JPH0334840Y2 - - Google Patents

Info

Publication number
JPH0334840Y2
JPH0334840Y2 JP1983092569U JP9256983U JPH0334840Y2 JP H0334840 Y2 JPH0334840 Y2 JP H0334840Y2 JP 1983092569 U JP1983092569 U JP 1983092569U JP 9256983 U JP9256983 U JP 9256983U JP H0334840 Y2 JPH0334840 Y2 JP H0334840Y2
Authority
JP
Japan
Prior art keywords
fuel cell
manifold
seat
opening flange
battery stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983092569U
Other languages
Japanese (ja)
Other versions
JPS60861U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983092569U priority Critical patent/JPS60861U/en
Publication of JPS60861U publication Critical patent/JPS60861U/en
Application granted granted Critical
Publication of JPH0334840Y2 publication Critical patent/JPH0334840Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【考案の詳細な説明】 〔考案の属する技術分野〕 この考案は、単位電池を柱状に積層した燃料電
池、特に電池積層体の側面から燃料ガスおよび酸
化ガスからなる反応ガスを給気、排気するマニホ
ールド蓋の開口フランジ面と、前記電池積層体の
側面に施されたシール層との間のガスシール構造
に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention is a fuel cell in which unit cells are stacked in a columnar manner, in particular, a fuel cell in which a reactive gas consisting of a fuel gas and an oxidizing gas is supplied and exhausted from the side of the cell stack. The present invention relates to a gas seal structure between an opening flange surface of a manifold lid and a seal layer provided on a side surface of the battery stack.

〔従来技術とその問題点〕[Prior art and its problems]

燃料電池においては電池積層体の側面に燃料ガ
スおよび酸化ガスを互いに直交する方向に給気、
排気するためマニホールドが前記側面の四方に取
付けられる。電池積層体の側面に施されたシール
層とマニホールド蓋の開口フランジ面との間から
の漏洩は、燃料電池の効率低下および燃料ガス中
の水素と酸化ガス中の酸素との爆発的反応を誘起
するので、電池積層体のシール層とマニホールド
蓋の開口フランジ面との間に漏洩を防止するシー
ル構造が必要であり、従来このためにパツキンを
介装したシール構造がとられて来た。以下従来技
術について図面を用いて説明する。第1図は燃料
電池の分解斜視図、第2図は平面図、第3図は従
来技術によるシール構造部の部分拡大図である。
In a fuel cell, fuel gas and oxidizing gas are supplied to the sides of the cell stack in directions orthogonal to each other.
Manifolds are attached to all sides of the side for exhaust. Leakage from between the seal layer on the side of the battery stack and the opening flange surface of the manifold lid reduces fuel cell efficiency and induces an explosive reaction between hydrogen in the fuel gas and oxygen in the oxidizing gas. Therefore, a sealing structure is required to prevent leakage between the sealing layer of the battery stack and the opening flange surface of the manifold lid, and for this purpose, a sealing structure with a packing interposed has conventionally been used. The prior art will be explained below with reference to the drawings. FIG. 1 is an exploded perspective view of a fuel cell, FIG. 2 is a plan view, and FIG. 3 is a partially enlarged view of a seal structure according to the prior art.

第1図において、単位電池を柱状に積層した燃
料電池積層体1の側面には、酸化ガスの給気用マ
ニホールド2と排気用マニホールド3とが電池積
層体1の対向する側面に、またこれと直角方向の
側面には燃料ガスの給気用マニホールド4と排気
用マニホールド5とが配置されている。電池積層
体1には矢印A,B方向に設けられた複数列の溝
と、これに直角方向の矢印C,D方向に設けられ
た複数列の溝があり、矢印A,B方向に流れる酸
化ガスと矢印C,D方向に流れる燃料ガスとが単
位電池内で電気化学反応をして電気を発生させ
る。
In FIG. 1, an oxidizing gas supply manifold 2 and an exhaust manifold 3 are arranged on opposite sides of the fuel cell stack 1 in which unit cells are stacked in a columnar manner. A fuel gas supply manifold 4 and an exhaust manifold 5 are arranged on the side surfaces in the right angle direction. The battery stack 1 has multiple rows of grooves provided in the directions of arrows A and B, and multiple rows of grooves provided in the directions of arrows C and D perpendicular to these, and oxidation flowing in the directions of arrows A and B. The gas and fuel gas flowing in the directions of arrows C and D undergo an electrochemical reaction within the unit cell to generate electricity.

上記マニホールド2,3,4,5には、第2図
に示すようにそれぞれ酸化ガスの入口管2a、出
口管3aおよび燃料ガスの入口管4a、出口管5
aが取付けられている。第2図において、酸化ガ
スの給気、排気マニホールド2,3および燃料ガ
スの給気、排気マニホールド4,5のマニホール
ド蓋の開口フランジ面と、電池積層体1のシール
層の施されたそれぞれの周縁部の側面との間に
は、パツキンが介装されており、マニホールド蓋
と電池積層体1とは図示されていない締付部材で
締付けられる。第3図は上記パツキン部の部分拡
大図であり、マニホールド3のマニホールド蓋の
開口フランジ面の溝のなかに挿入されたパツキン
7が電池積層体1のシール層6と上記開口フラン
ジ面との間に介装されている。ここで電池積層体
1の側面は単位電池の積層からなつているので平
滑でない。従つてこの側面に施されたシール層6
の厚さは単位電池の層ごとに異なることになる。
As shown in FIG. 2, the manifolds 2, 3, 4, and 5 are provided with an oxidizing gas inlet pipe 2a, an outlet pipe 3a, a fuel gas inlet pipe 4a, and an outlet pipe 5, respectively.
a is installed. In FIG. 2, the opening flange surfaces of the manifold lids of the oxidizing gas supply, exhaust manifolds 2 and 3, the fuel gas supply and exhaust manifolds 4 and 5, and the sealing layers of the battery stack 1 are shown. A gasket is interposed between the peripheral edge and the side surface, and the manifold lid and the battery stack 1 are tightened by a tightening member (not shown). FIG. 3 is a partially enlarged view of the packing part, and shows that the packing 7 inserted into the groove of the opening flange surface of the manifold lid of the manifold 3 is between the sealing layer 6 of the battery stack 1 and the opening flange surface. is interposed in. Here, the side surfaces of the battery stack 1 are not smooth because they are made up of a stack of unit cells. Therefore, the sealing layer 6 applied to this side surface
The thickness of each layer of the unit cell will be different.

燃料電池の運転時には酸化ガスは入口管2aよ
り入り、マニホールド2、電池積層体1、マニホ
ールド3および出口管3aを経由して排出され
る。一方、燃料ガスは入口管4aより入り、マニ
ホールド4、電池積層体1、マニホールド5およ
び出口管5aを経由して排出される。従つてマニ
ホールド蓋の開口フランジ面と電池積層体の側面
に施されたシール層との接合部からこれらの反応
ガスが漏洩しないよう防止する必要がある。この
ため、電池積層体1の側面のシール層6は平滑に
面出しを行なつて、介装されたパツキン7との密
着がはかられる。なお、マニホールドによりカバ
ーされてない電池積層体1の露出部、例えばマニ
ホールド3およびマニホールド4でカバーされな
い電池積層体1の角部では、電池積層体1の側面
の周縁部に施されたシール層により電池積層体1
の内部からのガス漏洩が防止される。
During operation of the fuel cell, oxidizing gas enters through the inlet pipe 2a and is discharged via the manifold 2, the cell stack 1, the manifold 3, and the outlet pipe 3a. On the other hand, fuel gas enters through the inlet pipe 4a and is discharged via the manifold 4, the battery stack 1, the manifold 5, and the outlet pipe 5a. Therefore, it is necessary to prevent these reactive gases from leaking from the joint between the opening flange surface of the manifold lid and the sealing layer applied to the side surface of the battery stack. For this reason, the sealing layer 6 on the side surface of the battery stack 1 is smoothly surfaced, and close contact with the interposed packing 7 is achieved. Note that the exposed parts of the battery stack 1 that are not covered by the manifolds, for example, the corners of the battery stack 1 that are not covered by the manifolds 3 and 4, are protected by a sealing layer applied to the peripheral edge of the side surface of the battery stack 1. Battery laminate 1
Gas leakage from inside is prevented.

さて、燃料電池の運転は一般に室温より高い温
度、例えばりん酸型燃料電池では約200℃の温度
で運転されるから、室温と運転温度との温度差に
より電池積層体1とマニホールド2,3,4,5
のマニホールド蓋の各開口フランジ面との間に熱
膨脹差による寸法変化が生じる。従つてこの熱膨
脹差による変化をなんらかの手段で吸収すること
が必要になるが、従来のマニホールドの取付構造
では、パツキン7がシール層6と粘着してしま
い、熱膨脹差が生じた場合にシール層6が過大な
応力や歪が生じ、さらに前述のようにシール層の
厚さが単位電池層ごとに異なるため応力や歪の局
所的過大をも伴い、運転、停止に伴うヒートサイ
クルが繰返されると、シール層6に疲労によるひ
び割れやクラツクが生じ、気密性が低下するとい
う欠点があつた。これは、パツキン7が平板枠状
の場合には特に著しいものであつた。
Now, a fuel cell is generally operated at a temperature higher than room temperature, for example, a phosphoric acid fuel cell is operated at a temperature of about 200°C. 4,5
A dimensional change occurs due to the difference in thermal expansion between the opening flange surface of the manifold lid and the opening flange surface of the manifold lid. Therefore, it is necessary to absorb the change due to this difference in thermal expansion by some means, but in the conventional manifold mounting structure, the packing 7 sticks to the sealing layer 6, and when a difference in thermal expansion occurs, the sealing layer 6 Excessive stress and strain occur, and as mentioned above, the thickness of the sealing layer varies from unit cell layer to unit cell layer, resulting in locally excessive stress and strain, and when the heat cycle associated with operation and stop is repeated. Cracks and cracks occur in the sealing layer 6 due to fatigue, resulting in a reduction in airtightness. This was particularly noticeable when the gasket 7 was in the shape of a flat plate frame.

〔考案の目的〕[Purpose of invention]

この考案は上記の点に鑑み、室温と運転温度と
の温度差に伴う運転、停止によるヒートサイクル
の繰返しを受けた場合にも、電池積層体とマニホ
ールド蓋との間の気密性を十分確保できる燃料電
池を提供することを目的とする。
In view of the above points, this design is able to ensure sufficient airtightness between the battery stack and the manifold lid even when subjected to repeated heat cycles due to the temperature difference between room temperature and operating temperature. The purpose is to provide fuel cells.

〔考案の要旨〕[Summary of the idea]

上記目的を達成するため、この考案によれば単
位電池を柱状に積層した燃料電池積層体と、開口
フランジを有する反応ガス給排用のマニホールド
と、前記燃料電池積層体側面の周縁部に前記開口
フランジに対向して設けられたシール層とを備え
た燃料電池において、前記燃料電池積層体と熱膨
張係数のほぼ等しい材料からなる枠状の座を前記
開口フランジと前記シール層との間に介装するも
のとする。
In order to achieve the above object, this invention includes a fuel cell stack in which unit cells are stacked in a columnar manner, a reactant gas supply/discharge manifold having an opening flange, and an opening in the peripheral edge of the side surface of the fuel cell stack. In the fuel cell equipped with a sealing layer provided opposite to the flange, a frame-shaped seat made of a material having substantially the same coefficient of thermal expansion as the fuel cell stack is interposed between the opening flange and the sealing layer. shall be equipped.

〔考案の実施例〕[Example of idea]

以下図面に基づいて本考案の実施例を説明す
る。なお、図面には第1〜3図と同じ部分に対し
ては同じ符号が付けられている。第4図におい
て、電池積層体1の側面の周縁部に施されたシー
ル層と酸化ガスの供給、排気マニホールド2,3
および燃料ガスの供給、排気用マニホールド4,
5の開口フランジ面との間に、電池積層体1と熱
膨脹係数のほぼ等しい材料、例えばアンバー、カ
ーボン等からなる枠状の座8が介装され、各マニ
ホールドの開口フランジ面のパツキン溝にOリン
グパツキン9が挿入される。なお、上記のように
座8を介装した構造をもつ本実施例において、反
応ガスによる燃料電池の運転、電気化学反応は従
来技術と同じである。
Embodiments of the present invention will be described below based on the drawings. In addition, the same reference numerals are attached to the same parts in the drawings as in FIGS. 1 to 3. In FIG. 4, the sealing layer applied to the peripheral edge of the side surface of the battery stack 1, the supply of oxidizing gas, and the exhaust manifolds 2 and 3 are shown.
and fuel gas supply and exhaust manifold 4,
A frame-shaped seat 8 made of a material having approximately the same coefficient of thermal expansion as the battery stack 1, such as amber or carbon, is interposed between the opening flange surface of each manifold and the opening flange surface of each manifold. The ring packing 9 is inserted. In this embodiment, which has the structure in which the seat 8 is interposed as described above, the operation of the fuel cell using the reaction gas and the electrochemical reaction are the same as in the prior art.

第5図は電池積層体1とマニホールド3との結
合をはなして図示したものであり、電池積層体1
の側面の周縁部に施されたシール層とマニホール
ド3の開口フランジ面3bとの間に介装される枠
状の座8とマニホールドの開口フランジ面3bに
設けられたパツキン溝3cのなかにOリングパツ
キン9が示されている。第6図は第4図における
円p部の拡大斜視図で、枠状の座8およびOリン
グパツキン9の取付状況が示されている。
FIG. 5 shows the battery stack 1 and the manifold 3 separated from each other.
A frame-shaped seat 8 is interposed between the seal layer applied to the peripheral edge of the side surface of the manifold 3 and the opening flange surface 3b of the manifold 3. A ring patch 9 is shown. FIG. 6 is an enlarged perspective view of the circle p in FIG. 4, showing how the frame-shaped seat 8 and O-ring packing 9 are attached.

さて、電池積層体1の側面のシール層6と各マ
ニホールドの開口フランジ面との間のシールは上
記の実施例で説明したように枠状の座8を介装し
て行なわれる。従つてシールはシール層6と枠状
の座8との間および枠状の座8と開口フランジ面
との間で行なわれることになる。前者のシール層
6と枠状の座8との間においては、シール層6の
面出しを行ない、座8との密着を行なえば気密が
保たれる。なお、座8は電池積層体1と熱膨脹係
数がほゞ等しい材料であるので、燃料電池の運転
により温度が上昇しても、電池積層体1と座8と
の間に温度差による熱膨脹差は著しく小さい。従
つてシール層6には過大な応力や歪が生じない。
Now, the sealing between the sealing layer 6 on the side surface of the battery stack 1 and the opening flange surface of each manifold is performed by interposing the frame-shaped seat 8 as explained in the above embodiment. Sealing is therefore performed between the sealing layer 6 and the frame-shaped seat 8 and between the frame-shaped seat 8 and the opening flange surface. Between the former seal layer 6 and the frame-shaped seat 8, airtightness can be maintained by flattening the seal layer 6 and bringing it into close contact with the seat 8. Note that since the seat 8 is made of a material with a coefficient of thermal expansion that is almost the same as that of the battery stack 1, even if the temperature rises due to the operation of the fuel cell, there will be no difference in thermal expansion between the battery stack 1 and the seat 8 due to the temperature difference. Noticeably small. Therefore, no excessive stress or distortion occurs in the seal layer 6.

一方、座8と各マニホールドの開口フランジ面
との間においては、各マニホールドの開口フラン
ジ面に設けられたパツキン溝のなかに挿入された
Oリングパツキン9が座8と開口フランジ面との
間に介装され、Oリングパツキン9および開口フ
ランジ面を座8に密着させて気密が保たれるが、
燃料電池の運転により運転温度が上昇して、室温
との温度差による座8とマニホールド蓋との熱膨
脹差が生じても、座8とOリングパツキン9およ
び開口フランジ面とは滑動して熱膨脹差を吸収す
ることができる。またふつ素樹脂材料の被覆を座
8の開口フランジ側の表面に施せば、ふつ素樹脂
材料により摩擦が低減して上記の熱膨脹差を吸収
する滑動性はさらによくなる。なお、ふつ素樹脂
材料を座8の表面に被覆した場合、ふつ素樹脂材
料のシール性により、Oリングパツキンを取除い
ても、座8と開口フランジ面3bとの当接面の機
械精度を高くすれば、気密が十分保たれると同時
に熱膨脹差をも滑動により吸収することができ
る。なお、第4図においては、Oリングパツキン
9がマニホールドの開口フランジ面のパツキン溝
に取付けられているが、枠状の座8にパツキン溝
を設けて、Oリングパツキンを挿入してもよい。
また平パツキンを使用する場合は必ずしもパツキ
ン溝を設ける必要のないことはいうまでもない。
更に第7図に示すように、枠状の座8と電池積層
体1との間に平ゴムパツキン10を介装してもよ
い。座の剛性は平ゴムパツキンの剛性より高いの
で、熱膨張による平ゴムパツキンの変形は、座の
熱膨張による変形に追従する。従つて、第7図の
実施例のように、シール層と座との間に平ゴムパ
ツキンがあつても電池積層体と座との間に熱膨張
差が生じなければシール層に過大な応力は発生し
ない。
On the other hand, between the seat 8 and the opening flange surface of each manifold, an O-ring packing 9 inserted into a packing groove provided in the opening flange surface of each manifold is inserted between the seat 8 and the opening flange surface of each manifold. The O-ring packing 9 and the opening flange surface are brought into close contact with the seat 8 to maintain airtightness.
Even if the operating temperature rises due to the operation of the fuel cell and a difference in thermal expansion occurs between the seat 8 and the manifold lid due to the temperature difference from room temperature, the seat 8, O-ring packing 9, and opening flange surface will slide and the difference in thermal expansion will be eliminated. can be absorbed. Furthermore, if the surface of the seat 8 on the opening flange side is coated with a fluorine resin material, the fluorine resin material will reduce friction and further improve the sliding properties to absorb the difference in thermal expansion. Note that when the surface of the seat 8 is coated with a fluorine resin material, the mechanical accuracy of the abutment surface between the seat 8 and the opening flange surface 3b cannot be maintained even if the O-ring packing is removed due to the sealing properties of the fluorine resin material. If the height is increased, airtightness can be maintained sufficiently and at the same time differences in thermal expansion can be absorbed by sliding. In FIG. 4, the O-ring seal 9 is attached to a seal groove on the opening flange surface of the manifold, but a seal groove may be provided in the frame-shaped seat 8 and the O-ring seal may be inserted therein.
Furthermore, it goes without saying that when a flat packing is used, it is not necessarily necessary to provide a packing groove.
Furthermore, as shown in FIG. 7, a flat rubber packing 10 may be interposed between the frame-shaped seat 8 and the battery stack 1. Since the rigidity of the seat is higher than that of the flat rubber packing, the deformation of the flat rubber packing due to thermal expansion follows the deformation of the seat due to thermal expansion. Therefore, even if there is a flat rubber gasket between the seal layer and the seat, as in the embodiment shown in FIG. 7, if there is no difference in thermal expansion between the battery stack and the seat, there will be no excessive stress on the seal layer. Does not occur.

〔考案の効果〕[Effect of idea]

以上述べたように、この考案は燃料電池の電池
積層体と熱膨脹係数がほゞ等しい材料からなる枠
状の座を電池積層体の側面の周縁部に施されたシ
ール層とマニホールド蓋の開口フランジ面との間
に介装することにより、燃料電池運転時における
室温より高い運転温度、例えばりん酸型燃料電池
では約200℃程度になつても、電池積層体と枠状
の座との温度差による熱膨脹差はわずかであり、
このため電池側面に施された機械強度の低いシー
ル層に加わる応力や歪は小さい。また枠状の座と
パツキンおよびマニホールド蓋の開口フランジ面
とは温度差による熱膨脹差をその接触面で滑動す
ることにより吸収し、応力の発生をなくしてい
る。従つて燃料電池の運転、停止に伴う運転温度
と室温との温度差によるヒートサイクルの繰返し
をうけても、シール層の疲労によるひび割れやク
ラツクが生ぜず、十分な気密性を確保できる効果
がある。
As mentioned above, this idea uses a frame-shaped seat made of a material whose thermal expansion coefficient is approximately the same as that of the fuel cell stack, a sealing layer applied to the side periphery of the battery stack, and an opening flange of the manifold lid. By interposing it between the cell stack and the frame-shaped seat, even if the operating temperature is higher than room temperature during fuel cell operation, for example about 200°C in a phosphoric acid fuel cell, the temperature difference between the cell stack and the frame-shaped seat can be reduced. The difference in thermal expansion due to
Therefore, the stress and strain applied to the seal layer, which has low mechanical strength and is applied to the side surface of the battery, is small. Furthermore, the frame-shaped seat, the packing, and the opening flange surface of the manifold lid absorb the difference in thermal expansion caused by the temperature difference by sliding on their contact surfaces, thereby eliminating the generation of stress. Therefore, even if the fuel cell is subjected to repeated heat cycles caused by the temperature difference between the operating temperature and the room temperature when the fuel cell is started and stopped, cracks or cracks due to fatigue of the seal layer will not occur, and sufficient airtightness can be ensured. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は単位電池を柱状に積層し
た燃料電池の構成を示した図であり、第1図はそ
の分解斜視図、第2図はその平面図、第3図は上
記燃料電池において、従来技術によるシール構造
を示す部分拡大斜視図、第4図以降は本考案によ
る実施例を示す図であり、第4図は本考案による
ガスシール構造を用いた燃料電池の断面平面図、
第5図は電池積層体とマニホールドとの結合を離
した状態を示す分解斜視図、第6図は座を介装し
た電池積層体とマニホールドとの間のガスシール
構造を示す部分拡大斜視断面図、第7図は本考案
の他の実施例を示す部分拡大斜視断面図である。 1:電池積層体、2:酸化ガス供給用マニホー
ルド、3:酸化ガス排気用マニホールド、4:燃
料ガス供給用マニホールド、5:燃料ガス排気用
マニホールド、6:シール層、8:座、9:Oリ
ングパツキン。
Figures 1 and 2 are diagrams showing the configuration of a fuel cell in which unit cells are stacked in a columnar manner, with Figure 1 being an exploded perspective view, Figure 2 being a plan view, and Figure 3 being the fuel cell described above. 4 is a partially enlarged perspective view showing a seal structure according to the prior art, and FIG. 4 and subsequent figures are views showing embodiments according to the present invention. FIG.
Fig. 5 is an exploded perspective view showing a state in which the battery stack and the manifold are separated from each other, and Fig. 6 is a partially enlarged perspective sectional view showing the gas seal structure between the battery stack and the manifold with a seat interposed therebetween. , FIG. 7 is a partially enlarged perspective sectional view showing another embodiment of the present invention. 1: Battery stack, 2: Oxidizing gas supply manifold, 3: Oxidizing gas exhaust manifold, 4: Fuel gas supply manifold, 5: Fuel gas exhaust manifold, 6: Seal layer, 8: Seat, 9: O Ring Patsukin.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 単位電池を柱状に積層した燃料電池積層体と、
開口フランジを有する反応ガス給排用のマニホー
ルドと、前記燃料電池積層体側面の周縁部に前記
開口フランジに対向して設けられたシール層とを
備えた燃料電池において、前記燃料電池積層体と
熱膨張係数のほぼ等しい材料からなる枠状の座を
前記開口フランジと前記シール層との間に介装し
たことを特徴とする燃料電池。
A fuel cell stack in which unit cells are stacked in a columnar manner,
A fuel cell comprising a reactant gas supply/discharge manifold having an open flange, and a sealing layer provided on a peripheral edge of a side surface of the fuel cell stack facing the open flange, the fuel cell stack and A fuel cell characterized in that a frame-shaped seat made of a material having substantially the same coefficient of expansion is interposed between the opening flange and the sealing layer.
JP1983092569U 1983-06-16 1983-06-16 Fuel cell Granted JPS60861U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983092569U JPS60861U (en) 1983-06-16 1983-06-16 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983092569U JPS60861U (en) 1983-06-16 1983-06-16 Fuel cell

Publications (2)

Publication Number Publication Date
JPS60861U JPS60861U (en) 1985-01-07
JPH0334840Y2 true JPH0334840Y2 (en) 1991-07-24

Family

ID=30222852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983092569U Granted JPS60861U (en) 1983-06-16 1983-06-16 Fuel cell

Country Status (1)

Country Link
JP (1) JPS60861U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203571A (en) * 1985-03-06 1986-09-09 Hitachi Ltd Fuel cell
JP6122202B1 (en) * 2015-12-24 2017-04-26 日本碍子株式会社 Manifold and fuel cell stack structure

Also Published As

Publication number Publication date
JPS60861U (en) 1985-01-07

Similar Documents

Publication Publication Date Title
US10461342B2 (en) External manifold for minimizing external leakage of reactant from cell stack
JP4738362B2 (en) Controlled electrode overlap architecture for improved membrane electrode assembly durability
US6893767B2 (en) Methods for producing fuel cell units and fuel cell stacks
JPH0696783A (en) Fuel cell
JP2002042838A (en) Fuel cell and manufacturing method for porous conductor, seal structural body, and electrode film structural body
JPH09289028A (en) Electrolyte film, gas seal structure, and stack for solid polymer electrolyte type fuel cell
US20120148935A1 (en) Manufacturing method of membrane-electrode assembly for polymer electrolyte membrane fuel cell
JPH0334840Y2 (en)
JP2007524195A (en) Fuel cell manifold seal with rigid inner layer
JPS617572A (en) Manifold sealing material of fuel cell
JP2611428B2 (en) Gas leak prevention device for fuel cell
JPH0334841Y2 (en)
JP2020017416A (en) Fuel cell stack
JPS6322426B2 (en)
JPS6333478Y2 (en)
JPH0473268B2 (en)
JP2607611Y2 (en) Solid electrolyte fuel cell
JPS6317163Y2 (en)
JPS6317161Y2 (en)
JPH0542618Y2 (en)
JPS6398970A (en) Fuel cell manifold
JPS6317162Y2 (en)
JPS6317160Y2 (en)
JPS62136776A (en) Gas seal structure for fuel cell
JP2003017093A (en) Gasket for fuel cell