JPH0334762B2 - - Google Patents

Info

Publication number
JPH0334762B2
JPH0334762B2 JP59240483A JP24048384A JPH0334762B2 JP H0334762 B2 JPH0334762 B2 JP H0334762B2 JP 59240483 A JP59240483 A JP 59240483A JP 24048384 A JP24048384 A JP 24048384A JP H0334762 B2 JPH0334762 B2 JP H0334762B2
Authority
JP
Japan
Prior art keywords
copolymer
molecular weight
vdc
point
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59240483A
Other languages
Japanese (ja)
Other versions
JPS61120719A (en
Inventor
Kazuo Akashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59240483A priority Critical patent/JPS61120719A/en
Publication of JPS61120719A publication Critical patent/JPS61120719A/en
Publication of JPH0334762B2 publication Critical patent/JPH0334762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、塩化ビニリデン−メチルアクリレー
ト系共重合体の溶融押出成形加工方法の改良に関
する。 (従来の技術及び発明が解決しようとする問題
点) 塩化ビニリデン−メチルアクリレート系共重合
体(以下VDC−MAと略す)は、従来一般には
塩化ビニリデン系共重合体の一種類、即ち、塩化
ビニリデン−塩化ビニル系共重合体の均等物とし
て取扱われて来ている。又これ等共重合体の溶融
押出法に依る成形加工方法としては、押出機内で
溶融混練したものを、単独で或は又は他の樹脂と
積層して之を、例えば円筒状に押出し冷却固化し
てパイプにする(特公昭44−32676号公報)、例え
ば円筒押出物を膨らませて容器にする(特公昭49
−14855号公報)、例えばTダイで板状に押出して
シートにする(特公昭52−22676号公報)、例えば
環状に押出して二軸延伸し管状フイルムや平担状
フイルムにする(特公昭50−31889号公報)こと
は、各々の明細書に記載されていて公知である。 一方、VDC−MAの中のMA成分は、塩化ビニ
リデン−塩化ビニル共重合体(以下VDC−VCと
略す)の塩化ビニル(VC)成分と同様に、塩化
ビニリデン重合体の著るしく速い熱分解速度を緩
和し、且つ全体として共重合体そのものの塑性変
形加工を容易にするためのものである。その効力
は、VC成分よりもMA成分であることの方が効
果的と考えられることから、VDC−MAが工業
的に成形加工できるならば、ガスバリヤ性等に於
てVDC−VCよりも有利なVDC−MAの押出成形
加工品は、もつと早く上場され、実用化されてい
てしかるべきものであるが、現状、ようやくに市
場に登場したアクリル成分含有塩化ビニリデンの
成形加工品は、例えば特公昭59−23682号公報等
に記載されているような押出法に依らない、所
謂、流延・塗上・鋳込み等で成形するエマルジヨ
ン状態のアクリル系含有の塩化ビニリデン系ラテ
ツクスを原料とした成形品のみである。 この原因は、本発明者等の知見に依ると、押出
法に耐える樹脂にするには、VDC−MAに独得
の重合形態が存在していて、VDC−VC共重合時
の経験則や知見が必ずしも活用されず、全体とし
て重合条件の研究は充分とはいえない。他方樹脂
の成形加工品を製品又は、製品包装材として上場
する側の要求は、すでに上場されている多種多様
な類似の既存製品の存在によつて、経済性、具備
品質の充足度、充足品質水準等すべての面が高度
に高められた状態になつており、これ等既存製品
との競合に対抗できることが前提の企業化可否判
断の評価基準に照せば、現状のVDC−MAは押
出法では企業化出来ない樹脂にランクされてしま
い、重合条件の研究のためのポリマー設計値を与
えることすら出来ない状況にあるからである。 即ちVDC−MAの持つ具体的な最大の欠点は、 Γ 大口径押出機で得た知見は小口径押出機に適
用出来ても、小口径押出機での知見は大口径押
出機に適用し難く、従つて改良のための基礎実
験はすべて樹脂消費量の多い大口径押出機に基
づかなければならない実験計画の不経済性とそ
の遂行の困難性を有する欠点。 Γ 大口径押出機を用いた量産体制上の労働生産
性、設計品質の水準及びその充足度からみると
き、例えば、樹脂の耐熱安定性、溶融流動安定
性、流動展開の均一性等を司どる骨格的因子に
問題があり、企業化ベースの評価基準を満せそ
うにない現状水準。 Γ 可塑剤・変性剤等を添加してする熱安定性、
塑性流動性の改良化はあり得ても、変性剤の添
加が及ぼすバリヤ性への悪影響の大きさは、
VDC−MA開発の必要性そのものを否定して
しまう事実。 に集約される。 本発明はこのような現状に鑑み、その困難を克
服してなされたもので、その目的は、 1 ラテツクスを用いる流延・塗工・鋳込み法等
に比べて能率的且つ経済的な、押出成形加工法
を、例えば50mmφ以上の大口径の押出機で工業
的規範で実施できる技術水準に高め、そのこと
によつて、市場要求の高いVDC−MA押出成
形品を安定供給できるようにすること、 2 押出成形加工に適したVDC−MA組成の目
標値を与え、そのことによつて重合法やその条
件開発を促し、更に改良されたVDC−MAの
押出加工品の登場を容易ならしめること。 3 可塑剤等の変性剤の使用の少ない、所謂
VDC−MAの本質的な特性を充分に活用でき
る状態でのVDC−MA押出成形品の安定供給
を可能ならしめること。 (問題点を解決するための手段) 以下本発明の内容を図面等を用いて詳述する。 第2図及び第3図は、本発明の方法で得られた
VDC−MAシートの、MA成分割合に於ける各々
の酸素透過量〔O2TR、単位;15μ・c.c./m2
24Hrs・atm・(at20℃・65%RH)〕及び水蒸気
透過量〔WVTR、単位:15μ・g/m2・24Hrs・
40℃90%RH〕の関係を示すグラフである。 第4図は、同じVDC−MAシートの、MA成分
割合に於けるエレメンドルフ引裂き強さ〔単位
g〕の関係を示すグラフである。 従つて第2〜4図の総合的関係は、VDC−
MAが単層或は積層の成分層の状態でガスバリヤ
層として実用に供したとき、亀裂等のない連続層
の状態を維持し得るか否かを示す関係図に当る。 かかる第2,3図に於て、MAの成分量が少な
い程、O2TR,WVTRは共に、低い透過量を示
して優れたガスバリヤ樹脂層になり得る事実を示
すがその反面、第4図に於てはMA成分量を少な
くすることは、機械特性上、ぜい弱な樹脂層とな
つてしまうことを示している。 よつてVDC−MAをバリヤ性樹脂層として活
用するときは、MA成分量は1〜15重量%の範囲
から選ぶことが必要で、機械的強度、バリヤー性
の双方を共に高度に要求するときは、5〜13重量
%の範囲のMA量のものを選ぶことが望ましいと
云える。 又第2〜3図に示すO2TR及びWVTRの値は、
熱安定剤と呼称されるエポキシ化アマニ油1重量
%、同、酸化マグネシウム0.4重量%のみを共重
合体に添加した、所謂、実質無可塑化状態の
VDC−MAを押出成形したシートが示す値で、
このような高水準のバリヤ性が取出し得るのも、
実質無可塑化の状態でVDC−MAが経済的、且
つ工業的に押出成形することができるようになつ
た本発明の方法の大きな利点であることに注目さ
れたい。 尚、第2図(O2TR)、第3図(WVTR)の対
照値として、市販品の塩化ビニルフイルム及び塩
化ビニリデン系フイルムの同じ単位量に揃えた特
性値を下記に示す。
(Industrial Application Field) The present invention relates to an improvement in a melt extrusion processing method for a vinylidene chloride-methyl acrylate copolymer. (Prior art and problems to be solved by the invention) Vinylidene chloride-methyl acrylate copolymer (hereinafter abbreviated as VDC-MA) has conventionally been generally used as a type of vinylidene chloride copolymer, that is, vinylidene chloride. - It has been treated as an equivalent of vinyl chloride copolymers. In addition, as a method for molding these copolymers using a melt extrusion method, the copolymers are melt-kneaded in an extruder, extruded alone or in layers with other resins, and then extruded into, for example, a cylindrical shape and cooled and solidified. (Japanese Patent Publication No. 44-32676), for example, by inflating a cylindrical extrudate to make a container (Japanese Patent Publication No. 49/1973).
(Japanese Patent Publication No. 52-14855), for example, extruded into a plate shape with a T-die to make a sheet (Japanese Patent Publication No. 52-22676), for example, extruded into a ring shape and biaxially stretched to make a tubular film or a flat film (Japanese Patent Publication No. 52-22676). -31889) is described in each specification and is well known. On the other hand, the MA component in VDC-MA, similar to the vinyl chloride (VC) component of vinylidene chloride-vinyl chloride copolymer (hereinafter abbreviated as VDC-VC), exhibits extremely rapid thermal decomposition of vinylidene chloride polymer. This is to moderate the speed and facilitate plastic deformation of the copolymer itself as a whole. Since it is thought that the MA component is more effective than the VC component, if VDC-MA can be industrially molded, it will have an advantage over VDC-VC in terms of gas barrier properties, etc. The extrusion molded products of VDC-MA should have been listed on the market and put into practical use as soon as possible, but at present, the molded products of vinylidene chloride containing acrylic components that have finally appeared on the market are, for example, Only molded products made from acrylic-containing vinylidene chloride latex in an emulsion state that is molded by so-called casting, coating, casting, etc., without relying on extrusion methods such as those described in Publication No. 59-23682, etc. It is. The reason for this is that, according to the knowledge of the present inventors, VDC-MA has a unique polymerization form in order to make a resin that can withstand extrusion, and that the empirical rules and knowledge when copolymerizing VDC-VC are necessary. It is not always utilized, and overall research on polymerization conditions is not sufficient. On the other hand, the requirements of those who list resin molded products as products or product packaging materials are based on the existence of a wide variety of similar existing products that are already listed. All aspects, including standards, have been highly improved, and in light of the evaluation criteria for determining commercialization, which is based on the premise of being able to compete with existing products, the current VDC-MA is based on the extrusion method. This is because it is ranked as a resin that cannot be commercialized, and it is not even possible to provide polymer design values for research on polymerization conditions. In other words, the biggest specific drawback of VDC-MA is that although the knowledge gained from large-diameter extruders can be applied to small-diameter extruders, the knowledge obtained from small-diameter extruders is difficult to apply to large-diameter extruders. Therefore, all basic experiments for improvement must be based on large-diameter extruders with high resin consumption, which has the drawbacks of uneconomical experimental design and difficulty in its execution. Γ From the perspective of labor productivity, design quality level and sufficiency in a mass production system using a large-diameter extruder, it controls, for example, the heat resistance stability of the resin, melt flow stability, uniformity of flow development, etc. There are problems with the structural factors, and the current level does not seem to meet the evaluation criteria based on commercialization. Γ Thermal stability achieved by adding plasticizers, modifiers, etc.
Although it is possible to improve plastic fluidity, the magnitude of the negative effect on barrier properties caused by the addition of modifiers is
A fact that negates the very necessity of VDC-MA development. It is summarized in The present invention has been made in view of the current situation and to overcome the difficulties, and has the following objectives: 1. To achieve extrusion molding, which is more efficient and economical than casting, coating, casting, etc. methods using latex. To improve the processing method to a technical level that can be carried out under industrial standards using, for example, a large-diameter extruder with a diameter of 50 mm or more, thereby making it possible to stably supply VDC-MA extruded products that are in high demand in the market. 2. To provide target values for VDC-MA composition suitable for extrusion processing, thereby promoting the development of polymerization methods and conditions, and facilitating the appearance of further improved VDC-MA extrusion processed products. 3. Less use of modifiers such as plasticizers, so-called
To enable stable supply of VDC-MA extruded products in a state where the essential properties of VDC-MA can be fully utilized. (Means for Solving the Problems) The contents of the present invention will be explained in detail below using drawings and the like. Figures 2 and 3 show the results obtained by the method of the present invention.
Oxygen permeation amount [O 2 TR, unit: 15 μ cc/m 2
24Hrs・atm・(at20℃・65%RH)] and water vapor permeation rate [WVTR, unit: 15μ・g/m 2・24Hrs・
40°C, 90% RH] is a graph showing the relationship. FIG. 4 is a graph showing the relationship between the Elmendorff tear strength (unit: g) and the MA component ratio of the same VDC-MA sheet. Therefore, the overall relationship in Figures 2 to 4 is VDC-
This is a relationship diagram showing whether or not a continuous layer without cracks etc. can be maintained when MA is put to practical use as a gas barrier layer in the form of a single layer or a laminated component layer. Figures 2 and 3 show the fact that the lower the amount of MA, the lower the amount of permeation of both O 2 TR and WVTR, indicating that it can become an excellent gas barrier resin layer.On the other hand, Figure 4 This shows that reducing the amount of MA component results in a resin layer that is weak in terms of mechanical properties. Therefore, when using VDC-MA as a barrier resin layer, it is necessary to select the MA component amount from the range of 1 to 15% by weight, and when high levels of both mechanical strength and barrier properties are required. It can be said that it is desirable to select a material with an MA amount in the range of 5 to 13% by weight. In addition, the values of O 2 TR and WVTR shown in Figures 2 and 3 are:
A so-called virtually unplasticized copolymer containing only 1% by weight of epoxidized linseed oil and 0.4% by weight of magnesium oxide, which are called heat stabilizers, is added to the copolymer.
The value shown by the extruded VDC-MA sheet,
The reason why such a high level of barrier properties can be achieved is because
It should be noted that a major advantage of the process of the present invention is that VDC-MA can now be economically and industrially extruded in a substantially unplasticized state. In addition, as reference values for FIG. 2 (O 2 TR) and FIG. 3 (WVTR), the characteristic values of commercially available vinyl chloride films and vinylidene chloride films are shown below, with the same unit amounts.

【表】 第1図は解折図である。この解折図は本発明の
技術思想の正当性を示す立証図でもある。 第1図の横軸は、重量平均分子量の値(GPC
法による)を対数目盛にして、同様に縦軸は共重
合体中に含有する分子量2万以下(同GPC法に
よる)の共重合体含有率(%)を対数目盛にし
て、各々に示す両対数目盛の直角座標である。 この第1図にプロツトされているものは、押出
成形加工を量産体制で行おうとするときの充足度
を総合評価として表現し(具体的には、本文評価
方法、評価尺度の記載及び第3表参照)、その総
合評価の結果をそれに対応する共重合体の重量平
均分子量、共重合体中に含有する分子量2万以下
の共重合体含有率との関係位置に示した、解折結
果を示している。尚、図中◎印は工業的設備での
生産に充分な自信がもてる、〇印は部分的に設計
変更すれば工業的設備での生産はどうにか可能、
△印は工業的設備での生産には不適、×印は成形
物を得ることは困難、を各々示す。 第1図によると◎印及び〇印と評価されるもの
は、△印及び×印と評価されるものの内側部に分
布する座標関係になつている。そして注目すべき
ことは、上記◎印及び〇印と評価されるものは、
いずれも元来×印、或は△印と評価された共重合
体相互の、混合(調整)によつて得られた共重合
体であるという事実である。 従つて第1図の解折図の中に、採用できないと
評価されていたものを、採用できるものに改善す
る技術的手段が存在することになる。 その技術思想は、第1図に示し本発明で規定す
るところの、座標点〔重量平均分子量、共重合体
中の2万以下の分子量の共重合体含量〕で表現さ
れる点A〔7万,18〕、点B〔15万,4〕、点C〔25
万,4〕、点D〔12万,18〕の四つの座標点を直線
で結んで成る四辺形の範囲内の値となる関係を満
す共重合体に調整して選ぶことの意味であること
が分る。 本発明で示した調整の手段は、共重合体相互の
混合であるが、目標とする共重合体の骨格が具体
的に示されれば、重合条件を選んでその目的値に
調整することは困難なことではないので、本発明
でいう調整には、重合調整することも含むことを
意味するものとすることが出来る。 尚、近来の企業化ベースに於ける押出成形の加
工場では、省力化、省資源化が進み、高い労働生
産性を確保することは高い品質水準を保つことと
相俟つて、企業の存続性そのものを支配する。か
かる観点に立つての望ましくは、第1図に示す、
点E〔8万,14〕、点F〔10.5万,8〕、点G〔13万,
8〕、点H〔10万,14〕の四点を直線で結ぶ四辺形
の範囲内の値のものに、共重合体の組成に調整す
ることである。この技術的意義は、分子量2万以
下の共重合体含量を増す際、共重合体全体の分子
量分布をあまりに広くなりすぎないように調整す
ることと推察され、この様な観点からの本発明者
の究明によると、重量平均分子量は7万〜25万の
範囲で、同じGPC法で求めた数平均分子量との
比(即ち重量平均分子量÷数平均分子量)は2〜
3の値の範囲のものになることが望ましい。 本発明の製法の有用性の1つは、得られる成形
体が発揮する特性である。 その主要なものを2〜3紹介すると、その第1
は上述第2,3図に示すガスバリヤの特質であ
る。このガスバリヤ性は、同じVDC系の共重合
体、例えばVDC−VCでも得られる特性である
が、VC成分を用いる場合、VCの成分割合を成形
体になつたときの共重合との割合で8重量%以下
の少量にすることが難かしく、あえてこれを企て
たとしても、押出成形適性との関係で可塑剤等の
変性剤の助けを必要とする結果、低いO2TR(即
ち高バリヤ性)の値のものを取出すことに限界が
ある。 これに対し、本発明の方法で得られるVDC−
MA成形体は、MA成分含量を15%以下に保持
し、しかもガスバリヤ性の悪化に大きく関与しな
い変性剤の少量添加で、押出成形加工性を優れた
状態に保持できるので、結果的にVDC−VCに比
較して、ガスバリヤ性に優れた層素材として活用
できることになるのである。 第5図は、本発明の方法で得たVDC−MA成
形品のストレイン−ストレスの関係グラフで、
VDC−VC成形品のものとの比較(破線)を示し
ている。 第5図によると、本発明の方法で得た成形体
(実線)は、その組成・条件によつて、成形体を
引き伸したときは伸長し、その伸長力を開放した
ときは元の形状に近い状態にもどる性質、(1点
鎖線で示した部分)、所謂ストレツチ包装適性を
有していることを示している。この性質はVDC
−VC組成では得られない独自の性質であるとこ
ろからその活用に注目される。 即ち、現在ストレツチ適性を有する現状の単層
フイルムとしては、塩ビフイルム、エチレン−醋
酸ビニル共重合体フイルム等が知られているが、
これ等には水蒸気を含めたガスバリヤ性に乏しく
包装体内容物が目減りする等の問題があることか
ら、ストレツチフイルムにバリヤ性を付与するこ
とが業界の課題となつている。その一策として、
バリヤ性樹脂との積層が検討されているが、一般
にバリヤ性樹脂にはストレツチ性が期待出来ない
ことから、バリヤ性とストレツチ性との双方を兼
備させることが難かしいのである。かかる現状に
あつて成形加工が容易なVDC−MAの登場は、
これを単層のままで、或は積層の層材として応用
するとき、大きな有用性を発揮するものとして注
目されるのである。かかるストレツチ性を有効性
に発揮させる上では、共重合体中のMAの成分量
が、10〜15重量%の範囲のものを選び用いること
が望ましい。 第6図は延伸配向せしめたVDC−MAの収縮
特性を示す実験結果例(実線)で、VDC−VCの
場合(破線)との対比で示している。尚この両者
の延伸条件は必ずしも同じではないが、各々の組
成で到達し得る最高水準の配向状態での両者の対
比例として示している。 第6図の結果によると、VDC−MAは低温収
縮性、一定温度領域で示す収縮量の大きさの双方
に於て、VDC−VCを上廻る優れた性質を有する
ものであることが分る。この収縮性能は、例えば
VDC−MAを積層フイルム内のガスバリヤ樹脂
層に用い、全体として生肉包装等の用途の低温収
縮性ガスバリヤ積層包装材に活用するとき、従来
VDC−VCを成分層として来た積層フイルムに比
べて一段と低温収縮適性に富み、且つ、しわ等の
ないタイトな収縮包装ができる積層フイルムを提
供できる有用性を示すものである。 本発明の有用性の第2は、上述の如き有能特性
を持つ成形加工品を、工業的生産規模の装置で製
造することができ、品質水準を充足した種々の成
形加工品を提供することができることである。 以下その理由を本発明でいう評価項目の意味す
るところに添つて補足する。 先ず「押出に於ける樹脂の熱安定性」及び「パ
ンク発生率」なる評価項目の内容は、例えば押出
機を連続的に長時間運転して、分解物や変色縞等
のない正常品質の成形品を、設定された正常運転
条件下で復帰修正作業を要せずにどれくらい長く
継続生産できるかを示す一つの指標で、製品の品
質及び労働生産性(設備設計を含む)を設定する
上での基礎条件に当る。 換言すれば、工業生産を対象とする製造設備で
は、上記基礎条件は確率平均的に10時間以上継続
生産が続けられることを前提とし、その前提に基
づいて例えば、成形品収納装置の容量、装置間の
自動連動、動作機構、及び品質調整機構等が考え
られ、最少限の所要工数、最大限の稼動状態が発
揮されるように設計されてある。従つてかかる設
計の装置で、上記基礎条件が下廻つて満さない成
形品の製造を行なおうとすると、設備の運転を平
常な運転状態に復帰するための多くの工数を要す
るのみならず、設備の稼動率は下るし設定品質が
保証できなくなるので、生産不能という状態にな
つてしまうのである。これに対し本発明では、上
記基礎条件となる継続性評価が十分満された状態
に到るので、設定品質を充足した経済的競合力の
ある成形品の製造が可能となると云えるのであ
る。更に「押出機に於ける樹脂の熱安定性」が高
水準に保てるということは、継続的に樹脂を押出
機内に滞留させることが必要となるインジエクシ
ヨン押出加工にも、本発明の方法が適用できる根
拠とすることが出来る。 次いで「押出量斑」及び「巾方向の厚み斑」は
共に成形品の縦方向の厚みの均一性、及び横方向
の厚みの均一性を支配する流動性的要素である。
唯この際この両者が共に低い変動水準に保てると
は、二軸方向の流動展開性に優れることを意味す
る。更に巾の広い(或は径の大きい)ダイスを用
いた経済的な押出を可能にしたり、広い面積の型
窩の偶々にまで均一に押出展開したりできること
を示すものとして注目できる。 又、「均質延伸性」は、延伸加工の適性を定め
る主要項目に当る。即ち得られるフイルムの色
調、しわ、曲り等の外観品位、引裂き強度、引張
り強度等の機械特性、ガスバリヤ性、透光歪等の
物理特性といつた諸品質の、水準を支配する性格
のものに当るので、この項目の充足は良質の延伸
フイルムを得る上で大きな意義がある。 次に「押出温度条件の変更許容巾」の意味は、
ダイ内積層共押出の方式で、積層品(フイルム成
型、中型成形、インジエクシヨン成形等)を得る
際の相方樹脂の選択適性を示す指標である。即ち
ダイ内積層共押出では、積層樹脂相互間の粘度を
近似させることが重要になるのであるが、この許
容巾が広い程、相方となり得る樹脂の選択の範囲
が広がることになるので、その分だけ多品質の積
層品に採用できるという意義が生じるのである。 更に「積層延伸性」の意味は、積層品内の
VDC−MA層が他の層の伸展変形に追隋して伸
展し得るかの評価で、例えば積層品の深絞り型押
成形時や、積層品の強制延伸による薄層化成形時
に於けるVDC−MA層の均質伸展適性(即ちバ
リヤ性成分層の役割機構)を評価するものとして
意義がある。本発明の場合、上述の評価項目のす
べてが高水準に揃つて兼備される結果(第3,4
表参照)種々な成形品が経済的に、工業的規模で
供給出来るという利点を発揮するので、その有用
性はきわめて高いと云える。 本発明でいうVDC−MAの重量平均分子量、
数平均分子量、及び分子量2万以下の共重合体含
有量等は、次の方法、即ちGPC(ゲルパーミエー
シヨンクロマトグラフイー)法で求めた値のもの
である。 使用機器類は以下の通り。 Γ 機種;高速液体クロマトグラフイー(ウオー
ターズ社製) Γカラム;マイクロスタイラジル(同上) Γ溶媒;テトラヒドロフラン〔以下THFと略記
する〕(和光純薬社製・液体クロマトグラ
フイー用) 測定様式は以下の通り。 THFに0.5重量%濃度に溶解させた測定対象試
料について20℃に保温した状態下で行うカラムか
ら溶媒と共に流出して来る試料濃度の、試料注入
後の時間経過に伴なう変化を、示差屈折計の出力
電流値として検出し記録計のチヤートに描かせ
る。 分子量の較正は以下の通り。 分子量が3600,35000,110000,650000,
1460000である5種の単分散ポリスチレンの各々
について、本測定機による測定を前もつて完了さ
せておき、このデーターを検量線にしてVDC−
MAの分子量の計算基礎とする。即ち分子量既知
の単分散ポリスチレンが示す、示差屈折計の出力
電流のピーク値が生じるまでのGPCカウント数
(試料注入時を起点Oとする秒数)とそのものの
分子量(片対数)との関係を座標点とし、この5
種の座標点を直線で結ぶグラフを作り、これをも
つて分子量算定の検査線となすのである。 測定と計算は以下の通り。 対象とする樹脂試料で描かられたGPCカウン
ト数と示差屈折計の出力電流値との関係チヤート
から、GPCカウント数900〜1440の間を20カウン
ト毎に区切つた位置に示されている出力電流値
(Pi)を、そのGPCカウント数に対応する分子量
(検査線による)Miの度数として求め、各々次の
ように計算する。 分子量Miの重量分率Wi=Pi/ΣPi 次に、本発明でいうVDC−MAの重量平均分
子量、数平均分子量は、このようにして計算した
分子量Miの重量分率Wiと分子量Miとを使つて、
各々次のように計算する。 重量平均分子量=Σ(Wi×Mi) 数平均分子量=1/Σ(Wi÷Mi) 又、本発明でいう分子量2万以下の共重合体含
有率は、次のように計算する。分子量2万以下の
Miの各々に対応する重量分率Wiを合計し、その
合計の100倍を、分子量2万以下の共重合体含有
率(重量パーセント)とする。 以上のようにして、GPC法で重量平均分子量、
数平均分子量を求める方法は、高分子に関しての
出版物、例えば「高分子測定法上巻」(培風館社、
昭和48年)、において広く知られた方法である。 以下、本発明で用いた評価方法、評価尺度につ
いて詳述する。 工業的設備に於ける生産性評価 (1) 単層フイルム生産設備を用いての評価。 押出−製膜方法の概要は、下記の通りである。 第7図に於て、押出機1(口径D=80mm、L=
1600mm、温調ゾーン5セクシヨン)内で、そのホ
ツパー部2から供給された原料樹脂を溶融混練
し、その先端に取付けられたサーキユラーダイ3
(口径200mm、スリツト間隙1mm)より、単位時間
当り100Kgの割合で押出し、押出された目標厚み
1mmの筒状フイルム4を冷却槽5に導入して過冷
却した後、その筒状フイルム内に封入されたエヤ
ーと、ピンチロール6,6′,7,7′との間の周
速比とで縦×横(4〜5×4〜5)のインフレー
シヨン同時二軸延伸を施こし、之を2枚重ねの平
坦状フイルム8に折たたんで、捲取装置9の捲取
軸10上に折巾1200又は1900mm、肉厚み20ミクロ
ンの二枚重ね(計40ミクロン)のフイルムを巻速
13又は20m/分の割で捲取る。 評価方法の概要は以下の通り。 VDC−VCでの製膜実験及び生産に熟練した作
業者で編成した三交代制実験班を準備し、連続生
産上の労働生産性及び設定品質の保持上、重要と
なる因子を評価項目として取上げ、これ等評価項
目の内容が、最も精度良く且つ能率的に評価出来
るかを考えた実験計画表に基づいて予じめ用意し
た評価対象樹脂の個々について、最適押出温度条
件設定後の状態下の評価で示す。 評価項目と評価尺度は下記の通りである。 a 押出工程に於ける樹脂の熱安定性、 押出機内での樹脂の滞留に対する樹脂の熱安定
の連続的な持続性を評価しようとしたもので、分
解物黒点、分解変色物が、製膜中のフイルム上に
生じる迄の押出経時の、時間の長さで評価する。
但し、データーは、目標72時間の製膜実積に依る
が分解物流出時は、製膜を中断して押出機内の洗
浄或は分解掃除を行い、後改めて製膜を続行する
ことになるので、この際の中断時間及び製膜立上
げ時の押出機内洗浄不充分により生じた分解物流
出のデータは、計算の対象から除外するものとす
る。 評価尺度、 評価記号分解物が流出する迄の平均時間 ◎;24時間以上 〇;24時間未満〜8時間以上、 △;8時間未満〜1時間以上、 ×;1時間未満 b パンク発生率 インフレーシヨン製膜の連続的な持続性を評価
しようとしたもので、上記分解物以外の異常(例
えば気泡・未溶融物の流出等)に依つて、インフ
レーシヨン中のバブルが破損する割合を平均した
単位時間で示す。尚データ計算上の処置は、上記
a項に準じる。 評価尺度、 評価記号、1時間当りの平均発生回数 ◎;0.1回未満 〇;0.1回以上〜0.3回未満 △;;0.3回以上〜2回未満 ×;2回以上 c 押出量斑、 押出時に生じる押出軸方向の押出機(フイルム
の縦方向の厚み斑になる)を評価しようとするも
ので、押出中の樹脂をダイスリツト面に添つて30
秒間隔で切断する操作を連続的に繰返して10個の
切断押出片を得、その個々の重量を正確に測り、
重量の最大値と最小値の差の、10個の平均重量に
対する割合を百分率で求める。 評価尺度 評価記号、斑の大きさ、 ◎ 2%未満 〇 2%以上〜4%未満 △ 4%以上〜7%未満 × 7%以上 D 巾方向の厚斑 冷却槽で冷却した筒状押出物の肉厚みを、円周
方向に等間隔に50点、マイクロゲージで測定し、
その厚みのバラツキの標準偏差を計算して示し
た。 d 巾方向の厚斑 延伸前の筒状押出物の巾方向の厚の均一性を、
評価しようとするもので、予めダイの温度を各々
の評価樹脂の特性に応じて、ダイ内で樹脂の滞留
が生じる温度から樹脂の熱分解が生じる温度の間
の中間の温度に設定した後、ダイのスリツトの間
隙を、塩化ビニリデン−塩化ビニル共重合体の押
出成形の知見を基に、充分調整して、冷却槽で冷
却した筒状押出物の肉厚みを、円周方向に等間隔
に50点、マイクロゲージ〔ASTM,D.374に準
拠〕で測定し、その50点の測定厚みの標準偏差を
次式で計算し、その標準偏差を3倍した。 ここで、xiは各々の測定厚みを、は平均厚み
を、nは測定点数、即ち、50を意味する。 評価尺度 評価記号 厚斑の大きさ ◎;0.05mm未満 〇;0.05mm以上〜0.1mm未満 △;0.1mm以上〜0.2mm未満 ×;0.2mm以上 e 均質延伸性 延伸後の筒状フイルムの巾方向の厚の均一性を
評価しようとするもので、予め、冷却槽の温度条
件、ピンチロールの周速比を、各々の樹脂の特性
に応じて、所定の縦、横の延伸比が出る様に設定
した後、2枚重ねで捲取られたフイルムを再び剥
離がして筒状にしたフイルムの厚を、円周方向に
等間隔に50点、ダイヤルゲージ〔ASTM.D.374
に準拠〕で測定し、その50点の測定厚みの標準偏
差を、D項で説明した式で計算し、その標準偏差
を3倍した。 評価尺度 評価記号 厚斑の大きさ ◎;1ミクロン未満 〇;1ミクロン以上〜2ミクロン未満 △;2ミクロン以上〜4ミクロン未満 ×;4ミクロン以上 (2) 五層積層フイルム生産設備を用いての評価。 押出−製膜方法の概要は下記の通りである。 第8図に於て、3台の押出機20,21,22
の各々で溶融された3種類の樹脂ポリプロピレン
(PP)、エチレン−酢酸ビニル共重合体(EVA)、
塩化ビニリデン−メチルアクリレート系共重合体
(VDC−MA)を、フイードポートブロツク23
に導き、この部分で、PP/EVA/VDC−MA/
EVA/PPの順序に積層した樹脂ブロツク状物を
作り、これをTダイ24(巾2000mm、スリツト間
隙3mm)部に導いてシート状に展開して共押出
し、之を冷却ロール群25,25′で冷却して、
捲取機26の捲取軸27上に巾1950mm、肉厚み65
ミクロン〔層構成、PP(20μ)/EVA(5μ)/
VDC−MA(15μ)/EVA(5μ)/PP(20μ)〕目標
の5層積層フイルムとして捲取る。使用した押出
機の〔長さ(L)/口径((D)〕は、順に各々
〔3120mm/120mm〕=26,〔1080mm/60mm〕=18、
〔1600mm/80mm〕=20で合計押出量の目標は250
Kg/Hrとした。 評価方法の概要は下記の通りである。 VDC−VCでの共押出製膜実験に熟練した作業
者で編成した実験斑を用意し、実験対象樹脂の
各々について、先ず上記5層の共押出積層フイル
ムが形成できる押出温度を設定して安定した製膜
が出来ることを確認した後、VDC−MAの押出
温度を、該設定押出温度を中心として高低両側に
5℃の間隔づつずらせる操作(変温速度1℃/1
分の割)を繰返し、製膜されたフイルム断面の
VDC−MA層が乱れずに押出製膜できる押出温
度の変更許容巾を求めることと、及びその変更許
容温度巾のほぼ中央値的押出温度で成膜した積層
フイルムについて、テンターで巾方向に8倍延伸
(延伸温度130℃)し、延伸前後のフイルムの酸素
透過率(ASTM.D.1434)を測り、延伸によつて
変る酸素透過率(厚み換算済み)の変化率(バリ
ヤ性の向上率及び低下率)をもつて積層延伸性と
した。 f 押出温度の変更許容巾 評価記号 許容温度巾 ◎;20℃以上 〇;20℃未満〜10℃以上 △;10℃未満〜5℃以上 ×;5℃未満 g 積層延伸性 評価記号 延伸に依るバリヤ性の向上率 ◎;10%以上の向上率 〇;10%未満〜0%の向上率 △;10%未満の低下率 ×;10%以上の低下率 総合評価 上記a〜gの7項目の評価結果を総合的に検討
し、次の4段階に区分した。 評価記号 ◎;工業的設備での生産に充分な自信がもて
る。 〇;部分的に設計変更すれば、工業的設備での
生産はどうにか可能、 △;工業的設備での生産には不適、(小設備で
の実験程度はどうにか不能) ×;成形物を得ることは困難 実験に供したVDC−MA樹脂とその製法は下
記の通りである。 メチルセルローズ11Kg、エチレンジアミン7.5
Kgを溶解した水溶液11000Kgの入つている容量30
m3の重合器に、塩化ビニリデンモノマーとメチル
アクリレートモノマー(重量比90,10)との混合
モノマー7500Kgにジイソプロピルパーオキシジカ
ーボネートを15Kg溶解した重合原料を減圧下で装
填し、フアウドラー型撹拌翼を持つ撹拌機で撹拌
しながら懸濁重合を行つた。重合温度は30℃から
開始して30℃で4時間、40℃まで昇温速度1℃/
時間の割で昇温重合し、その後55℃までは昇温速
度1.5℃/時間の割での重合を続けて、合計重合
時間24時間かけて重合率97%の共重合体を得た
(この樹脂を記号の樹脂とする)。 上記重合条件(温度と時間)を平均分子量が変
るべく変更せしめ、同様な方法で記号,,
,,の樹脂を重合した。 次に塩化ビニリデンモノマーとメチルアクリレ
ートの混合比を97;3,92.5;7.5,85;15の重
量比割合に変更し、平均分子量目標6万と14万の
2水準の樹脂を重合して記号,,,,
XI,XIIとした。 重合でできた12種の樹脂の組成、特性は第1表
に示す通りのものであつた。
[Table] Figure 1 is an exploded diagram. This exploded diagram is also a proof diagram showing the validity of the technical idea of the present invention. The horizontal axis in Figure 1 is the weight average molecular weight (GPC
Similarly, the vertical axis is the copolymer content (%) with a molecular weight of 20,000 or less (according to the same GPC method) contained in the copolymer, on a logarithmic scale. It is a rectangular coordinate on a logarithmic scale. What is plotted in Figure 1 expresses the degree of sufficiency when trying to perform extrusion molding processing in a mass production system as a comprehensive evaluation (specifically, the evaluation method in the main text, the description of the evaluation scale, and Table 3) ), the results of the comprehensive evaluation are shown in relation to the weight average molecular weight of the corresponding copolymer and the content of copolymers with a molecular weight of 20,000 or less contained in the copolymer. ing. In addition, in the diagram, ◎ indicates that we are confident enough to produce with industrial equipment, and 〇 indicates that production with industrial equipment is somehow possible with partial design changes.
The mark △ indicates that it is unsuitable for production in industrial equipment, and the mark x indicates that it is difficult to obtain a molded product. According to FIG. 1, those evaluated as ◎ and ○ have a coordinate relationship that is distributed inside those evaluated as △ and ×. What should be noted is that the items marked with ◎ and ○ are as follows:
The fact is that all of these are copolymers obtained by mixing (adjusting) copolymers that were originally evaluated as X or Δ. Therefore, there is a technical means to improve the breakdown diagram of FIG. 1, which was evaluated as unadoptable, into one that can be adopted. The technical idea is as shown in Figure 1 and defined in the present invention as a point A [70,000 yen expressed by the coordinate point [weight average molecular weight, content of copolymer with a molecular weight of 20,000 or less in the copolymer]. , 18], point B [150,000, 4], point C [25
This means adjusting and selecting a copolymer that satisfies the relationship that the value is within the range of the quadrilateral formed by connecting the four coordinate points of point D [120,000, 4] and point D [120,000, 18] with straight lines. I understand. The means of adjustment shown in the present invention is to mix copolymers with each other, but if the skeleton of the target copolymer is specified, it is possible to select polymerization conditions and adjust them to the desired value. Since it is not difficult, the adjustment referred to in the present invention can be understood to include polymerization adjustment. In recent years, in extrusion molding processing plants based on commercialization, labor and resource conservation has progressed, and ensuring high labor productivity, together with maintaining high quality standards, is a key factor in the survival of the company. control that thing. From this point of view, it is preferable to use the system shown in FIG.
Point E [80,000, 14], Point F [105,000, 8], Point G [130,000,
8], point H [100,000, 14], and the composition of the copolymer is adjusted to a value within the range of the quadrilateral drawn by a straight line. The technical significance of this is presumed to be that when increasing the content of a copolymer with a molecular weight of 20,000 or less, the molecular weight distribution of the entire copolymer is adjusted so as not to become too broad. According to research, the weight average molecular weight is in the range of 70,000 to 250,000, and the ratio to the number average molecular weight determined by the same GPC method (i.e., weight average molecular weight ÷ number average molecular weight) is 2 to 250,000.
It is desirable that the value be in the range of 3. One of the usefulness of the production method of the present invention is the properties exhibited by the molded article obtained. If I introduce two or three of the main ones, the first one is
are the characteristics of the gas barrier shown in FIGS. 2 and 3 above. This gas barrier property is a property that can also be obtained with the same VDC-based copolymer, such as VDC-VC, but when using a VC component, the proportion of VC in the copolymer when it becomes a molded product is 8. It is difficult to reduce the O 2 TR (i.e., high barrier There is a limit to extracting things with a value of On the other hand, VDC− obtained by the method of the present invention
By keeping the MA component content at 15% or less and adding a small amount of a modifier that does not significantly contribute to deterioration of gas barrier properties, MA molded articles can maintain excellent extrusion processability, resulting in VDC- This means that it can be used as a layer material with superior gas barrier properties compared to VC. Figure 5 is a strain-stress relationship graph of the VDC-MA molded product obtained by the method of the present invention.
A comparison (dashed line) with that of a VDC-VC molded product is shown. According to FIG. 5, depending on its composition and conditions, the molded product obtained by the method of the present invention (solid line) elongates when the molded product is stretched, and returns to its original shape when the stretching force is released. This shows that the material has the property of returning to a state close to that of the original material (the part shown by the dashed line), which indicates that it has the so-called suitability for stretch packaging. This property is VDC
- Its use is attracting attention because it has unique properties that cannot be obtained with VC compositions. That is, currently known single-layer films having stretchability include vinyl chloride film and ethylene-vinyl acetate copolymer film.
Since these films have problems such as poor gas barrier properties including water vapor and loss of the contents of the package, it has become a challenge in the industry to provide stretch films with barrier properties. As one measure,
Lamination with barrier resins has been considered, but since barrier resins generally cannot be expected to have stretch properties, it is difficult to provide both barrier properties and stretch properties. In this current situation, the appearance of VDC-MA, which is easy to mold, is
When applied as a single layer or as a laminated material, it is attracting attention as a material that exhibits great usefulness. In order to effectively exhibit such stretchability, it is desirable to select and use a copolymer containing MA in an amount of 10 to 15% by weight. FIG. 6 shows an example of experimental results (solid line) showing the shrinkage characteristics of stretched and oriented VDC-MA, in comparison with the case of VDC-VC (broken line). Although the stretching conditions for both are not necessarily the same, they are shown as examples of comparison between the two at the highest level of orientation that can be achieved with each composition. According to the results shown in Figure 6, it can be seen that VDC-MA has superior properties that exceed VDC-VC in both low-temperature shrinkability and the amount of shrinkage in a constant temperature range. . This shrinkage performance is, for example,
When VDC-MA is used as a gas barrier resin layer in a laminated film and used as a whole as a low-temperature shrinkable gas barrier laminated packaging material for applications such as raw meat packaging, conventional
This shows the usefulness of providing a laminated film that has better low-temperature shrinkability than laminated films containing VDC-VC as a component layer and can be shrink-wrapped tightly without wrinkles. The second usefulness of the present invention is that molded products having the above-mentioned characteristics can be manufactured using equipment on an industrial production scale, and that it provides various molded products that satisfy quality standards. This is something that can be done. The reasons for this will be supplemented below along with the meanings of the evaluation items in the present invention. First of all, the evaluation items ``thermal stability of resin during extrusion'' and ``incidence of punctures'' are based on, for example, the extruder being operated continuously for a long time to ensure normal quality molding without decomposition products or discolored streaks. It is an indicator that shows how long a product can be continuously produced under set normal operating conditions without requiring recovery and correction work, and is used in setting product quality and labor productivity (including equipment design). This corresponds to the basic condition of In other words, in manufacturing equipment for industrial production, the above basic conditions assume that continuous production will continue for 10 hours or more on average probability, and based on that premise, for example, the capacity of molded product storage equipment, equipment etc. Automatic interlocking, operating mechanisms, quality adjustment mechanisms, etc. are considered, and the design is designed to minimize the required man-hours and maximize operating conditions. Therefore, if you try to manufacture a molded product that does not meet the above basic conditions using equipment with such a design, it will not only take a lot of man-hours to restore the equipment to normal operation, but also The operating rate of the equipment decreases and the quality of the settings cannot be guaranteed, resulting in a state where production is impossible. On the other hand, in the present invention, since the continuity evaluation, which is the basic condition described above, is fully satisfied, it can be said that it is possible to manufacture an economically competitive molded product that satisfies the set quality. Furthermore, the fact that the "thermal stability of the resin in the extruder" can be maintained at a high level means that the method of the present invention can also be applied to in-die extrusion processing, which requires continuous retention of the resin in the extruder. It can be used as a basis. Next, "extrusion amount unevenness" and "thickness unevenness in the width direction" are both fluid elements that control the uniformity of the thickness in the longitudinal direction and the thickness in the lateral direction of a molded article.
However, in this case, the fact that both of these fluctuations can be maintained at a low level means that the fluidity is excellent in biaxial directions. Furthermore, it is noteworthy that it shows that it is possible to perform economical extrusion using a die with a wide width (or a large diameter), and that it is possible to extrude uniformly evenly into mold cavities of a wide area. Moreover, "homogeneous stretchability" corresponds to the main item that determines suitability for stretching processing. In other words, the characteristics that control the quality of the obtained film, such as its appearance quality such as color tone, wrinkles, and bending, mechanical properties such as tear strength and tensile strength, and physical properties such as gas barrier properties and transmission distortion. Therefore, satisfying this item is of great significance in obtaining a high quality stretched film. Next, the meaning of "allowable range of change in extrusion temperature conditions" is:
This is an index that indicates the suitability of selecting a companion resin when obtaining a laminated product (film molding, medium molding, in-die extrusion molding, etc.) using the in-die lamination coextrusion method. In other words, in in-die lamination coextrusion, it is important to approximate the viscosity of the laminated resins, but the wider this tolerance range, the wider the range of selection of resins that can be partners. Therefore, it is significant that it can be used for high-quality laminate products. Furthermore, the meaning of "laminate extensibility" is
Evaluation of whether the VDC-MA layer can follow the stretching deformation of other layers. - It is significant as a means of evaluating the homogeneous stretchability of the MA layer (i.e., the role mechanism of the barrier component layer). In the case of the present invention, all of the above-mentioned evaluation items are met at a high level (3rd and 4th items).
(See table) Since it exhibits the advantage of being able to supply various molded products economically and on an industrial scale, its usefulness can be said to be extremely high. The weight average molecular weight of VDC-MA in the present invention,
The number average molecular weight, the content of copolymers with a molecular weight of 20,000 or less, etc. are values determined by the following method, that is, the GPC (gel permeation chromatography) method. The equipment used is as follows. Γ Model: High performance liquid chromatography (manufactured by Waters) Γ Column: Microstyradil (same as above) Γ Solvent: Tetrahydrofuran [hereinafter abbreviated as THF] (manufactured by Wako Pure Chemical Industries, Ltd., for liquid chromatography) Measurement format is as follows street. A sample to be measured dissolved in THF at a concentration of 0.5% by weight is kept at 20°C. Changes in the concentration of the sample flowing out of the column together with the solvent over time after sample injection are measured using differential refraction. Detect it as the output current value of the meter and draw it on the chart of the recorder. Calibration of molecular weight is as follows. Molecular weight is 3600, 35000, 110000, 650000,
For each of the five types of monodisperse polystyrene with a molecular weight of 1,460,000, the measurement using this measuring device was completed in advance, and this data was used as a calibration curve to calculate the VDC-
Use this as the basis for calculating the molecular weight of MA. In other words, the relationship between the number of GPC counts (number of seconds from the time of sample injection to the starting point O) until the peak value of the output current of the differential refractometer occurs and the molecular weight (semi-logarithm) of monodisperse polystyrene with a known molecular weight. As the coordinate point, this 5
A graph is created by connecting the coordinate points of the species with straight lines, and this is used as a test line for molecular weight calculation. Measurements and calculations are as follows. From the relationship chart between the GPC count number drawn for the target resin sample and the output current value of the differential refractometer, the output current value shown at the position separated by every 20 counts between GPC count number 900 and 1440. (Pi) is determined as the frequency of the molecular weight (according to the inspection line) Mi corresponding to the GPC count number, and each is calculated as follows. Weight fraction Wi of molecular weight Mi=Pi/ΣPi Next, the weight average molecular weight and number average molecular weight of VDC-MA in the present invention are calculated using the weight fraction Wi of molecular weight Mi and the molecular weight Mi calculated in this way. Then,
Each is calculated as follows. Weight average molecular weight=Σ(Wi×Mi) Number average molecular weight=1/Σ(Wi÷Mi) The content of copolymers with a molecular weight of 20,000 or less in the present invention is calculated as follows. Molecular weight less than 20,000
The weight fractions Wi corresponding to each of Mi are summed, and 100 times the sum is taken as the content (weight percent) of a copolymer with a molecular weight of 20,000 or less. As described above, weight average molecular weight,
The method for determining the number average molecular weight can be found in publications related to polymers, such as "Kyomunshi Measuring Methods Volume 1" (Baifukansha,
This method was widely known in 1971). The evaluation method and evaluation scale used in the present invention will be described in detail below. Productivity evaluation in industrial equipment (1) Evaluation using single-layer film production equipment. The outline of the extrusion-film forming method is as follows. In Fig. 7, extruder 1 (diameter D = 80 mm, L =
The raw resin supplied from the hopper part 2 is melted and kneaded in the hopper section (1600mm, temperature control zone 5 section), and the circular die 3 attached to the tip of the hopper part 2 is melted and kneaded.
(diameter 200 mm, slit gap 1 mm), the extruded cylindrical film 4 with a target thickness of 1 mm is extruded at a rate of 100 kg per unit time, is introduced into the cooling tank 5, supercooled, and then sealed inside the cylindrical film. Simultaneous biaxial stretching with longitudinal and horizontal (4 to 5 x 4 to 5) inflation was carried out using the air and the circumferential speed ratio between the pinch rolls 6, 6', 7, and 7'. is folded into a two-ply flat film 8, and the two-ply film (40 microns in total) with a fold width of 1200 or 1900 mm and a wall thickness of 20 microns is wound on the winding shaft 10 of the winding device 9.
Winding at a rate of 13 or 20m/min. The outline of the evaluation method is as follows. We prepared a three-shift experimental team made up of workers skilled in film forming experiments and production at VDC-VC, and selected important factors as evaluation items for maintaining labor productivity and set quality in continuous production. The contents of these evaluation items were prepared in advance based on an experimental plan that considered whether the content of these evaluation items could be evaluated in the most accurate and efficient manner. Indicate by evaluation. The evaluation items and evaluation scale are as follows. a) This was an attempt to evaluate the thermal stability of the resin during the extrusion process, and the continuous sustainability of the thermal stability of the resin against retention of the resin in the extruder. The evaluation is based on the length of extrusion time until the film is formed.
However, the data depends on the actual film production for the target 72 hours, but if decomposed products leak out, film production must be interrupted, the inside of the extruder must be cleaned or disassembled and cleaned, and then film production must be continued again. In this case, data on the outflow of decomposed products caused by the interruption time and insufficient cleaning inside the extruder at the time of starting film production shall be excluded from the calculations. Evaluation scale, evaluation symbol Average time until decomposition products flow out ◎; 24 hours or more ○; Less than 24 hours to 8 hours or more △; Less than 8 hours to 1 hour or more ×; Less than 1 hourb Puncture incidence Inflation This is an attempt to evaluate the continuous sustainability of inflation film formation, and is based on the average rate at which bubbles break during inflation due to abnormalities other than the above-mentioned decomposed products (e.g. bubbles, outflow of unmelted materials, etc.) It is expressed in units of time. Note that the data calculation procedure is in accordance with the above section a. Evaluation scale, evaluation symbol, average number of occurrences per hour ◎; Less than 0.1 times 〇; 0.1 times or more to less than 0.3 times △; ; 0.3 times or more to less than 2 times ×; 2 or more times c Extrusion amount unevenness, occurring during extrusion This is an attempt to evaluate an extruder in the direction of the extrusion axis (which causes uneven thickness in the longitudinal direction of the film).
The cutting operation was continuously repeated at intervals of seconds to obtain 10 cut extruded pieces, and the weight of each piece was accurately measured.
Calculate the ratio of the difference between the maximum and minimum weights to the average weight of the 10 pieces as a percentage. Evaluation scale Evaluation symbol, size of spots, ◎ Less than 2% 〇 2% or more to less than 4% △ 4% or more to less than 7% × 7% or more D Thick spots in the width direction Cylindrical extrudate cooled in a cooling tank Measure the wall thickness with a micro gauge at 50 points equally spaced in the circumferential direction.
The standard deviation of the thickness variation was calculated and shown. d Thickness in the width direction The uniformity of the thickness in the width direction of the cylindrical extrudate before stretching is
After setting the temperature of the die in advance to an intermediate temperature between the temperature at which the resin stagnates in the die and the temperature at which thermal decomposition of the resin occurs, according to the characteristics of each evaluation resin, The gap between the slits of the die was sufficiently adjusted based on the knowledge of extrusion molding of vinylidene chloride-vinyl chloride copolymer, and the wall thickness of the cylindrical extrudate cooled in the cooling tank was made evenly spaced in the circumferential direction. The thickness was measured at 50 points using a micro gauge (based on ASTM, D.374), and the standard deviation of the measured thickness at the 50 points was calculated using the following formula, and the standard deviation was multiplied by 3. Here, x i means each measured thickness, n means the average thickness, and n means the number of measurement points, that is, 50. Evaluation scale Evaluation symbol Size of thick spot ◎; Less than 0.05 mm〇; 0.05 mm or more to less than 0.1 mm △; 0.1 mm or more to less than 0.2 mm The objective is to evaluate the uniformity of the thickness of the resin, and the temperature conditions of the cooling tank and the circumferential speed ratio of the pinch rolls are adjusted in advance so that a predetermined vertical and horizontal stretching ratio is obtained according to the characteristics of each resin. After setting, the thickness of the cylindrical film was measured by peeling off the two layers of film again and measuring the thickness using a dial gauge [ASTM.D.374] at 50 points equally spaced in the circumferential direction.
The standard deviation of the measured thickness at 50 points was calculated using the formula explained in section D, and the standard deviation was multiplied by 3. Evaluation scale Evaluation symbol Size of thick spot ◎; less than 1 micron 〇; 1 micron or more - less than 2 micron △; 2 micron or more - less than 4 micron ×; 4 micron or more (2) evaluation. The outline of the extrusion-film forming method is as follows. In Figure 8, three extruders 20, 21, 22
Three types of resins, polypropylene (PP), ethylene-vinyl acetate copolymer (EVA),
Vinylidene chloride-methyl acrylate copolymer (VDC-MA) was added to the feed port block 23.
In this part, PP/EVA/VDC-MA/
A resin block-like material is made by laminating EVA/PP in this order, and this is introduced into the T-die 24 (width 2000 mm, slit gap 3 mm), developed into a sheet, and coextruded. Cool it with
On the winding shaft 27 of the winding machine 26, a width of 1950 mm and a wall thickness of 65 mm are mounted.
Micron [layer structure, PP (20μ)/EVA (5μ)/
VDC-MA (15μ) / EVA (5μ) / PP (20μ)] Wind it up as the target 5-layer laminated film. The length (L)/diameter (D) of the extruder used was as follows: [3120mm/120mm] = 26, [1080mm/60mm] = 18,
[1600mm/80mm] = 20 and the target total extrusion amount is 250
Kg/Hr. The outline of the evaluation method is as follows. An experimental sample prepared by workers skilled in VDC-VC coextrusion film forming experiments was prepared, and for each of the resins to be tested, the extrusion temperature at which the above-mentioned five-layer coextrusion laminated film could be formed was set and stabilized. After confirming that the desired film can be formed, the VDC-MA extrusion temperature is shifted by 5°C on both sides of the set extrusion temperature (temperature change rate 1°C/1).
Repeat the process (dividing) to create a cross-section of the formed film.
To determine the allowable change range of extrusion temperature that can be extruded without disturbing the VDC-MA layer, and to obtain a laminated film formed at approximately the median extrusion temperature of the allowable change range, 8 Stretch the film twice (stretching temperature 130°C), measure the oxygen permeability (ASTM.D.1434) of the film before and after stretching, and measure the rate of change in oxygen permeability (converted to thickness) due to stretching (rate of improvement in barrier properties). and reduction rate) was taken as the lamination stretchability. f Allowable range of change in extrusion temperature Evaluation symbol Allowable temperature range ◎; 20°C or more 〇; Less than 20°C to 10°C or more △; Less than 10°C to 5°C or more ×; Less than 5°C Improvement rate of 10% or more ○; Improvement rate of less than 10% to 0% △; Decrease rate of less than 10% ×; Decrease rate of 10% or more Overall evaluation Evaluation of the 7 items a to g above The results were comprehensively examined and divided into the following four stages. Evaluation symbol: ◎: There is sufficient confidence in production using industrial equipment. 〇: Possible to produce in industrial equipment by partially changing the design △: Unsuitable for production in industrial equipment (somehow impossible for experiments in small equipment) ×: Obtaining molded products The VDC-MA resin used in the experiment and its manufacturing method are as follows. Methyl cellulose 11Kg, ethylenediamine 7.5
Capacity 30 containing 11000Kg of aqueous solution containing Kg
A polymerization reactor containing 15 kg of diisopropyl peroxydicarbonate dissolved in 7,500 kg of a mixed monomer of vinylidene chloride monomer and methyl acrylate monomer (weight ratio 90, 10) was loaded into a 3 m3 polymerization vessel under reduced pressure, and a Feudler-type stirring blade was installed. Suspension polymerization was carried out while stirring with a stirrer. The polymerization temperature started at 30℃, 4 hours at 30℃, and a heating rate of 1℃/1℃ to 40℃.
Polymerization was carried out at a heating rate of 1.5°C/hour until 55°C, and a copolymer with a polymerization rate of 97% was obtained over a total polymerization time of 24 hours. Let resin be the symbol resin). The above polymerization conditions (temperature and time) were changed to change the average molecular weight, and in the same manner, the symbols,...
, , were polymerized. Next, the mixing ratio of vinylidene chloride monomer and methyl acrylate was changed to a weight ratio of 97; 3, 92.5; 7.5, 85; ,,,
XI and XII. The compositions and properties of the 12 resins produced by polymerization are as shown in Table 1.

【表】 実験例 1 第1表、記号〜の6種類の樹脂の各々に、
エポキシ化アマニ油1重量%、酸化マグネシウム
0.4重量%(いずれも熱安定剤)を添加混合し、
この樹脂を用いて、本文記載の単層フイルム生産
設備を用いた、工業的設備に於ける生産性の評価
実験を行つた。 その結果は第2表に示す通りのさんたんたるも
ので、安定した押出が出来ずに実験を中断するも
のや、どうにか押出は出来ても、フイルムの製膜
という状態には至らない樹脂がほとんどで、可能
な範囲の評価項目の評価を終えるのがようやくと
いう有様であつた。 念のために五層積層フイルム生産設備を用いて
の評価も行つてみたが、記号の樹脂だけが、積
層時の使用には供せそうであることが分つただけ
で、思わしい成果は得られなかつた。第2表はこ
れ等の結果をまとめて示す。
[Table] Experimental example 1 For each of the six types of resins with symbols ~ in Table 1,
Epoxidized linseed oil 1% by weight, magnesium oxide
Add and mix 0.4% by weight (both are heat stabilizers),
Using this resin, an experiment was conducted to evaluate productivity in industrial equipment using the single-layer film production equipment described in the text. The results are very disappointing, as shown in Table 2. Some resins cannot be extruded stably and the experiment has to be stopped, and even if some resins can be extruded, most resins cannot be made into a film. Finally, it seemed that we had finally completed the evaluation of the possible evaluation items. Just to be sure, we also conducted an evaluation using five-layer laminated film production equipment, but only the resin with the symbol was found to be usable for use in lamination, and no promising results were obtained. I couldn't help it. Table 2 summarizes these results.

【表】【table】

【表】【table】

【表】【table】

【表】 (実施例) 実施例・比較例1 前記第1表の記号〜の樹脂の2〜3種を混
合して、A〜Kの計11種類の混合樹脂を作成し、
前記した実験例1と同じ要領で、工業的設備に於
ける生産性の評価実験を繰返した(第3表参照) その結果は、おどろくべきことに、実験例1で
はその評価すら困難であつた樹脂が、これを適宜
な割合で混合することによつて、工業的設備での
生産が可能な樹脂に変ることの事実である。 第3表は、本発明者等の仮説、即ち上記おどろ
くべき事実の根元は、VDC−MA内の分子量2
万以下の共重合体含有率の大きさに関係するとい
う仮説に基づいてまとめたもので、実施例・比較
例1の結果に前記第2表(実験例1)の結果を加
え、更にその全体を本文記載の総合評価尺度で評
価した解折表である。 しかしながら、第3表の結果からも上記仮説に
対する法則性は明確にされない。 第1図は、第3表の結果の更に複雑化した解折
図で、横軸には、樹脂の重量平均分子量の値(対
数目盛)を、縦軸には、樹脂(共重合体)中に含
有する分子量2万以下の共重合体含有率(対数目
盛)を、各々に目盛つた直角座標に、第3表の総
合評価の結果(◎,〇,△,×印)の記号を、そ
の結果を示す共重合体の座標点としてプロツトし
たものである。 第1図によると、工業的設備での生産が不可能
であつた樹脂(△,×印のもの)を、可能なもの
(◎,〇印のもの)に替えた調整の技術思想が明
らかになつていて、その思想は、VDC−MAの
樹脂成分を、該直角座標における座標点〔重量平
均分子量、共重合体中の2万以下の共重合体含
率〕の関係において、点A〔7万,18〕、点B〔15
万,4〕、点C〔25万,4〕、点D〔12万,18〕の四
つの座標点を直線で結んで成る四辺形で示される
範囲内の値となるように、選び調整することであ
り、更に望ましくは、同じ座標点の点E〔8万,
14〕、点F〔10.5万,8〕、点G〔13万,8〕、点H
〔10万,14〕の四点を結ぶ四辺形の範囲内の共重
合体になるように、調整することである事実が立
証されている。 又、これ等E,F,G,Hの四辺形の範囲の共
重合体は、重量平均分子数÷数平均分子量で示さ
れる値に於て2〜2.4の値になつていることにも
注目される。 実施例・比較例〜2 前記第1表の記号〜XIIの6種類の樹脂に付い
て、実験例1と同様の工業的設備に於ける生産性
の評価を実施した。その結果は実験例1での結果
と同種の、生産には供せない状態ののものであつ
た(第4表参照)。 次に上記〜XIIの樹脂の2種以上を組合せて
VDC−MAの成分組成が、VDC;MAの重量比
で、97,3,92.5,7.5,90,10,85,15,95,
5になるように、第4表に示す割合に混合調整し
た。この混合樹脂の成分及び特性は、第4表の
2X,3X,4X,5X,6Xの記号の樹脂として示
す。 第4表の2X〜6Xの6種類の混合樹脂につい
て、上記と同様に、工業的設備に於ける生産性の
評価を行つた。その結果は実施例・比較例1で得
られた結果と同様に、生産実施不能のものが可能
の評価に変るという、おどろくべき現象が認めら
れ 第4表の結果によると、本発明の技術思想、即
ち特定範囲の重量平均分子量下に於て、VDC−
MAの共重合体中の、分子量2万以下の共重合体
の含有率を4〜18%の範囲に入るように調整する
ことの利点は、VDC,MAの成分比の違う広い
範囲に共通し適用することができるものであるこ
とが立証されている。
[Table] (Example) Example/Comparative Example 1 A total of 11 types of mixed resins A to K were created by mixing two to three resins with symbols ~ in Table 1 above.
In the same manner as in Experimental Example 1 described above, we repeated experiments to evaluate productivity in industrial equipment (see Table 3). Surprisingly, the results showed that in Experimental Example 1, even the evaluation was difficult. It is a fact that by mixing resins in appropriate proportions, resins can be transformed into resins that can be produced in industrial facilities. Table 3 shows the inventors' hypothesis that the root of the above surprising fact is that the molecular weight in VDC-MA is 2.
This was compiled based on the hypothesis that the copolymer content is related to the magnitude of the copolymer content of 1,000 or less, and the results of Table 2 (Experimental Example 1) were added to the results of Example/Comparative Example 1. This is a breakdown table that evaluates the results using the comprehensive evaluation scale described in the text. However, the results in Table 3 do not make clear the regularity of the above hypothesis. Figure 1 is a more complicated breakdown diagram of the results in Table 3. The horizontal axis shows the weight average molecular weight of the resin (logarithmic scale), and the vertical axis shows the weight average molecular weight of the resin (copolymer). The content of the copolymer with a molecular weight of 20,000 or less (logarithmic scale) contained in the above is indicated by the symbol of the overall evaluation result (◎, 〇, △, × mark) in Table 3 on the rectangular coordinate scale. The results are plotted as coordinate points of the copolymer. According to Figure 1, the technical concept for adjusting resins that could not be produced using industrial equipment (marked with △ and ×) by replacing them with those that were possible (marked with ◎ and ○) is clear. The idea is to place the resin component of VDC-MA at point A [7 18,000,000, point B [15]
10,000,4], point C [250,000,4], and point D [120,000,18]. More preferably, point E [80,000,
14], point F [105,000, 8], point G [130,000, 8], point H
It has been proven that the copolymer can be adjusted to form a copolymer within the range of the quadrilateral connecting the four points [100,000, 14]. Also, note that these copolymers in the quadrilateral range of E, F, G, and H have a value of 2 to 2.4 in terms of weight average number of molecules divided by number average molecular weight. be done. Examples/Comparative Examples ~2 Six types of resins with symbols ~XII in Table 1 were evaluated for productivity in the same industrial equipment as in Experimental Example 1. The results were the same as those in Experimental Example 1, and were in a state that could not be used for production (see Table 4). Next, combine two or more of the resins listed in ~XII above.
The component composition of VDC-MA is VDC:MA weight ratio: 97, 3, 92.5, 7.5, 90, 10, 85, 15, 95,
The mixture was adjusted to the proportions shown in Table 4 so that the total amount was 5. The components and properties of this mixed resin are shown in Table 4.
Shown as resin with symbols 2X, 3X, 4X, 5X, 6X. Six types of mixed resins 2X to 6X in Table 4 were evaluated for productivity in industrial equipment in the same manner as above. Similar to the results obtained in Example and Comparative Example 1, the results showed a surprising phenomenon in which the evaluation of production impossibility changed to that of production.According to the results in Table 4, the technical idea of the present invention , that is, under a specific range of weight average molecular weight, VDC-
The advantage of adjusting the content of the copolymer with a molecular weight of 20,000 or less in the MA copolymer to fall within the range of 4 to 18% is common to a wide range of different component ratios of VDC and MA. It has been proven that it can be applied.

【表】【table】

〔本発明の効果〕[Effects of the present invention]

以上明確にして来たように、本発明は上述の構
成をもつことにより、VDC−MA押出成形品を
工業的設備で、市場要求を満す品質水準のものと
して安定供給することを可能ならしめた。 しかも本発明の方法は、VDC−MAの素材そ
のものの品質を取出す形になつているので、高度
なバリヤ性、高水準の熱収縮性、或は場合によつ
てはストレツチ性等を発揮する新しい樹脂素材と
しての活用度が高い。 又本発明は、工業的設備での押出成形に適した
VDC−MA樹脂組成に、1つの目標値を与えた
ものであるから、今後の重合条件の開発・改良に
与える影響が大きい等、産業界に果す役割の大き
い優れた発明である。
As has been clarified above, by having the above-described structure, the present invention makes it possible to stably supply VDC-MA extrusion molded products with industrial equipment at a quality level that meets market demands. Ta. Moreover, the method of the present invention is designed to extract the quality of the VDC-MA material itself, so it is possible to create new materials that exhibit high barrier properties, high levels of heat shrinkability, or in some cases, stretch properties. Highly useful as a resin material. Moreover, the present invention is suitable for extrusion molding in industrial equipment.
Since this invention gives a single target value to the VDC-MA resin composition, it is an excellent invention that will play a large role in industry, having a large impact on the future development and improvement of polymerization conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図は、本発明の技術内容を説明する実
験図で、第1図は解折図、第2,3,4,5,6
図は、各々得られたフイルムの有用性を示す特性
図、第7,8図は、評価に用いた装置の概念図で
ある。
Figures 1 to 6 are experimental diagrams explaining the technical content of the present invention; Figure 1 is an exploded diagram; Figures 2, 3, 4, 5, and 6 are
The figures are characteristic diagrams showing the usefulness of each film obtained, and Figures 7 and 8 are conceptual diagrams of the apparatus used for evaluation.

Claims (1)

【特許請求の範囲】 1 塩化ビニリデン−メチルアクリレート系共重
合体を押出機に供給し、溶融混練して之を所望の
形状に押出し、必要に応じてこれを伸展し、シー
ト・フイルム又は容器状に成形加工する塩化ビニ
リデン−メチルアクリレート系共重合体の溶融押
出成形加工方法に於て、 塩化ビニリデン−メチルアクリレート系共重合
体には、共重合体100に対するMA成分が3〜15
重量パーセント、GPC法(ゲルパーミエーシヨ
ンクロマトグラフイ法)で測つた重量平均分子量
が7万〜25万の値で、該共重合体中に含有する分
子量2万以下(同GPC法による)の共重合体含
有率との関係が、上記平均分子量を横軸(対数目
盛)、上記2万以下の共重合体含有率を縦軸(対
数目盛)に各々目盛つた両対数の直角座標にあつ
て、点A〔7万,18〕、点B〔15万,4〕、点C〔25
万,4〕、点D〔12万,18〕の四つの座標点を直線
で結んで成る四辺形の範囲内の値となる関係を満
すように調整した塩化ビニリデン−メチルアクリ
レート系共重合体を用いることを特徴とする溶融
押出法を用いた塩化ビニリデン−メチルアクリレ
ート系共重合体の成形加工方法
[Scope of Claims] 1. A vinylidene chloride-methyl acrylate copolymer is supplied to an extruder, melt-kneaded and extruded into a desired shape, and stretched as necessary to form a sheet, film or container shape. In the melt extrusion processing method of vinylidene chloride-methyl acrylate copolymer to be molded, the vinylidene chloride-methyl acrylate copolymer has an MA component of 3 to 15 per 100 of the copolymer.
The weight average molecular weight measured by weight percentage and GPC method (gel permeation chromatography method) is 70,000 to 250,000, and the molecular weight contained in the copolymer is 20,000 or less (according to the same GPC method). The relationship with the copolymer content is expressed in double logarithmic orthogonal coordinates, with the above average molecular weight on the horizontal axis (logarithmic scale) and the copolymer content of 20,000 or less on the vertical axis (logarithmic scale). , Point A [70,000,18], Point B [150,000,4], Point C [25]
Vinylidene chloride-methyl acrylate copolymer adjusted to satisfy the relationship within the range of the quadrilateral formed by connecting the four coordinate points of point D [120,000, 4] and point D [120,000, 18] with straight lines. A method for molding a vinylidene chloride-methyl acrylate copolymer using a melt extrusion method, characterized by using
JP59240483A 1984-11-16 1984-11-16 Molding process of vinylidene chloride-methyl acrylate family copolymer, using extruding process in molten state Granted JPS61120719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59240483A JPS61120719A (en) 1984-11-16 1984-11-16 Molding process of vinylidene chloride-methyl acrylate family copolymer, using extruding process in molten state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59240483A JPS61120719A (en) 1984-11-16 1984-11-16 Molding process of vinylidene chloride-methyl acrylate family copolymer, using extruding process in molten state

Publications (2)

Publication Number Publication Date
JPS61120719A JPS61120719A (en) 1986-06-07
JPH0334762B2 true JPH0334762B2 (en) 1991-05-23

Family

ID=17060180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59240483A Granted JPS61120719A (en) 1984-11-16 1984-11-16 Molding process of vinylidene chloride-methyl acrylate family copolymer, using extruding process in molten state

Country Status (1)

Country Link
JP (1) JPS61120719A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363738A (en) * 1986-09-05 1988-03-22 Toyo Seikan Kaisha Ltd Thermoformable vinylidene chloride resin composition and resin laminate prepared thereform
EP0435792A3 (en) * 1989-12-28 1991-11-06 American National Can Company Vinylidene chloride copolymer films
US5248470A (en) * 1990-03-09 1993-09-28 The Dow Chemical Company Process of biaxially orienting coextruded barrier films of polyvinylidene chloride and an alkyl acrylate
US5164268A (en) * 1990-03-09 1992-11-17 The Dow Chemical Company Oriented coextruded barrier films of polyvinylidene chloride copolymers
JP3999880B2 (en) * 1997-06-20 2007-10-31 株式会社クレハ Vinylidene chloride copolymer resin composition, film thereof, extrusion method thereof

Also Published As

Publication number Publication date
JPS61120719A (en) 1986-06-07

Similar Documents

Publication Publication Date Title
JP6202146B2 (en) Production method of polyester film
CN110539538B (en) Cast CPE (chlorinated polyethylene) inflatable automatic packaging composite film and preparation method thereof
EP1268624B1 (en) A process for producing thermoformable foam sheet using a physical blowing agent
CN102873954A (en) Polyester film capable of being subjected to heat seal directly and preparation method
CN115715303B (en) Ethylene copolymers for biaxial orientation
CN101537914B (en) Macromolecular alloy packaging material
US4309465A (en) Process for manufacturing thermoplastic compositions and containers made of such compositions
CN111423647B (en) Biaxially oriented polyethylene soft surface matte film composition, film and application thereof
JP2020520829A (en) Shrink film containing cyclic olefin copolymer core
JPH0334762B2 (en)
CN109776926A (en) A kind of PE heat shrink films and preparation method thereof
WO1995024440A1 (en) Plastics foam and method of manufacturing same
CN102765190A (en) Method for producing biaxially oriented multilayer co-extruded polyolefin shrink film by flat film process
US3048895A (en) Process for producing biaxially oriented plastic film
CN103009750B (en) A kind of Biaxially oriented polypropylene common cigarette packaging film and manufacture method thereof
JP2008260837A (en) Polyamide resin film
CN109280273B (en) High melt strength polypropylene film compositions and films and uses thereof
JP5599637B2 (en) Film, sheet, production method thereof, and blister molded product, laminate
TW201811861A (en) Polyamide 6 resins containing a low level of polyamide 66 comonomer
TWI749110B (en) Mdo thermoresistant heat-shrinkable multilayer film
JP3573473B2 (en) Styrene resin for foam
EP3907258A1 (en) Polyethylene-based masterbatches comprising carbon nanotubes for preparing conductive articles, process and conductive articles produced therefrom
CN104260525A (en) Biaxially-oriented polypropylene anti-mist film with five-layer coextrusion and manufacturing method thereof
JPH0362733B2 (en)
CN218430102U (en) Polyester melt straight-pull sheet production system with permanent anti-sticking effect

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term