JPH0334633A - Optical transmission device - Google Patents

Optical transmission device

Info

Publication number
JPH0334633A
JPH0334633A JP1166877A JP16687789A JPH0334633A JP H0334633 A JPH0334633 A JP H0334633A JP 1166877 A JP1166877 A JP 1166877A JP 16687789 A JP16687789 A JP 16687789A JP H0334633 A JPH0334633 A JP H0334633A
Authority
JP
Japan
Prior art keywords
optical
level
transmission
receiving
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1166877A
Other languages
Japanese (ja)
Inventor
Hideto Furuyama
英人 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1166877A priority Critical patent/JPH0334633A/en
Publication of JPH0334633A publication Critical patent/JPH0334633A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the cost by detecting an output level of a light emitting element of each optical channel by an optical receiving part of the destination to which an optical transmission is executed, executing the transmission of receiving level information in the lump by electricity or light from the optical receiving part to an optical transmitting part, and correcting the output level of the light emitting element of each optical channel of the optical transmitting part. CONSTITUTION:The respective receiving levels of an optical channel are detected by optical receiving parts 401-404, and receiving level information of each optical channel by detecting the receiving level is multiplexed and transferred by light or electricity to optical transmitting parts 201-204 from the optical receiving parts 401-404. Subsequently, in the optical transmitting parts 201-204, the multiplexed receiving level information is restored, and also, by the receiving level information, a transmitting level of each optical channel is corrected. Accordingly, it is unnecessary to provide an optical output level monitor of a light emitting element of each optical channel on the optical transmitting parts 201-204, and in the optical receiving parts 401-404, in order to observe an actual optical receiving level, an optimum optical transmitting level can be set directly. In such a way, the cost of an automatic optical output controller per an optical channel is reduced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は光による情報伝送装置に関し、特に複数の光チ
ャネルが並列に存在する光伝送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an optical information transmission device, and particularly to an optical transmission device in which a plurality of optical channels exist in parallel.

(従来の技術) 光伝送装置、特に光フアイバ通信装置はその高速性の他
に通信径路の無誘導性や車路通信であるための非接地ル
ープ雑音性等の特徴があり、高速性以外の領域において
も電気による伝送装置の技術的困難を克服し得る。かく
して、光伝送装置は比較的低速の領域においてもその有
用性を発揮するが、並列伝送を行う場合その並列度を増
した場合の通信線路当りのコスト低下が電気の場合に比
して少なくなり、汎用性、低価格性という点で問題があ
った。また、このために光伝送装置の補償機能を削除し
て低価格化を画る等、本来の性能を犠牲にせざるを得な
いという問題があり、汎用的な光伝送装置の普及に障害
となっていた。以下図面を用いて従来技術の説明を行っ
ていく。
(Prior art) Optical transmission equipment, especially optical fiber communication equipment, has characteristics such as non-inductive communication paths and non-ground loop noise due to road communication, in addition to high speed. It is also possible to overcome the technical difficulties of electrical transmission devices in the field. In this way, optical transmission equipment exhibits its usefulness even in relatively low-speed areas, but in the case of parallel transmission, the cost per communication line decreases less when the degree of parallelism is increased than in the case of electricity. However, there were problems in terms of versatility and low cost. Additionally, there is a problem in that the original performance has to be sacrificed, such as removing the compensation function of the optical transmission equipment to lower the price, which is an obstacle to the widespread use of general-purpose optical transmission equipment. was. The conventional technology will be explained below using the drawings.

第6図は従来の光伝送装置の構成を示す構成図であり、
1つの光チャネルについて示したものである。1は駆動
回路であり、入力信号及び比較回路からの制御信号に応
じて半導体レーザのような発光素子の駆動を行う。2は
発光素子であり、半導体レーザまたは発光ダイオードを
用いる。20は光出力モニタであり、フォトダイオード
等により平均的光出力レベルの監視を行う。21は比較
回路であり、フォトダイオード20からの信号を予め設
定された基準レベルと比較してその差分に応じた出力レ
ベル補正の制御信号を発生する。3は光伝達媒体であり
、光ファイバ、先導波路等を用いる。
FIG. 6 is a configuration diagram showing the configuration of a conventional optical transmission device,
One optical channel is shown. Reference numeral 1 denotes a drive circuit, which drives a light emitting element such as a semiconductor laser according to an input signal and a control signal from a comparison circuit. 2 is a light emitting element, which uses a semiconductor laser or a light emitting diode. A light output monitor 20 monitors the average light output level using a photodiode or the like. A comparison circuit 21 compares the signal from the photodiode 20 with a preset reference level and generates a control signal for output level correction in accordance with the difference. 3 is an optical transmission medium, which uses an optical fiber, a leading waveguide, or the like.

4は受光素子であり、PINフォトダイオード、アバラ
ンシェフォトダイオード等を用い、受光信号の電気変換
を行う。5′は増幅回路であり、4の受光素子へのバイ
アス電圧供給も含めて電気信号のレベル再生を行う。こ
の従来技術装置の動作としては信号入力端子Aからの入
力信号に対して駆動回路1が発光素子2の駆動を行い、
光出力モニタ20によって発光素子2の光出力レベルを
検出する。比較回路では光出力レベルの比較と光出力レ
ベルの補正信号の発生を行い駆動回路へ送る。
Reference numeral 4 denotes a light-receiving element, which electrically converts a light-receiving signal using a PIN photodiode, an avalanche photodiode, or the like. Reference numeral 5' denotes an amplifier circuit which reproduces the level of the electrical signal, including supplying bias voltage to the light receiving element 4. The operation of this prior art device is such that the drive circuit 1 drives the light emitting element 2 in response to an input signal from the signal input terminal A.
The light output level of the light emitting element 2 is detected by the light output monitor 20. The comparison circuit compares the optical output levels, generates a correction signal for the optical output level, and sends it to the drive circuit.

駆動回路は更に補正信号に応じた発光素子2の駆動レベ
ル補正を行って予め設計、設定された光出力レベルの確
保を行う。一方、発光素子2からの光信号は光フアイバ
3を通って受光素子4へ送られ、受光素子による電気変
換、増幅回路5″による信号レベル再生が行われて信号
出力端子Bへ出力される。この従来技術においては送信
側内部で光出力レベルの監視が可能であり、発光素子の
特性変動の補正や劣化時期の監視が単独で行える特徴が
ある。
The drive circuit further corrects the drive level of the light emitting element 2 according to the correction signal to ensure a pre-designed and set optical output level. On the other hand, the optical signal from the light emitting element 2 is sent to the light receiving element 4 through the optical fiber 3, electrically converted by the light receiving element, signal level regenerated by the amplifier circuit 5'', and outputted to the signal output terminal B. This conventional technology is characterized in that it is possible to monitor the optical output level within the transmitting side, and that it is possible to independently correct characteristic fluctuations of the light emitting element and monitor the timing of deterioration.

しかしながらこのような従来技術では監視する出力レベ
ルが発光素子の先出力レベルであり、実際の光ファイバ
、先導波路等の中に導入される光送信レベルではない。
However, in such conventional techniques, the output level to be monitored is the pre-output level of the light emitting element, and not the optical transmission level introduced into the actual optical fiber, guide waveguide, etc.

そのため駆動条件や環境条件(温度等)の変化によって
生じる発光素子の放射パターンの変化等に対する補正が
できず、また受信側の受信条件等が変動した場合等の基
準レベルに変更が必要な場合の対応ができないという問
題があった。
Therefore, it is not possible to compensate for changes in the radiation pattern of the light emitting element caused by changes in driving conditions or environmental conditions (temperature, etc.), and it is not possible to compensate for changes in the radiation pattern of the light emitting element caused by changes in driving conditions or environmental conditions (temperature, etc.). There was a problem that it was impossible to respond.

次にアレイ化された場合の従来技術について示す。第7
図は、複数の光チャネルをもつ並列光伝送装置の構成を
示した図であり、ここでは4チヤネル光伝送装置を例に
とっている。ここでA1−A4は入力端子、101〜1
04は駆動回路、201〜204は発光素子、2001
〜2004はモニタフォトダイオード、2101〜21
04は比較回路、aOt〜304は光ファイバ、401
〜404は受光素子、50F〜504°は増幅回路、B
1−84は出力端子である。図かられかるように従来技
術装置において各チャネルは独立に第6図と同じ構成で
あり、アレイ化することによる大きなメリットは一括接
続及び同一パッケージ化以外特に現われない。そのため
アレイ化数を増してチャネル数が増加した場合において
も、依然として各チャネルの構成は変化せず、従ってア
レイ化による同時作製以外のメリット及びコスト低下は
少ない。このことが前述したようにチャネル数を増加し
た場合の電気的伝送に劣る主因であった。
Next, the conventional technology in the case of arraying will be described. 7th
The figure is a diagram showing the configuration of a parallel optical transmission device having a plurality of optical channels, and here a four-channel optical transmission device is taken as an example. Here, A1-A4 are input terminals, 101-1
04 is a drive circuit, 201 to 204 are light emitting elements, 2001
~2004 is a monitor photodiode, 2101~21
04 is a comparison circuit, aOt~304 is an optical fiber, 401
~404 is a light receiving element, 50F~504° is an amplifier circuit, B
1-84 is an output terminal. As can be seen from the figure, in the prior art device, each channel independently has the same configuration as in FIG. 6, and there is no particular advantage of arraying other than collective connection and the same packaging. Therefore, even when the number of channels is increased by increasing the number of arrays, the configuration of each channel remains unchanged, and therefore there are few benefits other than simultaneous production and cost reduction due to arraying. This is the main reason why electrical transmission is inferior when the number of channels is increased as described above.

また、従来低価格性を追及するあまり、通信線路当りの
コストを低下させる目的で発光素子の比較回路、モニタ
フォトダイオードが削除された装置が求められ、そのた
め発光素子が発光ダイオードに限定されてしまうという
問題があった。このため光伝送の特徴の1つである高速
伝送が困難となり、高速伝送可能な半導体レーザによる
光伝送装置の汎用的普及が妨げられていた。
Furthermore, in the past, the pursuit of low cost has led to a demand for devices that do not include a light emitting element comparison circuit or a monitor photodiode in order to reduce the cost per communication line, and as a result, light emitting elements are limited to light emitting diodes. There was a problem. This has made it difficult to achieve high-speed transmission, which is one of the characteristics of optical transmission, and has prevented the widespread use of optical transmission devices using semiconductor lasers capable of high-speed transmission.

(発明が解決しようとする課題) 本発明はこのような従来技術の問題を考慮して成され、
光伝送本来の資質を十分に発揮しつつ、並列光伝送にお
ける通信線路当りのコスト低下が可能な光伝送装置の提
供を目的としている。
(Problems to be Solved by the Invention) The present invention has been made in consideration of the problems of the prior art,
The object of the present invention is to provide an optical transmission device that can reduce the cost per communication line in parallel optical transmission while fully utilizing the inherent qualities of optical transmission.

[発明の構成] (課題を解決するための手段) 本発明は複数の先チャネルを用いて光並列伝送を行う装
置において、各光チャネルの発光素子出力レベル検出を
光伝送を行った先の光受信部で行い、各光チャネルの受
信レベルでそれを検出結果とする。そして光受信部から
光送信部へ電気または光により受信レベル情報伝達を一
括して行い、光送信部の各光チャネルの発光素子出力レ
ベルを補正するものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a device that performs optical parallel transmission using a plurality of destination channels, and detects the light emitting element output level of each optical channel by detecting the light emitting element output level of each optical channel. This is performed in the receiving section, and the reception level of each optical channel is used as the detection result. Then, reception level information is collectively transmitted from the optical receiver to the optical transmitter by electricity or light, and the light emitting element output level of each optical channel of the optical transmitter is corrected.

即ち、本発明は複数の光チャネルにより信号伝達を行う
光伝送装置において、前記光チャネルのそれぞれの受信
レベル検出を光受信部で行い、該光受信部より光送信部
へ前記受信レベル検出にょる各光チャネルの受信レベル
情報を多重化して光又は電気により伝達(7、光送信部
において前記多重化された受信レベル情報を復元化する
とともに該受信レベル情報により各光チャネルの送信レ
ベルを補正することを特徴とする光伝送装置である。
That is, in an optical transmission device that transmits signals through a plurality of optical channels, the present invention detects the received level of each of the optical channels in an optical receiving section, and transmits the received level detection from the optical receiving section to the optical transmitting section. The received level information of each optical channel is multiplexed and transmitted optically or electrically (7. The optical transmitter restores the multiplexed received level information and corrects the transmitted level of each optical channel using the received level information. This is an optical transmission device characterized by the following.

(作 用) 本発明によれば光送信部に各光チャネルの発光素子の光
出力レベルモニタを設ける必要がなく、また、光受信部
において、実際の光受信レベルを観測するため直接最適
な光送信レベルを設定することができる特徴をもってい
る。そして更に、光受信レベルは平均光電力検出で良い
ため比較的低速の情報伝送であり、1本の伝送線路で複
数の光チャネルの受信レベル情報を送ることができる。
(Function) According to the present invention, it is not necessary to provide an optical output level monitor of the light emitting element of each optical channel in the optical transmitting section, and in addition, since the actual optical reception level can be observed in the optical receiving section, the optimum optical It has the feature of being able to set the transmission level. Furthermore, since the optical reception level can be determined by detecting the average optical power, information transmission is relatively slow, and reception level information of a plurality of optical channels can be sent using one transmission line.

このことにから本発明により1つの受信レベル情報用線
路で複数の光チャネルの光出力制御が可能であり、各光
チャネル当りの自動光出力制御器コストは従来技術より
格段に低下することができる。
Therefore, according to the present invention, it is possible to control the optical output of a plurality of optical channels using one reception level information line, and the cost of an automatic optical output controller for each optical channel can be significantly reduced compared to the conventional technology. .

また、そのコスト低下は伝送する光チャネル数が多いほ
ど大きく、アレイ化のような複数光チャネルによる光伝
送の効果が大きくなる特徴をもっCいる。この他事発明
の応用として各光チャネルの伝送情報チエツク(例えば
パリティチエツク等)を行って、光送信側に逆送するこ
とで通信線路の状態補正や信号線路アラームの発生等が
可能になる利点をもっている。
In addition, the cost reduction increases as the number of optical channels to be transmitted increases, and the effect of optical transmission using multiple optical channels such as arraying increases. As an application of this other invention, the advantage is that by checking the transmission information of each optical channel (for example, parity check, etc.) and sending it back to the optical transmission side, it is possible to correct the condition of the communication line and generate a signal line alarm. have.

(実施例) 第1図は本発明装置の第1の実施例の内容を示した構成
ブロック図である。ここでは従来例と同様に4チャネル
並列伝送の例を示すが、これは複数のチャネルで並列伝
送を行うほとんどの場合について基本的に同様の構成が
可能であり、ナヤネルの数は適時変更可能なものである
(Embodiment) FIG. 1 is a configuration block diagram showing the contents of a first embodiment of the apparatus of the present invention. Here, we will show an example of 4-channel parallel transmission similar to the conventional example, but this basically allows the same configuration in most cases where parallel transmission is performed using multiple channels, and the number of Nayanels can be changed at any time. It is something.

第1図において、Al−A4は各信号チャネルの入力端
子、101〜104は発光素子の駆動回路、201〜2
04は発光素子(例えば半導体レーザ) 、301〜3
04は光伝達媒体(光ファイバ、先導波路等)、401
〜404は受光素子(例えばPINフォトグイオード)
、501〜504は増幅回路、B1−84は各信号チャ
ネルの出力端子、6は平均受信レベル情報の多重化信号
発生器、7はフィードバック用同軸線路、8は多重化信
号復元器であり、駆動回路10(〜104は8のフィー
ドバック信号に応じて発光素子201〜204の駆動レ
ベル補正(例えば半導体レーザのバイアス電流補正)を
行う機能を有し、増幅回路501〜504は受光素子4
01〜404で受信した信号のレベルモニタ出力(例え
ばローパスフィルタ通過後の平均化出力)を発生する機
能をそれぞれもっている。この駆動回路201〜204
及び増幅回路501〜504の構成例を第2図及び第3
図に示す。第2図中1は第1図10i〜104のうちの
1つを示し、2は発光素子(第1図201〜204に相
当)でありここでは半導体レーザ(例えば発振波長1.
3.czmのGa I nAsP/I nP半導体レー
ザ)を用いるものとする。各端子はAが信号入力端子(
第1図A1〜A4に相当)、Vccが電源端子、Dが発
光素子出力補正信号入力端子であり、D@子の入力によ
りQ2を介して半導体レーザのバイアスレベル補正(例
えばしきい値変動補正)を行うことができる。また、第
3図中5は第1図501〜504のうちの1つを示し、
4は受光素子でありここではフォトダイオード(例えば
G a l n A s/ I n Pフォトダイオ−
ド)を用いるものとする。
In FIG. 1, Al-A4 is an input terminal of each signal channel, 101 to 104 are drive circuits for light emitting elements, and 201 to 2 are
04 is a light emitting element (e.g. semiconductor laser), 301-3
04 is an optical transmission medium (optical fiber, guiding waveguide, etc.), 401
~404 is a light receiving element (for example, PIN photodiode)
, 501-504 are amplifier circuits, B1-84 are output terminals of each signal channel, 6 is a multiplex signal generator for average received level information, 7 is a coaxial line for feedback, 8 is a multiplex signal restorer, and 8 is a multiplex signal restorer for driving. The circuits 10 (~104) have a function of correcting the drive level of the light emitting elements 201~204 (for example, bias current correction of a semiconductor laser) according to the feedback signal of the light receiving element 4.
Each of them has a function of generating a level monitor output (for example, an averaged output after passing through a low-pass filter) of the signals received at 01 to 404. These drive circuits 201 to 204
The configuration examples of the amplifier circuits 501 to 504 are shown in FIGS. 2 and 3.
As shown in the figure. In FIG. 2, 1 represents one of the elements 10i to 104 in FIG. 1, and 2 represents a light emitting element (corresponding to 201 to 204 in FIG. 1), which is a semiconductor laser (for example, an oscillation wavelength of 1.
3. czm Ga InAsP/I nP semiconductor laser). For each terminal, A is the signal input terminal (
(corresponding to A1 to A4 in Figure 1), Vcc is a power supply terminal, D is a light emitting element output correction signal input terminal, and the bias level correction of the semiconductor laser (e.g. threshold fluctuation correction )It can be performed. Further, 5 in FIG. 3 indicates one of 501 to 504 in FIG. 1,
4 is a light-receiving element, and here it is a photodiode (for example, a GalnAs/InP photodiode).
) shall be used.

各端子はBが信号出力端子(第1図B1−84に相当)
、Vccが電源端子、Cが受光素子受信レベルモニタ出
力端子であり、C端子にはQ5を介した受信信号がRr
、、Crのローパスフィルタによって平均化されて平均
受信しノベルとして出力されてくる。
For each terminal, B is the signal output terminal (corresponds to B1-84 in Figure 1)
, Vcc is the power supply terminal, C is the light receiving element reception level monitor output terminal, and the received signal via Q5 is connected to the C terminal as Rr.
, , Cr low-pass filter receives the average signal and outputs it as a novel.

このような駆動回路1 (第1図101−104 )、
増幅回路5(第1図501〜504)により前述した機
能動作を行わせることが可能であり、例えば400Mb
/sのディジタルデータ伝送を第1図の各チャネルで行
う。その際、データ信号の繰り返し周期は最小2.5n
sであるが周囲条件(例えば温度等)の変動による光送
信レベル、光受信レベルの変動は数ms以上の長い時間
的変化であり、フィードバック信号の応答は数百μSの
応答性があれば十分である。
Such a drive circuit 1 (FIG. 1 101-104),
It is possible to perform the above-mentioned functional operation by the amplifier circuit 5 (501 to 504 in FIG. 1).
/s digital data transmission is performed on each channel shown in FIG. At that time, the repetition period of the data signal is at least 2.5n.
However, fluctuations in the optical transmission level and optical reception level due to fluctuations in ambient conditions (e.g. temperature, etc.) are long temporal changes of several ms or more, and a feedback signal response of several hundred μs is sufficient. It is.

そこで、例えば第3図Rr、Crの積(時定数)を20
0μsに設定し、6の多重化信号発生器において各チャ
ネルのレベルモニタ出力を10μsごとに逐次サンプリ
ングしてA/D変換及び時分割多重を行わせる。この場
合フィードバック線路のデータ伝送としては100kb
/s程度であり、同軸線路の伝送容量で十分な伝送を行
うことができる。また、この場合の各チャネルのフィー
ドバック周期としては200μs平均のレベル出力に対
して等価的に40μsであり、平均レベル出力の応答に
対して十分な応答速度が得られる。多重化信号復元器8
では6から送られてきた多重化信号を各チャネルの信号
に分離して40μsごとの信号D/A変換、ピークホー
ルドを行って駆動回路101−104へそれぞれフィー
ドバックを行えばよい。更に、通常の同軸線路ではlO
Mb/s以上の伝送が十分可能であり、前述したような
レベルモニタ出力の平均化時間を200μsとしてフィ
ードバック線路容量をlOMb/s (サンプリング周
期1oans )とすると2000チヤネルの光チャネ
ルを同時制御することが可能である。従って本発明装置
の光チャネル数限界は実用上はぼ無視することができ、
多チヤネル並列化にするチャネル当りのコストは従来技
術に比し格段に低くすることが可能である。また更に、
前述したように本発明では直接受信レベルをフィードバ
ックしているため光送信器の最適送信レベルの設定が可
能であり、光送信器の過剰出力を抑えて低消費電力化に
も寄与することができる。
Therefore, for example, the product (time constant) of Rr and Cr in Figure 3 is 20
0 μs, and the level monitor output of each channel is sequentially sampled every 10 μs in 6 multiplexed signal generators to perform A/D conversion and time division multiplexing. In this case, the data transmission on the feedback line is 100 kb.
/s, and sufficient transmission can be achieved using the transmission capacity of the coaxial line. Further, the feedback cycle of each channel in this case is equivalently 40 μs for an average level output of 200 μs, and a sufficient response speed can be obtained for the response of the average level output. Multiplexed signal restorer 8
Then, it is sufficient to separate the multiplexed signal sent from 6 into signals of each channel, perform signal D/A conversion every 40 μs, peak hold, and feed back to the drive circuits 101-104, respectively. Furthermore, in a normal coaxial line, lO
Transmission of Mb/s or more is sufficiently possible, and if the averaging time of the level monitor output is 200 μs as described above and the feedback line capacity is 10Mb/s (sampling period 1oans), 2000 optical channels can be controlled simultaneously. is possible. Therefore, the limit on the number of optical channels of the device of the present invention can be practically ignored,
The cost per channel of multi-channel parallelization can be significantly lower than that of the prior art. Furthermore,
As mentioned above, in the present invention, since the reception level is directly fed back, it is possible to set the optimum transmission level of the optical transmitter, and it is also possible to suppress excessive output of the optical transmitter and contribute to lower power consumption. .

次に本発明の第2の実施例を示す。第4図は本発明実施
例の構成ブロック図であり、第1図実施例とはフィード
バック径路をも先代している点が異なっている。第4図
ではフィードバック径路が光伝達であるため多重化信号
発生器6と単チャネル光送信器1−が組み込まれた信号
多重化光送信器9及び多重化信号復元器8と単チャネル
光受信器5′か組み込まれた多重化信号復元化光受信器
13が用いられる。ここではフィードバック径路の伝送
容量が比較的小さいため、光出力レベルモニタを行わな
いLEDを発光素子10に用いることができる。LED
を用いた光伝送システムでは100Mb/s程度の伝送
も可能であり、第1図実施例と同様、光チャネル数限界
は実用上無視してさしつかえない。
Next, a second embodiment of the present invention will be described. FIG. 4 is a block diagram of the configuration of an embodiment of the present invention, which differs from the embodiment in FIG. 1 in that it also includes a feedback path. In FIG. 4, since the feedback path is optical transmission, a signal multiplexing optical transmitter 9 incorporating a multiplexing signal generator 6, a single-channel optical transmitter 1-, a multiplexing signal restorer 8, and a single-channel optical receiver are installed. A multiplexed signal restoring optical receiver 13 incorporating a receiver 5' is used. Here, since the transmission capacity of the feedback path is relatively small, an LED without optical output level monitoring can be used as the light emitting element 10. LED
In an optical transmission system using this, transmission of about 100 Mb/s is possible, and as in the embodiment of FIG. 1, the limit on the number of optical channels can be practically ignored.

第4図実施例が第1図実施例と大幅に異なるのは、送信
端と受信端が電気的に分離されていることであり、光伝
送の大きな特徴の1つである非接地ループ雑音性が達成
されていることである。また、フィードバック用発光素
子10を半導体レーザとし、その先出力モニタに1つの
伝送チャネルを用いることで非常に高速のフィードバッ
クを行うことも可能であり、光送信レベル補正のフィー
ドバックだけでなく各光チャネルの信号チエツクをフィ
ードバックすることも可能になる。この場合信号チエツ
クとしてはディジタルデータのパリティチエツク等を行
い、送信側へデータ伝送エラーの有無を逆送することが
でき、伝送データの再伝送によるデータ伝送の高信頼化
が可能になる。このように第4図実施例では第1図実施
例の特徴を保存したまま非接地ループ雑音性やデータ伝
送の高信頼化等が得られる特徴がある。
The major difference between the embodiment shown in FIG. 4 and the embodiment shown in FIG. has been achieved. In addition, by using a semiconductor laser as the feedback light emitting element 10 and using one transmission channel for the output monitor, it is possible to perform very high-speed feedback.In addition to feedback for optical transmission level correction, each optical channel It also becomes possible to feed back signal checks. In this case, the signal check includes a parity check of the digital data, and the presence or absence of a data transmission error can be sent back to the transmitting side, making it possible to increase the reliability of data transmission by retransmitting the transmitted data. As described above, the embodiment of FIG. 4 has features such as non-grounded loop noise and high data transmission reliability while preserving the features of the embodiment of FIG. 1.

第5図は本発明装置の他の実施例を示す構成ブロック図
である。第5図実施例では送信部から受信部への情報伝
達を1本の先ファイバで行うため光F DM (Pre
guency Dlvlslon Multlplex
、以下FDMと記す)技術を用いている。即ち各光チャ
ネルは線幅の狭い異なる周波数の光で送信され、受信側
で光ヘテロダイン検波又は光ホモダイン検波により周波
数選択を行い各チャネルの受信を行う。また、この例で
はフィードバック径路のみLED又は通常の半導体レー
ザを用いる例として、フィードバック径路のみWDM 
(WavelengthDfvlsion Multi
plex)技術を用いている。即ち通常の半導体レーザ
、LEDは発光半値幅が広いためフィードバック径路の
み広い発光線幅の許容されるWDM方式としている。第
5図201 ’〜204゛はレーザ発振の発振幅及び周
波数(波長)が制御された波長制御半導体レーザであり
、それぞれλ1〜λ4の波長(周波数)で光送信を行う
。そしてこれらの光は1本のファイバにまとめられ、波
長選択形ビームスプリッタ15を通って光ファイバ3に
導入される。
FIG. 5 is a block diagram showing another embodiment of the device of the present invention. In the embodiment shown in FIG. 5, optical FDM (Pre
guency Dlvlslon Multlplex
, hereinafter referred to as FDM) technology. That is, each optical channel is transmitted using light of a different frequency with a narrow linewidth, and each channel is received by selecting the frequency by optical heterodyne detection or optical homodyne detection on the receiving side. In addition, in this example, only the feedback path uses an LED or a normal semiconductor laser, and only the feedback path uses WDM.
(WavelengthDfvlsion Multi
plex) technology. That is, since normal semiconductor lasers and LEDs have a wide emission half-width, the WDM method is used in which only the feedback path allows a wide emission line width. Reference numerals 201' to 204' in FIG. 5 are wavelength-controlled semiconductor lasers in which the oscillation amplitude and frequency (wavelength) of laser oscillation are controlled, and optical transmission is performed at wavelengths (frequencies) of λ1 to λ4, respectively. These lights are then combined into one fiber and introduced into the optical fiber 3 through the wavelength selective beam splitter 15.

そして、受信側ではもう1つの波長選択形ビムスブリッ
タ16を通って各コヒーレ〉ト受信器401’〜404
°に分配導入される。コヒーレント受信器401’40
4“ではそれぞれローカルオシレータとしての波長制御
半導体レーザを有し、λ1〜λ4の光をそれぞれ選択受
信する。また、フィードバック径路のWDM方式はλ1
〜ス4とは比較的離れたλ0の波長を用い波長選択形ビ
ームスプリッタ16及び(5でビーム反射(90”の方
向変換)を行わせてλ1〜λ4と分離する。ここでλ1
〜λ4及びλ0の設定例としてはλ。を約L3μmの波
長とし、λ1〜λ4と1.55μm帯の波長で5 G1
1z程度の周波数差(波長差で約0.5λ)に設定すれ
ばよい。従って波長選択形ビームスプリッタ15.1B
は波長1.4μm程度に境界波長をもつ長波長パスフィ
ルタ形のビームスプリッタを用いればよい。
Then, on the receiving side, each coherent receiver 401' to 404 passes through another wavelength-selective beam splitter 16.
° will be distributed and introduced. coherent receiver 401'40
4" each has a wavelength controlled semiconductor laser as a local oscillator, and selectively receives light of λ1 to λ4. Also, the WDM method of the feedback path is λ1.
The wavelength of λ0, which is relatively distant from the wavelength of λ1 to λ4, is reflected by the wavelength selective beam splitter 16 and 5 (90" direction change) to separate it from λ1 to λ4. Here, λ1
~ An example of setting λ4 and λ0 is λ. is the wavelength of about L3μm, and 5G1 is the wavelength of λ1 to λ4 and 1.55μm band.
The frequency difference may be set to about 1z (wavelength difference of about 0.5λ). Therefore, wavelength selective beam splitter 15.1B
For this purpose, a long wavelength pass filter type beam splitter having a boundary wavelength of approximately 1.4 μm may be used.

なお、フィードバック径路に波長制御形半導体レーザを
用いる場合、ビームスプリッタを設けずに全てFDM方
式とすることも可能である。この第5図実施例の特徴ど
しては第4図実施例の特徴はもちろん、伝送径路が1本
のファイバであるため伝送線路コス]・が低いことと、
受信側で受信チャネルの切換え即ち伝送チャネルの交換
が可能なことである。これは各受信チャネルでのローカ
ルオシレータ周波数を変化させることが容易に行え、複
数の受信器で1つのチャネル信号を同時受信することも
可能である。つまり第5図実施例においては伝送線路の
可変性と言う大きな特徴をも−)でいる。更にこれは受
信側ローカルオシレータの周波数変化だけでなく送信側
周波数変化でも可能であり、送信チャネルの時分割切り
換え等の伝送も可能となる特徴がある。
Note that when a wavelength-controlled semiconductor laser is used in the feedback path, it is also possible to use the FDM method entirely without providing a beam splitter. The features of this embodiment in FIG. 5 are, of course, the features of the embodiment in FIG. 4, but since the transmission path is one fiber, the transmission line cost is low.
It is possible to switch reception channels, that is, exchange transmission channels, on the receiving side. This can easily be done by changing the local oscillator frequency for each receiving channel, and it is also possible to simultaneously receive one channel signal with multiple receivers. In other words, the embodiment of FIG. 5 also has the major feature of the variable nature of the transmission line. Furthermore, this can be done not only by changing the frequency of the local oscillator on the receiving side but also by changing the frequency on the transmitting side, and has the feature that transmission such as time-division switching of transmission channels is also possible.

[発明の効果] 本発明により1つの受信レベル情報用線路で複数の光チ
ャネルの光出力制御が可能であり、各光チャネル当りの
自動光出力制御器コストは従来技術より格段に低下する
ことができる。
[Effects of the Invention] According to the present invention, it is possible to control the optical output of a plurality of optical channels using one reception level information line, and the cost of an automatic optical output controller for each optical channel can be significantly reduced compared to the conventional technology. can.

また、そのコスト低下は伝送する光チャネル数が多いほ
ど大きく、アレイ化のような複数光チャネルによる光伝
送の効果が大きくなる特徴をもっている。
Furthermore, the cost reduction increases as the number of optical channels to be transmitted increases, and the effect of optical transmission using multiple optical channels such as arraying increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明実施例に関する構成ブロック
図、第6図、第7図は従来技術に関する構成ブロック図
である。 1001〜104)・・・駆動回路 2 (201〜204)、10・・・発光素子3 (3
01〜304) 、 11  ・・光フアイバ4 (4
01〜404)、12・・・受光素子5 (501〜5
05)・・・増幅回路6・・・多重化信号発生器 7・・・同軸線路 8・・・多重化信号復元器
FIGS. 1 to 5 are block diagrams of the configuration of the embodiment of the present invention, and FIGS. 6 and 7 are block diagrams of the configuration of the prior art. 1001-104)...Drive circuit 2 (201-204), 10...Light emitting element 3 (3
01-304), 11...Optical fiber 4 (4
01-404), 12... Light receiving element 5 (501-5
05)... Amplifier circuit 6... Multiplexed signal generator 7... Coaxial line 8... Multiplexed signal restorer

Claims (1)

【特許請求の範囲】[Claims] (1)複数の光チャネルにより信号伝送を行う光伝送装
置からなり、前記複数の光チャネルの各光受信レベルを
検出する複数の光受信部と、前記複数の光チャネルの光
受信ベル情報を多重化して光若しくは電気により前記複
数の光チャネルの光送信側に伝送する光受信レベル情報
伝送手段と、光送信側に伝送された前記光受信レベル情
報に応じて前記複数の光チャネルの送信レベルを制御す
る送信レベル制御部とを有することを特徴とする光伝送
装置。
(1) Consisting of an optical transmission device that transmits signals through a plurality of optical channels, it includes a plurality of optical receivers that detect each optical reception level of the plurality of optical channels, and multiplexes optical reception bell information of the plurality of optical channels. an optical reception level information transmission means for transmitting the optical reception level information to the optical transmission side of the plurality of optical channels by light or electricity; and a transmission level of the plurality of optical channels according to the optical reception level information transmitted to the optical transmission side. 1. An optical transmission device comprising: a transmission level control section for controlling.
JP1166877A 1989-06-30 1989-06-30 Optical transmission device Pending JPH0334633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1166877A JPH0334633A (en) 1989-06-30 1989-06-30 Optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1166877A JPH0334633A (en) 1989-06-30 1989-06-30 Optical transmission device

Publications (1)

Publication Number Publication Date
JPH0334633A true JPH0334633A (en) 1991-02-14

Family

ID=15839280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1166877A Pending JPH0334633A (en) 1989-06-30 1989-06-30 Optical transmission device

Country Status (1)

Country Link
JP (1) JPH0334633A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951323A (en) * 1995-08-08 1997-02-18 Nec Corp Light wavelength multiplex transmitting system
JPH09181681A (en) * 1995-12-22 1997-07-11 Nec Corp Optical communication equipment
WO2000010267A1 (en) * 1998-08-17 2000-02-24 Tsutomu Kimura Optical communication system
JP2012124781A (en) * 2010-12-09 2012-06-28 Fujikura Ltd Data transmission device
JP2020077987A (en) * 2018-11-08 2020-05-21 Kaiフォトニクス株式会社 Optical transmission/reception system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951323A (en) * 1995-08-08 1997-02-18 Nec Corp Light wavelength multiplex transmitting system
JPH09181681A (en) * 1995-12-22 1997-07-11 Nec Corp Optical communication equipment
WO2000010267A1 (en) * 1998-08-17 2000-02-24 Tsutomu Kimura Optical communication system
JP2012124781A (en) * 2010-12-09 2012-06-28 Fujikura Ltd Data transmission device
JP2020077987A (en) * 2018-11-08 2020-05-21 Kaiフォトニクス株式会社 Optical transmission/reception system

Similar Documents

Publication Publication Date Title
US5894362A (en) Optical communication system which determines the spectrum of a wavelength division multiplexed signal and performs various processes in accordance with the determined spectrum
US5612968A (en) Redundant multi-wavelength laser arrays
US10177841B2 (en) Electro-optic transceiver module with wavelength compensation
JPH06224882A (en) Optical fsk receiver and optical fdm-fsk transmission system using the same
US20030030876A1 (en) Optical transmitter, optical receiver and light wavelength multiplexing system
IL124639A (en) Optical communication method and system using wavelength division multiplexing
US5793507A (en) Discretely chirped multiple wavelength optical source for use in a passive optical network telecommunications system
US6542277B2 (en) Optically amplified back-up receiver
US5729369A (en) Method of tracking a plurality of discrete wavelengths of a multifrequency optical signal for use in a passive optical network telecommunications system
KR20140104801A (en) Wavelength division multiplexing optical transmitter and operating method for the same
US20010012146A1 (en) Optical amplifying device
WO2018123122A1 (en) Optical transmitter, optical transceiver, and manufacturing method of optical transmitter
US20030206691A1 (en) High speed data link and transmitter in the mid-infrared wavelength range
CN103314542A (en) Method and arrangement for receiving an optical input signal and transmittning an optical output signal
EP0715429B1 (en) Wavelength control in a WDM system
US5602665A (en) Optical transmitting/receiving apparatus for bidirectional communication systems
JPH0334633A (en) Optical transmission device
EP0591961B1 (en) Fiber optic communication terminal, fiber optic communication system, and its wavelength setting method
CN110677214B (en) Wavelength adjustment method, light emitting module, light receiving module and optical network system
JP2017118052A (en) Wavelength multiplex optical transmitter and control method therefor
US20150295642A1 (en) Optical active cable and optical transmission system
US8086110B2 (en) Optical wavelength division multiplexing (WDM) system including adaptive cross-talk cancellation
EP0751635A2 (en) Supervisory apparatus for wavelength-division-multiplexed optical data communications
US20230254043A1 (en) Optical modulator control system for interconnect transceivers
CN113872699B (en) Light emitting device, method and optical module