elements, hydrogen atoms are forced into the palladium lattice. When the deuterium trapped in this palladium lattice becomes extremely dense, it is presumed that the deuterium nuclei fuse with each other due to the tunnel effect, resulting in the "H(d,p)'H reaction.
この推定の真偽或いは上記反応が果たして真の核融合で
あるか否かについては今後の検討が待たれるが、何れに
せよ上記反応による発熱をエネルギー源として利用する
ことが期待される。The truth of this assumption and whether or not the above reaction is true nuclear fusion will have to be investigated in the future, but in any case, it is expected that the heat generated by the above reaction will be used as an energy source.
本発明は係る状況に鑑みて成されたものであり、その目
的とするところは、上記電気分解法によるトリチウム生
成発熱反応において、パラジウムに代る好適な陰極を提
供することである。また、上述のトリチウム生成発熱反
応が仮りに核融合反応によるものとすれば、核融合を常
温で安価に実現し得る陰極を提供することも本発明の課
題である。The present invention has been made in view of the above circumstances, and its purpose is to provide a suitable cathode to replace palladium in the exothermic reaction of producing tritium by the above-mentioned electrolysis method. Moreover, if the above-mentioned tritium production exothermic reaction is based on a nuclear fusion reaction, it is also an object of the present invention to provide a cathode that can realize nuclear fusion at room temperature and at low cost.
[課題を解決するための手段]
上記課題を達成するために本発明は、少量の塩基物を添
加した重水(020)からなる電解液を白金(pt)陽
極と陰極とで電気分解することにより、この電気分解に
要するエネルギーよりも大なるエネルギーを前記電解液
中に発生させるトリチウム生成発熱反応に用いる前記陰
極として、以下の三種類のうちの何れかを採用したもの
である。[Means for Solving the Problems] In order to achieve the above-mentioned problems, the present invention provides electrolytic solutions by electrolyzing an electrolyte consisting of heavy water (020) to which a small amount of a base is added between a platinum (pt) anode and a cathode. Any one of the following three types is employed as the cathode used in the exothermic reaction of tritium production that generates energy in the electrolytic solution that is larger than the energy required for electrolysis.
(a)パラジウム(Pd)を被覆した金属ウラン(Uメ
タル)
(b)金属ウラン(Uメタル)を多孔質アルよす(A角
203)コンテナ中に収納したもの(C)金属ウラン(
Uメタル〉とパラジウム(Pd)との合金を多孔質アル
ミナ(^J! 203)コンテナ中に収納したもの
尚、何れの場合においても、電解液は前記塩基物を添加
した重水に代えて、0.1規定の硫酸(0゜lN−H5
Oa )と0.1規定の重水酸化リチウム(0,lN−
Li0d )との混合禮液を用いてもよい。(a) Metallic uranium (U metal) coated with palladium (Pd) (b) Metallic uranium (U metal) stored in a porous aluminum container (A corner 203) (C) Metallic uranium (U metal)
An alloy of U metal and palladium (Pd) is housed in a porous alumina (^J! 203) container. .1N sulfuric acid (0゜N-H5
Oa) and 0.1N lithium deuteroxide (0,1N-
A mixed balm solution with Li0d ) may also be used.
[作用]
本発明の作用機構自体は現状では明らかでないが、本発
明の特徴は陰極としてウランを採用したことにある。ウ
ランは水素吸蔵物質の一つともされており、水素、重水
素に対し特有の性質を有する点に着目して採用すること
とした。ここでウランとしては、電極として使用できる
ようじ金属ウランを用いることとする。但し、金属ウラ
ン陰極を直接に重水中に浸すとウランが剥げ落ちてしま
うため、金属ウラン陰極には何等かの被覆を設けること
が望ましい、そのため本発明では、上記陰極(a)の如
く金属ウランにパラジウムを被覆したり、或いは上記陰
極(b) 、 (c)の如く金属ウランを多孔質アル主
ナコンテナ中に収納するなどしてウランの剥落を防止し
ている。[Operation] Although the mechanism of operation of the present invention itself is not clear at present, the feature of the present invention is that uranium is used as the cathode. Uranium is considered to be a hydrogen storage material, and we decided to use it because it has unique properties against hydrogen and deuterium. Here, as the uranium, toothpick metal uranium, which can be used as an electrode, is used. However, if the metallic uranium cathode is directly immersed in heavy water, the uranium will peel off, so it is desirable to provide some kind of coating on the metallic uranium cathode. Peeling of uranium is prevented by coating the cathode with palladium, or by storing metallic uranium in a porous alumina container as in the cathodes (b) and (c) above.
次に、本発明の主要な作用について粗い推定を述べる。Next, we will give a rough estimate of the main effects of the present invention.
ウランの水素吸収性は、正に荷電した重水素をウラン格
子中に閉じ込め、重水素を超高密度状態にする働きをな
すと予想される。高密度の荷電粒子の振る舞い社ついて
は未だ不明であるが、重水素を超高密度状態にすること
が核融合反応若しくはトリチウム生成発熱を伴なう未知
の反応を引き起こすと推定される。この作用において、
重水素を格子中に閉じ込める点は上述のボンズ教授等に
よるパラジウム陰極を用いた方法と同様である。Uranium's ability to absorb hydrogen is expected to trap positively charged deuterium in the uranium lattice, making it extremely dense. Although the behavior of high-density charged particles is still unknown, it is presumed that bringing deuterium to an ultra-high density state causes a nuclear fusion reaction or an unknown reaction accompanied by tritium generation heat. In this action,
The point of confining deuterium in the lattice is similar to the method using a palladium cathode by Professor Bonds and others mentioned above.
しかしウランの水素吸収性はパラジウムのそれよりも高
い故、上記反応を起こすkめには、パラジウム陰極より
もむしろ金属ウラン陰極(或いは金属ウランとパラジウ
ムとの双方から構成される陰極)を用いる方が効果的で
あると考えられる。However, since the hydrogen absorption capacity of uranium is higher than that of palladium, it is better to use a metallic uranium cathode (or a cathode composed of both metallic uranium and palladium) rather than a palladium cathode in order to cause the above reaction. is considered to be effective.
本発明の特徴と利点を一層明確にするために、好ましい
実施例について添付図面とともに説明すれば以下の通り
である。In order to further clarify the features and advantages of the present invention, preferred embodiments will be described below with reference to the accompanying drawings.
[実施例]
本発明の一実施例として、上記陰極を使用した電気分解
法によるトリチウム生成発熱反応の実験例を以下に示す
。[Example] As an example of the present invention, an experimental example of an exothermic reaction for producing tritium by electrolysis using the above cathode is shown below.
く実験装置〉
第1図には電気分解法によるトリチウム生成発熱反応を
実現するための概略装置構成が示されている。Experimental Apparatus> Figure 1 shows a schematic configuration of an apparatus for realizing the exothermic reaction of producing tritium by electrolysis.
図において、容器1には電解液2として重水が満たされ
ている。但し、重水は絶縁物なので、塩化リチウムなど
の塩基物を少量混入させて導電性を与えである。In the figure, a container 1 is filled with heavy water as an electrolyte 2. However, since heavy water is an insulator, a small amount of a basic substance such as lithium chloride is mixed in to give it conductivity.
一方、電極としてはバッテリー3の+側に白金(陽極)
4、同じく一側に上記(a) y(b) 、 (c)の
何れかの本発明の金属ウラン(陰極)5を用いている。On the other hand, as an electrode, platinum (anode) is placed on the + side of battery 3.
4. Similarly, the metal uranium (cathode) 5 of the present invention according to any one of (a), y, (b), and (c) is used on one side.
また・、画電極4.5の間には重水素イオン透過膜6を
配置しである。ここで金属ウランとしてはαウラン鋳造
品(23$luメタル;導電率3.45X10’Ω−1
・cm−’)を用いる。これは、水素原子をウラン格子
中に閉じこめることが本発明の主要な作用と推定される
ので、ウランの結晶構造が変形していないことが望まれ
るためである。従って結晶構造の崩れ易い圧延ウランの
使用は好ましくない。Further, a deuterium ion permeable membrane 6 is arranged between the picture electrodes 4.5. Here, as metal uranium, α-uranium casting product (23$lu metal; electrical conductivity 3.45X10'Ω-1
・cm-') is used. This is because it is presumed that the main effect of the present invention is to confine hydrogen atoms in the uranium lattice, so it is desirable that the crystal structure of uranium is not deformed. Therefore, it is not preferable to use rolled uranium whose crystal structure tends to collapse.
く実験条件〉
上述の実験装置により次の条件で電解液2の電気分解を
行なった。Experimental Conditions> Electrolytic solution 2 was electrolyzed under the following conditions using the above-mentioned experimental apparatus.
電圧:25V(連続及びパルス状に印加)電流: 2〜
1000mA/cm”
印加時間:50分以上
通電開始前の電解液2の温度=25°Cく実験結果〉
(a) 、 (b) 、 (c)の何れの陰極5を用い
た場合でも、通電開始後50分後に電解液2の温度が4
0@Cに上昇し、電解液2内のトリチウムがバックグラ
ウンド値の約3倍に増加した。この結果から、核融合の
ような特異なトリチウム生成発熱反応が生じたと推定さ
れる。Voltage: 25V (applied continuously and in pulses) Current: 2~
1000 mA/cm" Application time: 50 minutes or more Temperature of electrolyte 2 before starting energization = 25°C Experiment results> No matter which cathode 5 of (a), (b), or (c) is used, energization is possible. 50 minutes after the start, the temperature of electrolyte 2 reaches 4
The temperature rose to 0@C, and the tritium in electrolyte 2 increased to about three times the background value. This result suggests that a unique exothermic tritium-producing reaction similar to nuclear fusion occurred.
尚、重水の電気伝導度を向上させる目的で、電解液2と
して0.IN−)ISOnとO,IN−LlOdとの混
合溶液を採用した場合にも上記実験結果と同様の結果が
得られた。In addition, for the purpose of improving the electrical conductivity of heavy water, 0.0. Results similar to the above experimental results were also obtained when a mixed solution of IN-)ISOn, O, and IN-LlOd was employed.
[発明の効果]
以上説明したように本発明の陰極によれば、電気分解法
による顕著なトリチウム生成発熱反応を起こすことがで
きる。この場合、電解液にヒートバイブを挿入して発電
機に連結すれば、電気エネルギーを取り出すことが可能
となる。[Effects of the Invention] As explained above, according to the cathode of the present invention, a remarkable exothermic reaction for producing tritium can be caused by electrolysis. In this case, electrical energy can be extracted by inserting a heat vibrator into the electrolyte and connecting it to a generator.
また、本発明の陰極には金属ウランが採用されているが
、ウランはパラジウムよりも水素吸収性が高く、価格も
安価であるという利点を有しているため、トリチウム生
成発熱反応用の陰極として好適である。In addition, metallic uranium is used as the cathode of the present invention, and since uranium has the advantages of higher hydrogen absorption than palladium and is cheaper, it can be used as a cathode for the exothermic reaction of tritium production. suitable.
更に、上述のトリチウム生成発熱反応が核融合反応であ
るとすれば、従来より開発が進められていた磁場閉じ込
め方式や慣性閉じ込め方式に比べて非常C安価に核融合
が実現できる。Furthermore, if the above-mentioned tritium production exothermic reaction is a nuclear fusion reaction, nuclear fusion can be realized at a much lower C cost than the magnetic field confinement method or inertial confinement method that has been developed in the past.
第1図は本発明の一実施例に係る陰極を使用した電気分
解法によるトリチウム生成発熱反応の実験装置の概略構
成を示す説明図である。
[主要部の符号の説明]
2・・・・・・電解液、4・・・・・・陽極(白金)5
・・・・・・陰極(金属ウラン)
代
理
人
弁理土佐
藤
正
年FIG. 1 is an explanatory diagram showing a schematic configuration of an experimental apparatus for an exothermic reaction of producing tritium by electrolysis using a cathode according to an embodiment of the present invention. [Explanation of symbols of main parts] 2... Electrolyte, 4... Anode (platinum) 5
・・・・・・Cathode (metallic uranium) Attorney Masatoshi Tosato
Claims (3)
金陽極と陰極とで電気分解することにより、この電気分
解に要するエネルギーよりも大なるエネルギーを前記電
解液中に発生させるトリチウム生成発熱反応に用いる前
記陰極であって、パラジウムを被覆した金属ウランから
なることを特徴とする電気分解法によるトリチウム生成
発熱反応用陰極。(1) By electrolyzing an electrolytic solution consisting of heavy water to which a small amount of a base has been added between a platinum anode and a cathode, tritium generation heat generation is generated in the electrolytic solution, which generates energy greater than the energy required for this electrolysis. A cathode for an exothermic reaction for producing tritium by electrolysis, characterized in that the cathode used in the reaction is made of metallic uranium coated with palladium.
代えて、多孔質アルミナコンテナ中に収納したことを特
徴とする請求項1に記載の電気分解法によるトリチウム
生成発熱反応用陰極。(2) The cathode for an exothermic reaction for producing tritium by electrolysis according to claim 1, wherein the metallic uranium is housed in a porous alumina container instead of being coated with the palladium.
ランが、パラジウムとの合金であることを特徴とする請
求項2に記載の電気分解法によるトリチウム生成発熱反
応用陰極。(3) The cathode for an exothermic reaction for producing tritium by electrolysis according to claim 2, wherein the metallic uranium housed in the porous alumina container is an alloy with palladium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1169970A JPH0335192A (en) | 1989-07-03 | 1989-07-03 | Cathode for exothermic reaction to form tritium by electrolysis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1169970A JPH0335192A (en) | 1989-07-03 | 1989-07-03 | Cathode for exothermic reaction to form tritium by electrolysis method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0335192A true JPH0335192A (en) | 1991-02-15 |
Family
ID=15896188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1169970A Pending JPH0335192A (en) | 1989-07-03 | 1989-07-03 | Cathode for exothermic reaction to form tritium by electrolysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0335192A (en) |
-
1989
- 1989-07-03 JP JP1169970A patent/JPH0335192A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060088138A1 (en) | Method and apparatus for the generation and the utilization of plasma solid | |
JP2010174379A (en) | Pulsed electrolytic cell | |
EP0473681B1 (en) | Production of fusion energy | |
HUT68723A (en) | Method and device for releasing energy | |
KR950009880B1 (en) | Element and energy production device | |
JPH0335192A (en) | Cathode for exothermic reaction to form tritium by electrolysis method | |
WO1991006959A2 (en) | Media for solid state fusion | |
EP0461690A2 (en) | Cold nuclear fusion thermal generator | |
JPH0335193A (en) | Cathode for exothermic reaction to form tritium by electrolysis method | |
WO1993000683A1 (en) | Apparatus for producing heat from deuterated film-coated palladium | |
EP0576293A1 (en) | Energy production from the control of probabilities through quantum level induced interactions | |
WO1990013897A1 (en) | Deuterium-lithium energy conversion cell | |
WO1992002020A1 (en) | Electrochemically assisted excess heat production | |
WO1994015342A1 (en) | Apparatus for storing isotopes of hydrogen | |
EP0531454A1 (en) | Distributed deuterium-lithium energy apparatus. | |
JPH0378691A (en) | Method for energy generation | |
WO1992002019A1 (en) | Electrochemically assisted excess heat production | |
JPH07318672A (en) | Electrolytic low temperature fusion reactor | |
JPH02287192A (en) | Low-temperature nuclear fusion method | |
WO1993000684A1 (en) | Apparatus for producing heat from deuterated palladium alloys | |
JPH072997U (en) | Cold fusion reactor using capture terminal | |
JPH03107791A (en) | Low-temperature nuclear fusion reactor | |
JPH02297095A (en) | Hydrogen nuclear fusion method | |
JPH0493693A (en) | Cryogenic nuclear fusion device | |
JPH0335194A (en) | Heating method and heating device using electrochemical reaction of heavy water |