JPH0334651Y2 - - Google Patents

Info

Publication number
JPH0334651Y2
JPH0334651Y2 JP4446386U JP4446386U JPH0334651Y2 JP H0334651 Y2 JPH0334651 Y2 JP H0334651Y2 JP 4446386 U JP4446386 U JP 4446386U JP 4446386 U JP4446386 U JP 4446386U JP H0334651 Y2 JPH0334651 Y2 JP H0334651Y2
Authority
JP
Japan
Prior art keywords
flow rate
flow
thin tubes
bypass
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4446386U
Other languages
Japanese (ja)
Other versions
JPS62156833U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4446386U priority Critical patent/JPH0334651Y2/ja
Publication of JPS62156833U publication Critical patent/JPS62156833U/ja
Application granted granted Critical
Publication of JPH0334651Y2 publication Critical patent/JPH0334651Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 技術分野 本考案は、バイパス流路の流量を測定すること
により主流路の質量流量を求める熱式質量流量計
に関する。
[Detailed Description of the Invention] Technical Field The present invention relates to a thermal mass flowmeter that determines the mass flow rate in a main channel by measuring the flow rate in a bypass channel.

従来技術 層流で流通するバイパス流路と、流量比の既知
の層流で流通する主流路とを配設し、バイパス流
路の流量を測定することにより全流量を測定する
熱式質量流量計は例えば特公昭54−3743号公報に
開示されているように公知である。この従来技術
は、主流路内に前面、後面、及び上記両面に連な
る外周面を有し、上記前面及び後面を連通する貫
通孔と上記外周面を連通し、内部を流れる流体が
層流を形成するのに適した長さ・直径比を有する
少なくとも1個の連通路を備えた円板を並列に結
合して、バイパス流路の流量との流量比を円板の
数から推定し、バイパス流路を測定した値に対し
て全流量を求めるものである。
Prior Art A thermal mass flowmeter that has a bypass channel that flows in a laminar flow and a main channel that flows in a laminar flow with a known flow rate, and measures the total flow rate by measuring the flow rate in the bypass channel. is known, for example, as disclosed in Japanese Patent Publication No. 54-3743. This conventional technology has a front surface, a rear surface, and an outer circumferential surface connected to both surfaces in the main flow path, and a through hole that communicates the front surface and the rear surface communicates with the outer circumferential surface, so that the fluid flowing inside forms a laminar flow. By connecting disks in parallel with at least one communication passage having a length/diameter ratio suitable for The total flow rate is calculated based on the measured value of the flow path.

従来技術の問題点 上述した従来技術において、円板部材における
連通路である溝は、円板部材の滑らかな平面に化
学的エツチング等の加工手段により、幅0.2mm,
高さ0.063mmの寸法の溝を配設するもので、通常、
複数条の溝が半径方向に穿設されている。しか
し、この様な微細な連通路各々の加工寸法を正確
に揃えるのは困難であり、その結果、正しい流量
比を得るには、各々の円板部材を実測して予め記
録しておき、この結果に基づいて正しい流量比に
組立てていた。このため、組立調整が不便であ
り、多くの工数を要する反面、正しい流量比が得
られないため正確な流量が得られなかつた。
Problems with the prior art In the above-mentioned prior art, the grooves, which are communication paths in the disc member, are formed into a smooth flat surface of the disc member by processing means such as chemical etching, with a width of 0.2 mm.
A groove with a height of 0.063 mm is provided, and usually
Multiple grooves are drilled in the radial direction. However, it is difficult to accurately align the machining dimensions of each of these minute communication passages, and as a result, in order to obtain the correct flow rate ratio, each disc member must be actually measured and recorded in advance. Based on the results, the correct flow rate ratio was assembled. For this reason, assembly and adjustment are inconvenient and require a large number of man-hours, and on the other hand, an accurate flow rate cannot be obtained because the correct flow rate ratio cannot be obtained.

問題点を解決するための手段 叙上の問題点を解決するため、本考案において
は、従来技術の円板部材と同様に層流で流通する
複数の等長等径の細管を配設し、それぞれの細管
はバイパス流路を流通する流量との流量比を整数
倍にするようにしており、これにより簡単で、か
つ正確な流量比を得るようにしている。
Means for Solving the Problems In order to solve the above-mentioned problems, in the present invention, a plurality of thin tubes of equal length and equal diameter are arranged to flow in a laminar flow similar to the conventional disk member, The flow rate ratio of each thin tube to the flow rate flowing through the bypass channel is set to be an integral multiple, thereby making it possible to obtain a simple and accurate flow rate ratio.

具体例 第1図は、本考案の一実施例を説明するための
図で、図中、1は主流路であり、該主流路1内に
は等長等径の細管11が、該細管を貫通固着する
固定板12により一体として装着されている。こ
のようにして得られた細管束10を挟んで、主流
路壁に開口する開口21,22にバイパス流路2
が設けられており、該バイパス流路にはヒータ
3,及び該ヒータ3の前後流部に各々等しい抵抗
のコイル4,5が巻回されており、流体がヒータ
3により加熱されることにより変化するコイル抵
抗5と加熱前のコイル低抗4との抵抗変化から質
量流量を求める。而して、本考案においては、バ
イパス流路2を流れる流量に対し細管11を流れ
る流量比を整数倍とするもので、これは下記の原
理に基づくものである。即ち、流れが層流とする
と、流量Qは、 Q=πr4(P1−P2)/8μl (1) であらわされる。ここで、rは細管の半径、P1
P2は各々細管11前後の圧力、μは粘性係数、
は細管の長さである。細管11前後の圧力P1
P2はバイパス流路の開口部21,22間におけ
る圧力でもあるから、(1)式において(P1−P2
は等しい。更に流量Qを等しくするためにはバイ
パス流路の長さL,半径Rとした場合、前記(1)式
より l/L=r4/R4 (2) の関係を満足する長さと直径との関係を適用する
ことにより実質的に等しい流量比が得られる。こ
の様な細管をN本束ねることによりN+1の流量
が得られる。また、(2)式によれば、任意の流量比
の細管が長さと直径を選ぶことにより簡単に得ら
れる。
Specific Example FIG. 1 is a diagram for explaining one embodiment of the present invention. In the figure, 1 is a main flow path, and in the main flow path 1, a thin tube 11 of equal length and equal diameter is inserted. It is attached as one piece by a fixing plate 12 that is fixed through the hole. A bypass flow path 2 is inserted into the openings 21 and 22 opening into the main flow path wall, sandwiching the thin tube bundle 10 thus obtained.
A heater 3 is provided in the bypass flow path, and coils 4 and 5 having equal resistance are wound on the upstream and downstream sides of the heater 3, respectively, and the fluid changes as the fluid is heated by the heater 3. The mass flow rate is determined from the resistance change between the coil resistance 5 and the coil resistance 4 before heating. Accordingly, in the present invention, the ratio of the flow rate flowing through the thin tube 11 to the flow rate flowing through the bypass channel 2 is set to be an integral multiple, and this is based on the following principle. That is, assuming that the flow is laminar, the flow rate Q is expressed as Q=πr 4 (P 1 −P 2 )/8 μl (1). Here, r is the radius of the tubule, P 1 ,
P 2 is the pressure before and after the thin tube 11, μ is the viscosity coefficient,
is the length of the tubule. Pressure P 1 before and after the thin tube 11,
Since P 2 is also the pressure between the openings 21 and 22 of the bypass flow path, in equation (1), (P 1 − P 2 )
are equal. Furthermore, in order to equalize the flow rate Q, if the length of the bypass flow path is L and the radius is R, then from equation (1) above, the length and diameter must be determined to satisfy the relationship l/L=r 4 /R 4 (2). Substantially equal flow ratios are obtained by applying the relationship . By bundling N such thin tubes, a flow rate of N+1 can be obtained. Furthermore, according to equation (2), a thin tube with an arbitrary flow rate ratio can be easily obtained by selecting the length and diameter.

効 果 以上の説明から明らかなように、本考案によれ
ば、高精度に作ることができる細管を組み合わせ
ることにより簡単な方法で高精度な流量比が得ら
れるため高精度の質量流量計が安価に得られる。
Effects As is clear from the above explanation, according to the present invention, a highly accurate flow rate ratio can be obtained in a simple manner by combining thin tubes that can be manufactured with high precision, so a high-precision mass flowmeter can be produced at an inexpensive price. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の熱式質量流量計の一実施例
を説明するための図で、A図は側面図、B図はA
図のB−B線断面図である。 1……主流路、2……バイパス流路、11……
細管、12……固定板。
Figure 1 is a diagram for explaining one embodiment of the thermal mass flowmeter of the present invention, where Figure A is a side view and Figure B is a side view.
It is a sectional view taken along the line BB in the figure. 1...Main flow path, 2...Bypass flow path, 11...
Thin tube, 12... fixed plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定流体を層流で流通する複数の細管を内挿
した主流路と、該主流路の管壁の上記細管を挟ん
だ位置に開口して層流で流通するバイパス流路
と、このバイパス流路内を流通する流体を加熱す
る加熱手段と、該加熱手段の前後流における温度
差を検出する検出手段とを有し、前記温度差から
質量流量を求める熱式質量流量計において、上記
複数の細管の断面積を等しく、且つその一つの細
管を流れる流量を前記バイパス流路内を流通する
流量の整数倍としたことを特徴とする熱式質量流
量計。
A main channel in which a plurality of thin tubes are inserted through which the fluid to be measured flows in a laminar flow, a bypass channel that opens at a position on the tube wall of the main channel across the thin tubes and flows in a laminar flow, and this bypass flow. A thermal mass flowmeter that has a heating means for heating a fluid flowing in a passage, and a detection means for detecting a temperature difference between the front and rear streams of the heating means, and calculates a mass flow rate from the temperature difference, the plurality of A thermal mass flowmeter characterized in that the cross-sectional areas of the thin tubes are equal and the flow rate flowing through one of the thin tubes is an integral multiple of the flow rate flowing through the bypass flow path.
JP4446386U 1986-03-26 1986-03-26 Expired JPH0334651Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4446386U JPH0334651Y2 (en) 1986-03-26 1986-03-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4446386U JPH0334651Y2 (en) 1986-03-26 1986-03-26

Publications (2)

Publication Number Publication Date
JPS62156833U JPS62156833U (en) 1987-10-05
JPH0334651Y2 true JPH0334651Y2 (en) 1991-07-23

Family

ID=30862298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4446386U Expired JPH0334651Y2 (en) 1986-03-26 1986-03-26

Country Status (1)

Country Link
JP (1) JPH0334651Y2 (en)

Also Published As

Publication number Publication date
JPS62156833U (en) 1987-10-05

Similar Documents

Publication Publication Date Title
US7908096B2 (en) Integrated micromachined thermal mass flow sensor and methods of making the same
KR100276930B1 (en) Mass Flow Converter with Extended Flow Measurement Range
US5576498A (en) Laminar flow element for a flowmeter
US3851526A (en) Fluid flowmeter
EP0129012B1 (en) Laminar-flow channeling in thermal flowmeters and the like
US9581480B2 (en) Micro flow sensor
US2586060A (en) Arrangement for measuring or indicating the flow of fluids
USRE31570E (en) Fluid flowmeter
WO2012014633A1 (en) Flow measurement structure and flow measurement device
EP0512655A2 (en) Alternative liquid flow sensor design
JPH0334651Y2 (en)
JPH0469521A (en) Flowmeter
JPH0350425Y2 (en)
JPH0222647Y2 (en)
JPH08178722A (en) Flow-direction detection method of inhale air flow sensor of internal-combustion engine and inhale air flow sensor of internal-combustion engine
JP2711577B2 (en) Mass flow controller
JP2535089Y2 (en) Laminar flow element
JPH0350426Y2 (en)
JPS61206821U (en)
JP3407443B2 (en) Air intake sensor for internal combustion engines
JPH0138494Y2 (en)
JP2003254807A (en) Thermal sensor, installing method thereof, and mass flowmeter
JP2555636Y2 (en) Mass flow meter
JPH0524188Y2 (en)
JPS59105521A (en) Thermal type mass flowmeter