JP2711577B2 - Mass flow controller - Google Patents

Mass flow controller

Info

Publication number
JP2711577B2
JP2711577B2 JP1251606A JP25160689A JP2711577B2 JP 2711577 B2 JP2711577 B2 JP 2711577B2 JP 1251606 A JP1251606 A JP 1251606A JP 25160689 A JP25160689 A JP 25160689A JP 2711577 B2 JP2711577 B2 JP 2711577B2
Authority
JP
Japan
Prior art keywords
bypass
mass flow
flow rate
differential pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1251606A
Other languages
Japanese (ja)
Other versions
JPH03111914A (en
Inventor
弘文 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP1251606A priority Critical patent/JP2711577B2/en
Priority to US07/579,521 priority patent/US5080131A/en
Publication of JPH03111914A publication Critical patent/JPH03111914A/en
Priority to US07/776,026 priority patent/US5159951A/en
Application granted granted Critical
Publication of JP2711577B2 publication Critical patent/JP2711577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、既存の質量流量制御器の取付寸法を変える
ことなく流量を倍増させる事の出来る質量流量制御器に
関する。
Description: TECHNICAL FIELD The present invention relates to a mass flow controller capable of doubling the flow rate without changing the mounting dimensions of an existing mass flow controller.

(従来技術とその問題点) 半導体、特に超LSI製造分野においては、生産増大、
コスト低減のためにウェハーサイズは直径が4インチか
ら6インチ更に8インチへと拡大の方向にある。これに
付随して超LSIの製造に使用されるガスの流量は増大化
しており、質量流量制御器もこの動向に対処することが
望まれている。
(Prior art and its problems) In the semiconductor, especially VLSI manufacturing field,
To reduce cost, wafer sizes are increasing in diameter from 4 inches to 6 inches to 8 inches. Along with this, the flow rate of the gas used for the production of the VLSI has been increasing, and it is desired that the mass flow controller also cope with this trend.

◎ 問題点(1) 一般に普及している質量流量制御器は、各メーカ間で
接続の互換性を持たせるために質量流量制御器のガスの
入り口(2)並びに出口(3)に継ぎ手及び前記継ぎ手
間の寸法がほぼ同一になるように統一されている。例え
ば、質量流量制御器のある機種では、5l/分の流量が限
度であり、より流量の大きい機種では20l/分が限度と言
うように同一寸法での流量の許容限度がほぼ決まってい
る。
◎ Problems (1) In general, mass flow controllers have a joint at the gas inlet (2) and gas outlet (3) of the mass flow controller in order to make the connections compatible between manufacturers. The dimensions between the joints are unified so that they are almost the same. For example, in a model having a mass flow controller, the flow rate is limited to 5 l / min, and in a model having a larger flow rate, the allowable limit of the flow rate of the same size is almost determined, such as 20 l / min.

従って、それ以上の流量を流さねばならない時は質量
流量制御器をより大型のものを選定し、ガスの入り口
(2)並びに出口(3)の継ぎ手及び前記継ぎ手間の寸
法を大きくしてやらねばならない。しかしながら、質量
流量制御器を大型化する事は、半導体製造装置のガス
供給系を大幅に改造しなければならない。質量流量制
御器が大型化すると後述する理由でコストが急増する。
質量流量制御器が大型化すると重くなるだけでなく、
配管への取付作業やメンテナンスに手間がかかるように
なる。従来機種との互換性がなくなるので、機種数を
増やさねばならず、メーカ・ユーザ共その分だけ管理が
繁雑になり、管理コストも増える事になる。
Therefore, when a higher flow rate is required, a larger mass flow controller must be selected, and the size of the joint between the gas inlet (2) and the outlet (3) and the size between the joints must be increased. However, increasing the size of the mass flow controller requires a significant modification of the gas supply system of the semiconductor manufacturing apparatus. As the mass flow controller becomes larger, the cost increases sharply for the reasons described below.
Larger mass flow controllers not only become heavier,
The installation work to the piping and the maintenance are troublesome. Since the compatibility with the conventional model is lost, the number of models must be increased, and the management becomes complicated for both manufacturers and users, and the management cost also increases.

◎ 問題点(2) そこで、従来の機種をそのまま利用し、質量流量だけ
を拡大しようとする事も試みられたが、その場合に発生
する問題点は以下の通りである。
◎ Problem (2) Therefore, an attempt was made to increase the mass flow rate only by using the conventional model as it is, but the problems that occur in that case are as follows.

質量流量制御器に所定以上のガス流量を流すと、流量
とセンサ出力との関係が比例直線から外れたり、ある流
量以上では逆に出力が低下し、制御不能に陥る。
When a gas flow rate that is higher than a predetermined value flows through the mass flow controller, the relationship between the flow rate and the sensor output deviates from a proportional straight line, or at a certain flow rate or more, the output decreases, and control becomes impossible.

バイパス素子(8)の入り口(2)−出口(3)間の
差圧を増やして流量を拡大する場合、ガスの流れの状態
が層流から乱流に変わり、差圧対流量の特性が比例直線
から大幅に外れ、センサ流量とバイパス流量とが比例関
係から外れる。
When the flow rate is increased by increasing the pressure difference between the inlet (2) and the outlet (3) of the bypass element (8), the state of gas flow changes from laminar flow to turbulent flow, and the characteristic of differential pressure to flow rate is proportional. It deviates significantly from the straight line, and the sensor flow rate and the bypass flow rate deviate from the proportional relationship.

又、ガスの種類により流れ方が異なり、流量の正確な
制御が困難となる。
In addition, the flow varies depending on the type of gas, and it is difficult to accurately control the flow rate.

更にセンサ流量とバイパス流量とが比例関係から外れ
るために、温度・圧力の影響を大幅に受け実用に耐え得
なくなる。
Further, since the sensor flow rate and the bypass flow rate deviate from the proportional relation, the sensor flow rate is greatly affected by the temperature and the pressure, so that it cannot be put to practical use.

◎ 問題点(3) 更に、質量流量の増大を阻む要因が従来機種のバイパ
ス構造にも存在する。即ち、その問題点は以下の通りで
ある。
◎ Problem (3) Further, a factor that hinders an increase in mass flow rate also exists in the bypass structure of the conventional model. That is, the problems are as follows.

従来機種のバイパス素子(8)は第9,10図のようにセ
ンサ管(9)と同一の内径並びに長さを持つバイパス用
毛細管(13)を多数本束にして保護管(34)に充填して
バイパス素子(8)を構成するという方式であったた
め、大流量用には適さないと言う問題があった。
As shown in FIGS. 9 and 10, the bypass element (8) of the conventional model is formed by bundling a number of bypass capillaries (13) having the same inner diameter and length as the sensor tube (9) and filling the protection tube (34). Therefore, there is a problem that the bypass element (8) is not suitable for a large flow rate.

即ち、質量流量制御器ではバイパス素子(8)両端の
差圧と流量との関係がほぼ一直線になる事が必要であ
る。例えば、バイパス用毛細管(13)1本の流量が10ml
/分とすると、10l/分用の質量流量制御器では1,000本の
毛細管(13)を束にしなければならず、20l/分用の質量
流量制御器では2,000本、50l/分用の質量流量制御器で
は5,000本もの大量の毛細管(3)を束にしなければな
らず、非常にコスト高になると言う問題点がある。
That is, in the mass flow controller, it is necessary that the relationship between the differential pressure and the flow rate at both ends of the bypass element (8) is substantially linear. For example, the flow rate of one bypass capillary (13) is 10 ml.
Assuming that the mass flow controller for 10 l / min has to bundle 1,000 capillaries (13), the mass flow controller for 20 l / min has 2,000 tubes and the mass flow rate for 50 l / min The controller must bundle a large number of 5,000 capillaries (3), which is very costly.

又、逆に最大流量5l/分用の質量流量制御器に20l/分
を流そうとしてもバイパス断面積が限定されているため
不可能である。そこで、20l/分の流量を流そうとする場
合は必要なだけ断面積を拡大しなければならないが、前
述のように大量の毛細管(13)を必要としコスト高にな
って実用的でない。
Conversely, it is not possible to flow 20 l / min to the mass flow controller for the maximum flow rate of 5 l / min because the cross-sectional area of the bypass is limited. Therefore, when trying to flow at a flow rate of 20 l / min, the cross-sectional area must be increased as much as necessary. However, as described above, a large amount of the capillary (13) is required, which is not practical because the cost increases.

(本発明の目的) 本発明は係る従来例に鑑みて為されたもので、その目
的とするところの第1は、既存の質量流量制御器の取付
寸法をほとんど変える事なく流量範囲を拡大することの
出来た質量流量制御器を提供するにあり、第2には多数
のバイパス用毛細管を必要とせず、廉価なコストで大流
量を確保する事の出来る質量流量制御器を提供するにあ
る。
(Object of the present invention) The present invention has been made in view of the related art, and the first object of the present invention is to expand a flow rate range without substantially changing the mounting dimensions of an existing mass flow controller. A second object of the present invention is to provide a mass flow controller which does not require a large number of bypass capillaries and can secure a large flow at a low cost.

(問題点を解決するための手段) 本発明装置は前記目的を達成するために請求項(1)
において、 ボディ(1)の一端にガス流入用の入り口(2)を設
けると共にボディ(1)の他端にガス流出用の出口
(3)を設け、 ボディ(1)内に入り口(2)から出口(3)に向か
って流れるガス流(4)方向にほぼ平行に隔壁(5)を
設け、 前記隔壁(5)を介して隔壁(5)の前方に前記入り
口(2)に連通する1次室(6)を形成すると共に隔壁
(5)の背方に前記出口(3)に連通する2次室(7)
をそれぞれ形成し、 1次室(6)と2次室(7)とを連通するバイパス素
子(8)を隔壁(5)に設け、 1次室(6)と2次室(7)との間にガス流量測定用
のセンサ管(9)を接続する。
(Means for Solving the Problems) The device of the present invention has the following features to attain the object.
In the above, an inlet (2) for gas inflow is provided at one end of the body (1), and an outlet (3) for gas outflow is provided at the other end of the body (1). A partition (5) is provided substantially parallel to the direction of the gas flow (4) flowing toward the outlet (3), and a primary communicating with the entrance (2) in front of the partition (5) through the partition (5). A secondary chamber (7) forming a chamber (6) and communicating with the outlet (3) behind the partition (5);
And a bypass element (8) for communicating the primary chamber (6) and the secondary chamber (7) is provided in the partition (5), and the primary chamber (6) and the secondary chamber (7) are connected to each other. A sensor tube (9) for gas flow measurement is connected between them.

;と言う技術的手段を採用しており、 請求項(2)はバイパス素子(8)とセンサ管(9)
の差圧の関係を更に明確化したもので、 センサ管(9)の両端の差圧よりバイパス素子(8)
の両端の差圧を増大させるために、1次室(6)とセン
サ管(9)の入り口(2)及びセンサ管(9)の出口
(3)と2次室(7)との間に差圧増大用管路(10)を
配設する。
Claim (2) is a bypass element (8) and a sensor tube (9).
The relationship between the differential pressure of the sensor tube (9) and the bypass element (8)
Between the primary chamber (6) and the entrance (2) of the sensor tube (9) and between the exit (3) of the sensor tube (9) and the secondary chamber (7) to increase the differential pressure across the A line for increasing differential pressure (10) is provided.

;と言う技術的手段を採用している。The technical means of:

請求項(3)はバイパスの具体例で、 帯状体(11)の表面に幅方向に凹溝(33)を多数本凹
設し、 帯状体(11)を巻設して軸方向にバイパス孔が構成さ
れたバイパス素子(8)を形成し、 これを隔壁(5)内に嵌入する。
Claim (3) is a specific example of a bypass, in which a number of concave grooves (33) are formed in the surface of the band-shaped body (11) in the width direction, and the band-shaped body (11) is wound around to form a bypass hole in the axial direction. Is formed, and this is fitted into the partition wall (5).

;と言う技術的手段を採用している。The technical means of:

(作用) 質量流量制御器にガスを流すと、ガスは1次室(6)
に流入し、大部分のガスはバイパス孔を通って2次室
(7)に流入し、ほんの一部のガスが差圧増大用管路
(10)を介してセンサ管(9)を流れ、続いて2次室
(7)に流入してバイパス側のガスと合流する。
(Operation) When gas is supplied to the mass flow controller, the gas is supplied to the primary chamber (6).
Most of the gas flows into the secondary chamber (7) through the bypass hole, and only a small part of the gas flows through the sensor pipe (9) through the differential pressure increasing pipe (10). Subsequently, the gas flows into the secondary chamber (7) and merges with the gas on the bypass side.

この時、センサ管(9)を流れるガスは上流側ヒータ
(27a)の熱を奪って下流側に流れ、下流側ヒータ(27
b)の加熱量を抑制する。
At this time, the gas flowing through the sensor tube (9) deprives the upstream heater (27a) of heat and flows downstream, and the downstream heater (27)
b) The amount of heating is suppressed.

上流側ヒータ(27a)では奪われた熱量を補給して平
衡温度に達するよう制御回路が上流側ヒータ(27a)を
制御する。これにより両ヒータ(27a)(27b)への供給
電力のバランスが崩れ、この差を検出演算する事により
センサ管(9)に流れるガスの質量流量を検出する。
In the upstream heater (27a), the control circuit controls the upstream heater (27a) so as to supply the deprived heat and reach the equilibrium temperature. As a result, the balance between the power supplied to the heaters (27a) and (27b) is lost, and the mass flow of the gas flowing through the sensor tube (9) is detected by detecting and calculating the difference.

バイパス側はセンサ管(9)の流量に比例しているか
ら全体のガス流量はセンサ管(9)の流量に所定の係数
を乗ずる事により簡単に知る事が出来る。そして、この
出力は制御バルブ部へフィードバックされ、制御部(2
9)によって制御弁(30)が駆動されて弁室(18)を流
れる質量流量が正確に制御される。
Since the bypass side is proportional to the flow rate of the sensor pipe (9), the total gas flow rate can be easily known by multiplying the flow rate of the sensor pipe (9) by a predetermined coefficient. Then, this output is fed back to the control valve section, and the control section (2
9) drives the control valve (30) to accurately control the mass flow rate flowing through the valve chamber (18).

ここで、差圧増大用管路(10)を使用する事により、
バイパス素子(8)両端の差圧ΔP′がセンサ管(9)
の両端の差圧ΔPより(n)倍大きくなるようにする
と、バイパス素子(8)を流れるガス流量を(n)倍に
する事が出来、同種類の機種で(n)倍の流量を流せる
ようになるものである。
Here, by using the differential pressure increase pipeline (10),
The differential pressure ΔP ′ at both ends of the bypass element (8) is the sensor pipe (9).
If the pressure difference ΔP is made (n) times larger than the differential pressure ΔP at both ends, the gas flow rate flowing through the bypass element (8) can be increased by (n) times, and the same type of model can flow (n) times the flow rate. It is something that will be.

(実施例) 以下、本発明の第1実施例を図示実施例に従って詳述
する。第1図は本発明にかかる質量流量制御器の一実施
例の平断面図であり、第2図はその正断面図、第3図は
その縦断面図である。質量流量制御器は、主としてボデ
ィ(1)と、ボディ(1)上に載設されたセンサー部
(A)と制御バルブ部(B)とで構成されている。
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the illustrated embodiments. 1 is a plan sectional view of one embodiment of a mass flow controller according to the present invention, FIG. 2 is a front sectional view thereof, and FIG. 3 is a longitudinal sectional view thereof. The mass flow controller mainly includes a body (1), a sensor unit (A) mounted on the body (1), and a control valve unit (B).

ボディ(1)は、ボディ本体(16)と、その両端にそ
れぞれ固着された入り口フランジ(14)と出口フランジ
(15)とで構成されており、入り口フランジ(14)にガ
ス流入用の入り口(2)が設けられており、出口フラン
ジ(15)にガス流出用の出口(3)が設けられている。
ボディ本体(16)には一端に開口する円筒穴(17)が穿
設されており、円筒穴(17)の穴底中央には制御バルブ
部(B)の弁室(18)に連通する1次側L字孔(19)
と、弁室(18)から他端に連通する2次側L字孔(20)
とが穿設されている。又、円筒穴(17)の中央には円筒
穴(17)を仕切る隔壁(5)が気密状に嵌め込んであ
り、隔壁(5)にて円筒穴(17)を1次室(6)と2次
室(7)とに仕切っている。隔壁(5)の両端には円形
の鍔部(21)が設けてあり、この鍔部(21)の一方に前
記入り口(2)と1次室(6)とを連通する1次側連通
孔(22)が、他方の鍔部(21)に2次室(7)と前記1
次側L字孔(19)の入り口(2)とを連通する2次側連
通孔(23)が穿設してある。更に、隔壁(5)には複数
(図の実施例では8個)の通孔が穿設してあり、この通
孔に後述するバイパス素子(8)が嵌入されている。
又、隔壁(5)は金属製でもよいし樹脂製でもよい。
The body (1) is composed of a body body (16), an inlet flange (14) and an outlet flange (15) fixed to both ends thereof, and an inlet (15) for gas inflow is provided at the inlet flange (14). 2) is provided, and an outlet (3) for gas outflow is provided at the outlet flange (15).
A cylindrical hole (17) opening at one end is formed in the body body (16). The center of the bottom of the cylindrical hole (17) communicates with the valve chamber (18) of the control valve portion (B). Next side L-shaped hole (19)
And a secondary side L-shaped hole (20) communicating from the valve chamber (18) to the other end
And are drilled. A partition (5) partitioning the cylindrical hole (17) is fitted in the center of the cylindrical hole (17) in an airtight manner, and the cylindrical hole (17) is connected to the primary chamber (6) by the partition (5). Partitioned into secondary room (7). A circular flange (21) is provided at both ends of the partition wall (5), and a primary communication hole for communicating the entrance (2) and the primary chamber (6) to one of the flanges (21). (22) is provided with the secondary chamber (7) and the first
A secondary communication hole (23) communicating with the entrance (2) of the secondary L-shaped hole (19) is formed. Further, a plurality of (eight in the illustrated embodiment) through holes are formed in the partition wall (5), and a bypass element (8) described later is fitted into the through holes.
The partition (5) may be made of metal or resin.

センサー部(A)は、センサ管(9)と差圧増大用の
スペーサ(12)とで構成されており、ボディ(1)の上
面に前記スペーサ(12)が載設固定されており、このス
ペーサ(12)に2つの差圧増大用管路(10)が穿設され
ている。ボディ(1)には前記1次室(6)と2次室
(7)からボディ(1)の上面に開口するセンサ側通孔
(24)が穿設されており、前記差圧増大用管路(10)と
センサ側通孔(24)とがそれぞれ連通している。スペー
サ(12)の上面にはセンサブロック(25)が載設固定さ
れており、センサブロック(25)に穿設されたセンサ接
続孔(26)間にセンサ管(9)が架設されており、1次
側のガスがセンサ間(9)を通じて2次室(7)に流入
するようになっている。センサ間(9)の周囲には2本
のヒータ(27a)(27b)が巻設されている。
The sensor section (A) is composed of a sensor tube (9) and a spacer (12) for increasing the differential pressure. The spacer (12) is mounted and fixed on the upper surface of the body (1). Two differential pressure increasing pipes (10) are bored in the spacer (12). The body (1) has a sensor side through-hole (24) opened from the primary chamber (6) and the secondary chamber (7) to the upper surface of the body (1). The path (10) and the sensor-side through hole (24) communicate with each other. A sensor block (25) is mounted and fixed on the upper surface of the spacer (12), and a sensor tube (9) is installed between sensor connection holes (26) formed in the sensor block (25). The gas on the primary side flows into the secondary chamber (7) through the space (9) between the sensors. Two heaters (27a) and (27b) are wound around the space between the sensors (9).

制御バルブ部(B)は、バルブハウジング(28)と制
御部(29)とで構成されており、バルブハウジング(2
8)に穿設された下面開口の弁室(18)に前記1次側L
字孔(19)の出口と2次側L字孔(20)の入り口が開口
している。又、弁室(18)内には制御弁(30)が昇降自
在に収納されており、バルブハウジング(28)の上面に
配設された駆動部(3)に接続されている。制御弁(3
0)の下面は1次側L字孔(19)の出口に一致してお
り、スプリング(32)にて常時離間方向に押し上げ付勢
されている。
The control valve section (B) is composed of a valve housing (28) and a control section (29).
The primary side L is inserted into the valve chamber (18) of the lower surface opening formed in 8).
The exit of the character hole (19) and the entrance of the secondary side L-shaped hole (20) are open. A control valve (30) is housed in the valve chamber (18) so as to be movable up and down, and is connected to a drive section (3) arranged on the upper surface of the valve housing (28). Control valve (3
The lower surface of (0) coincides with the exit of the primary side L-shaped hole (19), and is constantly urged upward by a spring (32) in the separating direction.

バイパス素子(8)は、第4図のように帯状体(11)
の表面に幅方向に凹溝(33)をエッチングにて多数本凹
設し、この帯状体(11)を芯棒(35)の回りに巻設して
軸方向にバイパス孔の構成されたバイパス素子(8)を
形成している。勿論、凹溝(33)の形成された帯状体
(11)を樹脂の成形体としてもよい。第7,8図に示すよ
うにバイパス素子(8)の端部は若干テーパ状に削られ
ており、巻き上がりの姿が円形になるように工夫されて
いる。
As shown in FIG. 4, the bypass element (8) is a strip (11).
A large number of concave grooves (33) are formed in the surface in the width direction by etching, and this band-shaped body (11) is wound around a core rod (35) to form a bypass having a bypass hole in the axial direction. An element (8) is formed. Needless to say, the band-shaped body (11) in which the concave groove (33) is formed may be a resin molded body. As shown in FIGS. 7 and 8, the end of the bypass element (8) is slightly tapered, so that the shape of the winding is circular.

この場合、第8図から分かるように凹溝(33)以外の
部分は通孔がないため凹溝(33)の数を規定する事によ
り流量が正確に設定される。これに対して従来例のよう
な毛細管(13)であれば毛細管(13)と毛細管(13)と
の間に出来る細い間隙を閉塞しない限り毛細管(13)の
本数を規定してもわずかであるが規定量以上の流量が流
れる事になり、精度が落ちる事になる。凹溝(33)の形
状は半月状でも良いし、隅部が弧状になった矩形に近い
ものでも良く、凹溝(33)総てがほぼ同じ流量となるよ
うにほぼ同じ断面を持つ事が望ましいが、その開口断面
形状は問わない。
In this case, as can be seen from FIG. 8, the flow rate is accurately set by defining the number of the concave grooves (33) since there is no through-hole except for the concave grooves (33). On the other hand, in the case of the conventional capillary (13), the number of the capillaries (13) is small even if the number of the capillaries (13) is specified unless a narrow gap formed between the capillaries (13) and the capillaries (13) is closed. Will flow at a flow rate higher than the specified amount, and the accuracy will decrease. The shape of the groove (33) may be a half-moon shape or a shape close to a rectangle with an arc-shaped corner, and may have substantially the same cross section so that all the grooves (33) have substantially the same flow rate. Desirably, the cross-sectional shape of the opening does not matter.

尚、第8図のバイパス孔は凹溝(33)が外向きに巻設
されているが、第6図のように内向きに巻設してもよい
事は言うまでもない。このように形成されたバイパス素
子(8)は第2図に示すように隔壁(5)の通孔内に嵌
め込まれて使用される。バイパス孔の数は、流量に合わ
せて通孔の数を少なくした隔壁(5)を用いるか、通孔
を閉塞し必要な数の通孔にバイパス素子(8)を嵌め込
んだものを使用する。
In the bypass hole in FIG. 8, the concave groove (33) is wound outward, but it goes without saying that it may be wound inward as shown in FIG. The bypass element (8) thus formed is used by being fitted into the through hole of the partition (5) as shown in FIG. The number of bypass holes is determined by using a partition wall (5) in which the number of through holes is reduced in accordance with the flow rate, or by using a valve in which the through holes are closed and the bypass element (8) is fitted into a required number of through holes. .

尚、ここで、凹溝(33)の数を適宜変えて1個のバイ
パス素子(8)当たりに流れるガス流量を10ml/分、100
ml/分、1/分、10l/分と4種類製作しておけば、こ
れらを流量に応じて適宜選定して隔壁(5)に嵌め込ん
でやれば多種類の流量をカバーする事が出来るものであ
る。これに対して従来のバイパス素子(8)では10ml/
分、20ml/分、50ml/分、100ml/分、200ml/分、500ml/
分、1/分、2l/分、5l/分、10l/分、20l/分のように
11種類のバイパス素子(8)が必要であり、管理が面倒
であった。しかも、本発明の質量流量制御器にあっては
バイパス素子(8)の差圧をセンサ管(9)の差圧より
高くすることにより、最大流量は従来の流量の2.5〜4
倍に拡大する事ができるものである。
Here, the gas flow rate per one bypass element (8) was changed to 10 ml / min, 100
If four types are manufactured: ml / min, 1 / min, and 10 l / min, various types of flow can be covered by selecting them appropriately according to the flow rate and fitting them into the partition wall (5). Things. On the other hand, in the conventional bypass element (8), 10 ml /
Min, 20ml / min, 50ml / min, 100ml / min, 200ml / min, 500ml /
Min, 1 / min, 2l / min, 5l / min, 10l / min, 20l / min
Eleven types of bypass elements (8) were required, and management was troublesome. Moreover, in the mass flow controller of the present invention, by setting the differential pressure of the bypass element (8) higher than the differential pressure of the sensor pipe (9), the maximum flow rate is 2.5 to 4 times the conventional flow rate.
It can be doubled.

しかして、例えば半導体製造装置のような精密設備の
ガス供給系統に本発明にかかる質量流量制御器を接続
し、ガスを流すと、ガスは1次室(6)に流入し、大部
分のガスはバイパス孔を通って2次室(7)に流入し、
ほんの一部のガスが差圧増大用管路(10)を介してセン
サ管(9)を流れ、続いて2次室(7)に流入してバイ
パス側のガスと合流する。さて、センサ管(9)を流れ
るガスは上流側ヒータ(27a)の熱を奪って下流側に流
れ、下流側ヒータ(27b)の加熱量を抑制する。上流側
ヒータ(27a)では奪われた熱量を補給して平衡温度に
達するよう制御回路が上流側ヒータ(27a)を制御す
る。これにより両ヒータ(27a)(27b)への供給電力の
バランスが崩れ、この差を検出演算する事によりセンサ
管(9)に流れるガスの質量流量を検出する。バイパス
側はセンサ管(9)の流量に比例しているから全体のガ
ス流量はセンサ管(9)の流量に所定の係数を乗ずる事
により簡単に知る事が出来る。そして、この出力は制御
バルブ部へフィードバックされ、制御部(29)によって
制御弁(30)が駆動されて弁室(18)を流れる質量流量
が正確に制御される。
Thus, when the mass flow controller according to the present invention is connected to a gas supply system of a precision equipment such as a semiconductor manufacturing apparatus and the gas flows, the gas flows into the primary chamber (6), and most of the gas flows. Flows into the secondary chamber (7) through the bypass hole,
Only a part of the gas flows through the sensor pipe (9) via the differential pressure increasing pipe (10), and then flows into the secondary chamber (7) to join the gas on the bypass side. Now, the gas flowing through the sensor tube (9) deprives the upstream heater (27a) of heat and flows downstream, suppressing the amount of heating of the downstream heater (27b). In the upstream heater (27a), the control circuit controls the upstream heater (27a) so as to supply the deprived heat and reach the equilibrium temperature. As a result, the balance between the power supplied to the heaters (27a) and (27b) is lost, and the mass flow of the gas flowing through the sensor tube (9) is detected by detecting and calculating the difference. Since the bypass side is proportional to the flow rate of the sensor pipe (9), the total gas flow rate can be easily known by multiplying the flow rate of the sensor pipe (9) by a predetermined coefficient. Then, this output is fed back to the control valve section, and the control valve (30) is driven by the control section (29) to accurately control the mass flow rate flowing through the valve chamber (18).

さて、ここでスペーサ(12)の差圧増大用管路(10)
の働きに付いて説明する。第13図の概略図は従来の質量
流量制御器を表しており、バイパス孔の両端のガス圧を
それぞれP1,P2とすると、その差圧ΔPは、 ΔP=P1−P2 ………(1)となる。
Now, here the pipeline (10) for increasing the differential pressure of the spacer (12)
The function of is explained. The schematic diagram of FIG. 13 shows a conventional mass flow controller. Assuming that the gas pressures at both ends of the bypass hole are P 1 and P 2 , respectively, the differential pressure ΔP is ΔP = P 1 −P 2. ... (1).

これに対して、第14図の概略図は本発明にかかる質量
流量制御器(ただし、図面作成上の都合からガス流
(4)に対して正対するように2個のバイパス素子
(8)を配置しているように記載しているが、このバイ
パス素子(8)はガス流(4)に対して直角に配置され
ているものである。)であり、差圧増大用管路(10)の
管抵抗により、センサ管(9)の両端の差圧よりバイパ
ス孔の両端の差圧の方が高くなる。
On the other hand, the schematic diagram of FIG. 14 shows a mass flow controller according to the present invention (however, for convenience of drawing, two bypass elements (8) are directly opposed to the gas flow (4)). Although it is described as being disposed, the bypass element (8) is disposed at a right angle to the gas flow (4).) And the differential pressure increasing pipe (10) , The differential pressure at both ends of the bypass hole becomes higher than the differential pressure at both ends of the sensor tube (9).

今、上記従来例と同様にセンサ管(9)の両端の差圧
ΔPとし、センサ管(9)の両端のガス圧をP1,P2とす
ると第(1)式と同じ式が得られる。
Now, if the differential pressure ΔP at both ends of the sensor tube (9) is set to P 1 and P 2 at the both ends of the sensor tube (9), as in the above conventional example, the same expression as the expression (1) is obtained. .

次ぎに、差圧増大用管路(10)の効果により、センサ
管(9)の両端のガス圧P1,P2及びその差圧ΔPとバイ
パス素子(8)の差圧とが相違する。そこで、バイパス
素子(8)の差圧をΔP′、両端の差圧をP′1,P′2
すると、 ΔP′=P′1−P′2 ……(2) となる。今、差圧増大用管路(10)の管抵抗のために、
ΔP′がΔPの(n)培地になったとすると、 ΔP′=n・ΔP ……(3) の関係が成立するとする。ここで、流量Qは両端の差圧
に比例するので、 Q1(センサ管の流量)=K・ΔP ……(4) Q2(バイパス素子の流量)=K・ΔP′ ……(5) ∴Q2/Q1=ΔP′/ΔP=(n) ……(6) の関係が成立し、これにより、バイパス素子(8)の流
量を(n)培地に増大させる事が出来る。
Next, due to the effect of the differential pressure increasing pipe (10), the gas pressures P 1 and P 2 at both ends of the sensor pipe (9) and the differential pressure ΔP thereof are different from the differential pressure of the bypass element (8). Therefore, assuming that the differential pressure of the bypass element (8) is ΔP ′ and the differential pressures at both ends are P ′ 1 , P ′ 2 , the following equation is obtained: ΔP ′ = P ′ 1 −P ′ 2 (2) Now, due to the pipe resistance of the differential pressure increase pipe (10),
Assuming that ΔP ′ becomes a (n) medium of ΔP, the following relationship is established: ΔP ′ = n · ΔP (3) Here, since the flow rate Q is proportional to the differential pressure at both ends, Q 1 (the flow rate of the sensor tube) = K · ΔP (4) Q 2 (the flow rate of the bypass element) = K · ΔP ′ (5) ∴Q 2 / Q 1 = ΔP ′ / ΔP = (n) The relationship of (6) holds, whereby the flow rate of the bypass element (8) can be increased to the (n) medium.

一方、センサ管(9)に流れる最大流量は、 ΔP=P1−P2に比例し、これは従来のセンサ管(9)を
流れる流量と変わらない。
On the other hand, the maximum flow rate flowing through the sensor tube (9) is proportional to ΔP = P 1 −P 2 , which is the same as the flow rate flowing through the conventional sensor tube (9).

従って、差圧増大用管路(10)によってバイパス素子
(8)の差圧を増やしてもセンサ管(9)での差圧対流
量の特性は変わらない。
Therefore, even if the differential pressure of the bypass element (8) is increased by the differential pressure increasing pipe (10), the characteristic of the differential pressure versus the flow rate in the sensor pipe (9) does not change.

例えば、センサ管(9)と同一内径、長さ2倍の差圧
増大用管路(10)を用いた場合、バイパス素子(8)の
差圧は、 (l0+2×l1)÷(l0)=(l0+2×2l0)÷(l0)=
5倍 ……(5) 従って、実に同一寸法(換言すれば同種類の機種)で
5倍の流量を制御する事が出来る事になる。
For example, when the differential pressure increasing pipe (10) having the same inner diameter as the sensor pipe (9) and twice the length is used, the differential pressure of the bypass element (8) is (l 0 + 2 × l 1 ) ÷ ( l 0 ) = (l 0 + 2 × 2l 0 ) ÷ (l 0 ) =
Therefore, the flow rate can be controlled five times with the same dimensions (in other words, the same type of model).

尚、スペーサ(12)はの高さ寸法、差圧増大用管路
(10)の太さは流量によって適宜変更する事も出来る。
バイパス素子(8)の差圧を増やした為に、バイパス素
子(8)の部分が乱流とならぬように開口面積を広くと
り、流速を低下させる。エッチングプレートはこれに適
するもので、本発明ではこれらを並列に並べたバイパス
構造としている。
The height of the spacer (12) and the thickness of the differential pressure increasing pipe (10) can be appropriately changed depending on the flow rate.
Since the differential pressure of the bypass element (8) is increased, the opening area is widened so that the bypass element (8) does not become turbulent, and the flow velocity is reduced. The etching plate is suitable for this, and the present invention has a bypass structure in which these are arranged in parallel.

又、バイパス素子(8)をエッチングプレートにした
のは、ほぼ同一の断面積の凹溝(33)を一度に大量生産
が出来るため、低コスト化が可能となる。毛細管の
ように管の機械切断時に端面にバリが発生するというこ
とがない。肉厚を薄く出来るので、有効断面積を大き
くとる事が出来、コンパクト化が可能となる、など各種
の利点を有する。
In addition, since the bypass element (8) is formed of an etching plate, the concave grooves (33) having substantially the same cross-sectional area can be mass-produced at a time, so that the cost can be reduced. There is no burr generated on the end face at the time of mechanical cutting of the tube unlike a capillary tube. Since the wall thickness can be reduced, there are various advantages such as a large effective sectional area and compactness.

第16図に本発明の他の実施例を示す。即ち、入り口
(2)から1次室(6)とをつなぐ1次側連通孔(22)
と2次室(7)と1次側L字孔(19)とをつなぐ2次側
連通孔(23)をボディ本体(16)内に形成し、1次室
(6)、2次室(7)の中央にそれぞれ開口させたもの
であるが、この場合も1次側及び2次側連通孔(22)
(23)を流れるガス流(4)の方向が隔壁(5)に平行
となっている。
FIG. 16 shows another embodiment of the present invention. That is, a primary communication hole (22) connecting the entrance (2) to the primary chamber (6).
A secondary communication hole (23) connecting the first chamber (7) and the primary L-shaped hole (19) is formed in the body body (16), and the primary chamber (6) and the secondary chamber ( 7) are respectively opened at the center of the first and second communication holes (22).
The direction of the gas flow (4) flowing through (23) is parallel to the partition (5).

(効果) 本発明の請求項(1)は、ボディの一端にガス流入用
の入り口を設けると共にボディの他端にガス流出用の出
口を設け、ボディ内に入り口から出口に向かって流れる
ガス流方向にほぼ平行に隔壁を設け、前記隔壁を介して
隔壁の前方に前記入り口に連通する1次室を形成すると
共に隔壁の背方に前記出口に連通する2次室をそれぞれ
形成し、1次室と2次室とを連通するバイパス素子を隔
壁に設け、1次室と2次室との間にガス流量測定用のセ
ンサ管を接続してあるので、バイパス素子に流さねばな
らない流量に合わせて隔壁のバイパス素子の数を増減す
れば足り、しかも、隔壁はボディ内部に入り口乃至出口
の少なくとも一方のガス流方向にほぼ平行に配設してあ
るので、質量流量制御器のガス流に平行な方向の寸法を
有効に活用する事が出来、しかもこのようにガス流に対
してほぼ直行する方向にバイパス素子を並列配置したの
であるから、層流領域でバイパス素子にガスを流す事が
出来、差圧や流量特性を損なう事なく必要に応じて流量
を大きくする事が出来る。又、単に流量に合わせて隔壁
にバイパス素子を嵌め込んで行くだけであるからバイパ
ス素子の種類を1種類に出来ると言う利点もある。
(Effect) According to a first aspect of the present invention, a gas flow inlet is provided at one end of a body and a gas outlet is provided at the other end of the body. A partition is provided substantially parallel to the direction, a primary chamber communicating with the entrance is formed in front of the partition via the partition, and a secondary chamber communicating with the outlet is formed behind the partition, and a primary chamber is formed. A bypass element that connects the chamber and the secondary chamber is provided on the partition wall, and a sensor tube for measuring the gas flow rate is connected between the primary chamber and the secondary chamber. It is sufficient to increase or decrease the number of bypass elements of the partition wall. Further, since the partition wall is disposed substantially parallel to the gas flow direction of at least one of the inlet and the outlet inside the body, the partition wall is parallel to the gas flow of the mass flow controller. Effective use of dimensions in various directions Since the bypass elements are arranged in parallel in a direction substantially perpendicular to the gas flow, the gas can be passed through the bypass elements in the laminar flow region, and the differential pressure and flow characteristics are impaired. The flow rate can be increased as needed without any problems. In addition, there is an advantage that the type of the bypass element can be reduced to one because the bypass element is simply fitted into the partition wall in accordance with the flow rate.

又、本発明の請求項(2)では、センサ管の両端の差
圧よりバイパス素子の両端の差圧を増大させるために、
1次室とセンサ管の入り口及びセンサ管の出口と2次室
との間に差圧増大用管路を配設してあるので、その結果
バイパス管により大量のガスを流す事が出来て同一寸法
で能力を(n)培地に倍増する事が出来るという利点が
ある。
Further, in claim (2) of the present invention, in order to increase the differential pressure at both ends of the bypass element from the differential pressure at both ends of the sensor tube,
Since the differential pressure increasing pipe is provided between the entrance of the primary chamber and the entrance of the sensor pipe and between the exit of the sensor pipe and the secondary chamber, a large amount of gas can be flowed by the bypass pipe, and the same The advantage is that the capacity can be doubled in size to (n) medium.

本発明の請求項(3)では、帯状体の表面に幅方向に
凹溝を多数本凹設し、帯状体を巻設して形成したバイパ
ス素子を隔壁内に嵌入してあるので、ほぼ同一の断面積
の凹溝を有するバイパス素子を一度に大量生産が出来、
その結果低コスト化が可能となり、又、エッチングに
よる製作であるので、毛細管のように管の機械切断時に
端面にバリが発生するということがない。更にエッチン
グで有るために肉厚を薄く出来、有効断面積を大きくと
る事が出来、コンパクト化が可能となる、など各種の利
点を有する。
In claim (3) of the present invention, since a large number of concave grooves are formed in the width direction on the surface of the strip, and the bypass element formed by winding the strip is fitted in the partition wall, it is almost the same. Mass production of bypass elements with grooves with a cross-sectional area of
As a result, the cost can be reduced, and since it is manufactured by etching, burrs are not generated on the end face at the time of mechanical cutting of the tube unlike a capillary tube. Furthermore, the etching has various advantages, such as a reduced thickness, a large effective area, and a compact size.

【図面の簡単な説明】[Brief description of the drawings]

第1図…本発明の一実施例の概略平断面図 第2図…第1図の中央縦断面図 第3図…第2図に対して直角方向の断面図 第4図…本発明に使用するバイパス素子の部分展開図 第5図…第4図のX拡大矢視図 第6図…本発明に使用するバイパス素子の巻取状態を示
す斜視図 第7図…本発明に使用するバイパス素子の正面図 第8図…本発明に使用するバイパス素子の逆巻きの場合
の拡大図 第9図…従来例に使用したバイパスの断面図 第10図…第9図の正面図 第11図…従来の小流量バイパス素子の概略斜視図 第12図…従来の大流量バイパス素子の概略斜視図 第13図…従来の質量流量制御器の概略正面図 第14図…本発明の質量流量制御器の概略正面図 第15図…本発明にかかる質量流量制御器の他の実施例の
平断面図 (1)……ボディ、(2)……入り口 (3)……出口、(4)……ガス流 (5)……隔壁、(6)……1次室 (7)……2次室、(8)……バイパス素子 (9)…センサ管、(10……差圧増大用管路 (11)……帯状体、(12)……スペーサ (13)……バイパス用毛細管、(14)……入り口フラン
ジ (15)……出口フランジ、(16)……ボディ本体 (17)……円筒穴、(18)……弁室 (19)……1次側L字孔、(20)……2次側L字孔 (21)……鍔部、(22)……1次側連通孔 (23)……2次側連通孔、(24)……センサ側通孔 (25)……センサブロック、(26)……センサ管接続孔 (27a)(27b)……ヒータ、(28)……ハウジングブロ
ック (29)……制御部、(30)……制御弁 (31)……駆動部、(32)……スプリング (33)……凹溝、(34)……保護管 (35)……心棒
FIG. 1 is a schematic plan sectional view of an embodiment of the present invention. FIG. 2 is a longitudinal sectional view in the center of FIG. 1. FIG. 3 is a sectional view in a direction perpendicular to FIG. FIG. 5 is an enlarged view of an arrow X in FIG. 4. FIG. 6 is a perspective view showing a winding state of a bypass element used in the present invention. FIG. 7 is a bypass element used in the present invention. FIG. 8: Enlarged view of reverse bypass of bypass element used in the present invention FIG. 9: Cross-sectional view of bypass used in conventional example FIG. 10: Front view of FIG. 9 FIG. Schematic perspective view of a small flow bypass element. FIG. 12: Schematic perspective view of a conventional large flow bypass element. FIG. 13: Schematic front view of a conventional mass flow controller. FIG. 14: Schematic front view of a mass flow controller of the present invention. Fig. 15 ... Plan sectional view of another embodiment of the mass flow controller according to the present invention (1) ... Body, (2) ... Mouth (3) ... Exit, (4) ... Gas flow (5) ... Partition wall, (6) ... Primary chamber (7) ... Secondary chamber, (8) ... Bypass element (9) ... Sensor tube, (10 ... Differential pressure increase line (11) ... Band, (12) ... Spacer (13) ... Bypass capillary tube (14) ... Inlet flange (15) ... Outlet flange , (16) Body body (17) Cylindrical hole, (18) Valve chamber (19) Primary L-shaped hole, (20) Secondary L-shaped hole (21) ... Flange, (22) ... Primary side communication hole (23) ... Secondary side communication hole, (24) ... Sensor side through hole (25) ... Sensor block, (26) ... Sensor pipe connection Hole (27a) (27b) ... heater, (28) ... housing block (29) ... control unit, (30) ... control valve (31) ... drive unit, (32) ... spring (33) ... groove, (34) ... protection tube (35) ... mandrel

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ボディの一端にガス流入用の入り口を設け
ると共にボディの他端にガス流出用の出口を設け、ボデ
ィ内に入り口から出口に向かって流れるガス流方向にほ
ぼ平行に隔壁を設け、前記隔壁を介して隔壁の前方に前
記入り口に連通する1次室を形成すると共に隔壁の背方
に前記出口に連通する2次室をそれぞれ形成し、1次室
と2次室とを連通するバイパス素子を隔壁に設け、1次
室と2次室との間にガス流量測定用のセンサ管を接続し
て成る事を特徴とする質量流量制御器。
An inlet for gas inflow is provided at one end of the body, an outlet for gas outflow is provided at the other end of the body, and a partition wall is provided in the body substantially parallel to a gas flow direction flowing from the inlet to the outlet. A primary chamber communicating with the entrance is formed in front of the bulkhead via the bulkhead, and a secondary chamber communicating with the outlet is formed behind the bulkhead to communicate the primary chamber with the secondary chamber. A mass flow controller characterized in that a bypass element is provided on a partition wall and a sensor tube for measuring gas flow is connected between the primary chamber and the secondary chamber.
【請求項2】請求項(1)の質量流量制御器において、
センサ管の両端の差圧よりバイパス素子の両端の差圧を
増大させるために、1次室とセンサ管の入り口及びセン
サ管の出口と2次室との間に差圧増大用管路を配設して
成る事を特徴とする質量流量制御器。
2. The mass flow controller according to claim 1, wherein
In order to increase the differential pressure at both ends of the bypass element from the differential pressure at both ends of the sensor tube, a differential pressure increasing conduit is provided between the inlet of the primary chamber and the sensor tube and between the outlet of the sensor tube and the secondary chamber. A mass flow controller characterized by being installed.
【請求項3】請求項(1)乃至(2)の質量流量制御器
において、帯状体の表面に幅方向に凹溝を多数本凹設
し、帯状体を巻設して軸方向にバイパス孔が構成された
バイパス素子を隔壁内に嵌入して成る事を特徴とする質
量流量制御器。
3. The mass flow controller according to claim 1, wherein a number of grooves are formed in the surface of the band in the width direction, and the band is wound around the surface to form a bypass hole in the axial direction. A mass flow controller characterized in that a bypass element configured as described above is fitted into a partition wall.
JP1251606A 1989-09-26 1989-09-26 Mass flow controller Expired - Lifetime JP2711577B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1251606A JP2711577B2 (en) 1989-09-26 1989-09-26 Mass flow controller
US07/579,521 US5080131A (en) 1989-09-26 1990-09-10 Mass flow controller
US07/776,026 US5159951A (en) 1989-09-26 1991-10-15 Mass flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1251606A JP2711577B2 (en) 1989-09-26 1989-09-26 Mass flow controller

Publications (2)

Publication Number Publication Date
JPH03111914A JPH03111914A (en) 1991-05-13
JP2711577B2 true JP2711577B2 (en) 1998-02-10

Family

ID=17225320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1251606A Expired - Lifetime JP2711577B2 (en) 1989-09-26 1989-09-26 Mass flow controller

Country Status (1)

Country Link
JP (1) JP2711577B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418684B1 (en) 2003-06-27 2004-02-14 주식회사 현대교정인증기술원 Differential pressure type fluid mass flow controller for controlling flow gases used in semiconductor device fabrication
JP2010084854A (en) * 2008-09-30 2010-04-15 Tokyo Electron Ltd Gas supply device

Also Published As

Publication number Publication date
JPH03111914A (en) 1991-05-13

Similar Documents

Publication Publication Date Title
AU2011201469B2 (en) Molded flow restrictor
US5576498A (en) Laminar flow element for a flowmeter
US7343823B2 (en) Ultra low pressure drop flow sensor
EP1344027B1 (en) Microelectronic flow sensor
US7874208B2 (en) System for and method of providing a wide-range flow controller
AU2012200528B2 (en) Flow sensor assembly with integral bypass channel
KR100276930B1 (en) Mass Flow Converter with Extended Flow Measurement Range
JP4503830B2 (en) Friction type flow meter
JPH0643907B2 (en) Flowmeter
US20080016957A1 (en) Mass flow meter
JPS6010120A (en) Flow-rate measuring device and manufacture thereof
JP2005156570A (en) Device with thermal flowmeter used for internal combustion engine
JP3758111B2 (en) Air flow measurement device
US20090199633A1 (en) Flow sensor and mass flow controller using the same
JPH0863235A (en) Differential pressure type mass flow rate control unit
US2586060A (en) Arrangement for measuring or indicating the flow of fluids
JP2019144146A (en) Fluid element
JP2711577B2 (en) Mass flow controller
JP3818547B2 (en) Mass flow controller
JP2589318Y2 (en) Mass flow meter and mass flow controller
JPH09287985A (en) Air flow measuring device
JPH10320057A (en) Flow rate control valve device
JP2582961B2 (en) Flow sensor bypass unit
JPH0334651Y2 (en)
JP3530646B2 (en) Flow meter structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

EXPY Cancellation because of completion of term