JPH0334573A - Silicon carbide field effect transistor - Google Patents

Silicon carbide field effect transistor

Info

Publication number
JPH0334573A
JPH0334573A JP17030489A JP17030489A JPH0334573A JP H0334573 A JPH0334573 A JP H0334573A JP 17030489 A JP17030489 A JP 17030489A JP 17030489 A JP17030489 A JP 17030489A JP H0334573 A JPH0334573 A JP H0334573A
Authority
JP
Japan
Prior art keywords
silicon carbide
film
field effect
effect transistor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17030489A
Other languages
Japanese (ja)
Inventor
Yoshihisa Fujii
藤井 良久
Akira Suzuki
彰 鈴木
Masaki Furukawa
勝紀 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17030489A priority Critical patent/JPH0334573A/en
Publication of JPH0334573A publication Critical patent/JPH0334573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices

Abstract

PURPOSE:To put an electron element for high temperature, high output, and high frequency to practical use by using layers, to which ions of nitrogen are implanted, for the source and drain layers of a MOS type field effect transistor wherein a silicon carbide semiconductor, to which boron is added, is used. CONSTITUTION:A beta type simple silicon carbide single crystalline film 2 7mum thick is formed on a silicon substrate 1 at a substrate temperature of 1350 deg.C by a CVD method using silane and propane. At this time, impurities are not added during growth of a silicon carbide film So as to form a silicon carbide layer to show n-type electric conductivity. Successively, a high resistance silicon carbide film 3, to which boric acid is added, is formed by adding diborane into vapor phase. By oxidizing this substrate for three hours in oxygen atmo sphere at 1000 deg.C, a thermal oxide film 4 50nm thick is formed. Thereon, a polycrystalline silicon film 5 200mum thick is formed at a substrate temperature of 500 deg.C by CVD method. Thereafter, by implanting ions of nitrogen of 3X10<14>cm<-2>, n-type source and drain layers 6 are formed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、炭化珪素半導体を用いたMO5型電界効果ト
ランジスタの素子構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an element structure of an MO5 field effect transistor using a silicon carbide semiconductor.

〈従来の技術〉 炭化珪素は大きなバンドギャップ(2,2−3eV)を
もち、熱的、化学的、機械的に極めて安定であシ、また
電子の飽和移動速度が珪素などの他の半導体に比べて大
きな値をもつため珪素半導体では実現不可能な高温、高
出力、高周波動作用電子素子材料として期待されている
<Prior art> Silicon carbide has a large band gap (2.2-3 eV), is extremely stable thermally, chemically, and mechanically, and has a saturated electron transfer rate that is comparable to that of other semiconductors such as silicon. Because it has a relatively large value, it is expected to be used as an electronic device material for high-temperature, high-output, and high-frequency operation that cannot be achieved with silicon semiconductors.

珪素基板上に化学的気相成長法(CVD法)によυβ型
炭化珪素膜を形成する方法が聞返され(特開昭59−2
03799号)、これによれば安価で入手の容易な珪素
基板上に、工業的量産に適した大面積のβ型炭化珪素単
結晶を形成でき、また成長過程で適当なドーパントを添
加することにより不純物濃度や伝導型を制御することが
可能であシ、炭化珪素を用いた各種半導体素子が開発さ
れている。
A method of forming a υβ type silicon carbide film on a silicon substrate by chemical vapor deposition (CVD) was reported (Japanese Patent Laid-Open No. 59-2
According to this method, a large-area β-type silicon carbide single crystal suitable for industrial mass production can be formed on an inexpensive and easily available silicon substrate, and by adding an appropriate dopant during the growth process. Various semiconductor devices using silicon carbide have been developed because it is possible to control impurity concentration and conductivity type.

MO5型電界効果トランジスタは現在の珪素半導体を用
いた半導体素子において最も重要な構成素子要素となっ
ているが、β型炭化珪素半導体を用いたMO3構造の電
界効果トランジスタが開発されている。
MO5 type field effect transistors are the most important constituent elements in current semiconductor devices using silicon semiconductors, and MO3 field effect transistors using β type silicon carbide semiconductors have been developed.

く本発明が解決しようとする課題〉 炭化珪素半導体を用いたnチャンネル反転型MOS電界
効果トランジスタが開発されているが、チャンネル形成
層をホウ素を添加した高抵抗炭化珪素半導体上に形成す
ることによりチャンネル層を電気的に分離し、漏れ電流
の少ない電界効果トランジスタを形成する方法が開発さ
れている(等開閉61−193158号)。そのような
高抵抗ホウ素添加層を用いた電界効果トランジスタの一
つとして高抵抗p型ホウ素添加層表面に反転層チャンネ
ルを形成するMOS型電界効果トランジスタが開発され
ているが、従来はソース、ドレイン層としてリンをイオ
ン注入した層を用いたものが開発されてきた。良好なM
OS電界効果トランジスタの特性を示すためにはイオン
注入によう形成したソース、ドレイン層とホウ素添加層
との接合の特性が良好なものであること、およびソース
、ドレイン層自身の抵抗は十分中さいことが必要である
。しかし、従来開発されてきた炭化珪素半導体MOS電
界効果トランジスタではこれらの特性が十分良好なもの
が得られてからす、得られた電界効果トランジスタの相
互コンダクタンスの値は十分なものは得られて釦らず、
素子の実用化までには至っていなかった〇 く課題を解決するための手段及び作用〉以上の問題に鑑
み本発明ではホウ素を添加した炭化珪素半導体を用いた
MOS型電界効果トランジスタにおいてそのソース、ド
レイン層として窒素をイオン注入した層を用いることを
特徴とする。
Problems to be Solved by the Present Invention> An n-channel inverted MOS field effect transistor using a silicon carbide semiconductor has been developed, but by forming a channel forming layer on a high-resistance silicon carbide semiconductor doped with boron, A method has been developed to electrically separate the channel layer and form a field effect transistor with low leakage current (Toshitsu Kaishu No. 61-193158). As one field effect transistor using such a high-resistance boron-doped layer, a MOS field-effect transistor has been developed in which an inversion layer channel is formed on the surface of the high-resistance p-type boron-doped layer. A layer using a layer in which phosphorus is ion-implanted has been developed. Good M
In order to exhibit the characteristics of an OS field effect transistor, the characteristics of the junction between the source and drain layers formed by ion implantation and the boron-doped layer must be good, and the resistance of the source and drain layers themselves must be sufficiently medium. It is necessary. However, since the silicon carbide semiconductor MOS field effect transistors that have been developed so far have sufficiently good characteristics, it is difficult to obtain sufficient mutual conductance values for the field effect transistors. No,
In view of the above problems, the present invention provides a MOS field effect transistor using a boron-doped silicon carbide semiconductor whose source, A feature is that a layer into which nitrogen ions are implanted is used as the drain layer.

窒素はリンに比べて炭化珪素半導体中に浅い不純物準位
を形成するので、リンをイオン注入する場合に比べて、
窒素をイオン注入する場合は注入した不純物原子の活性
化率が高く抵抗率の低いイオン注入層を得ることができ
る。またリンに比べて窒素は軽元素であるので、イオン
注入による炭化珪素半導体基板への損傷が少なくイオン
注入層とホウ素添加層との接合の特性も良好なものが得
られている。従ってこれを用いれば良好な特性の炭化珪
素半導体MOS電界効果トランジスタを作製することが
できる。
Nitrogen forms a shallower impurity level in silicon carbide semiconductor than phosphorus, so compared to ion implantation of phosphorus,
When nitrogen is ion-implanted, the activation rate of the implanted impurity atoms is high and an ion-implanted layer with low resistivity can be obtained. Furthermore, since nitrogen is a lighter element than phosphorus, less damage is caused to the silicon carbide semiconductor substrate by ion implantation, and good bonding characteristics between the ion implantation layer and the boron-doped layer are obtained. Therefore, by using this, a silicon carbide semiconductor MOS field effect transistor with good characteristics can be manufactured.

〈実施例〉 以下、本発明について具体的な実施例によシ詳細に説明
する。
<Examples> The present invention will be described in detail below using specific examples.

ホウ素を添加した高抵抗p製炭化珪素を用いたnチャン
ネル反転型MOS電界効果トランジスタの作製例を説明
する。第1図に示すように珪素基板1の上に厚さ7μ九
のβ型炭化珪素単結晶膜2をシラン(SIH4)とプロ
パン(CsHs)を用いたCVD法によシ基板温度13
50℃で形成する。このとき炭化珪素膜成長中には不純
物は添加せずn型の電気伝導を示す炭化珪素層を形成す
る。
An example of manufacturing an n-channel inversion type MOS field effect transistor using high-resistance p-type silicon carbide doped with boron will be described. As shown in FIG. 1, a β-type silicon carbide single crystal film 2 with a thickness of 7μ9 is formed on a silicon substrate 1 by CVD using silane (SIH4) and propane (CsHs) at a substrate temperature of 13.
Form at 50°C. At this time, no impurities are added during the growth of the silicon carbide film to form a silicon carbide layer exhibiting n-type electrical conductivity.

引き続いてジボラン(B2Hs)を気相中に添加するこ
とによシホウ素を添加した高抵抗炭化珪素膜3を形成す
る。ここでは、lXl0  C11のキャリア密度をも
つ抵抗率100ΩGのp製炭化珪素膜を用いた。この基
板を酸素雰囲気中1100℃で3時間熱酸化を行うこと
によj) 50 nmの厚さの熱酸化膜4を形成する。
Subsequently, diborane (B2Hs) is added into the gas phase to form a boron-doped high-resistance silicon carbide film 3. Here, a p-type silicon carbide film with a carrier density of 1X10 C11 and a resistivity of 100 ΩG was used. By thermally oxidizing this substrate at 1100° C. for 3 hours in an oxygen atmosphere, a thermal oxide film 4 with a thickness of 50 nm is formed.

その上にCVD法によシ基板温度600℃で200 n
mの厚さの多結晶珪素膜5を形成する。この後、多結晶
珪素中にリンを1050℃で15分間熱拡散することに
よシ低抵抗の多結晶珪素膜とする。レジストを塗布しフ
ォトリソグラフィによシ長さ10μ九のゲートをエツチ
ングによシ形成する。その後、窒素を3X 10 ”C
11−”  イオン注入することにょυn型のソース、
ドレイン層6を形成する。レジストを除去した後110
0℃で30分間アルゴン雰囲気中で熱処理を行い窒素注
入イオンの活性化を行い、ソース、ドレイン、ゲート上
に配線材料としてアルミ=ウム7を真空蒸着することに
ようβ型炭化珪素半導体を用いたnチャンネル反転型M
OS電界効果トランジスタが形成できる。
On top of that, a CVD method was applied for 200 nm at a substrate temperature of 600°C.
A polycrystalline silicon film 5 having a thickness of m is formed. Thereafter, phosphorus is thermally diffused into the polycrystalline silicon at 1050° C. for 15 minutes to form a low-resistance polycrystalline silicon film. A resist is applied and a gate having a length of 10 μ9 is formed by photolithography and etching. Then add nitrogen to 3X 10”C
11-” υn type source for ion implantation,
A drain layer 6 is formed. After removing the resist 110
Heat treatment was performed in an argon atmosphere at 0°C for 30 minutes to activate the nitrogen implanted ions, and aluminum 7 was vacuum-deposited as a wiring material on the source, drain, and gate using a β-type silicon carbide semiconductor. n-channel inverted type M
An OS field effect transistor can be formed.

第2図に本実施例によう形成した炭化珪素半導体MOS
電界効果トランジスタ(図中(a))と従来のソース、
ドレインaをリンをイオン注入することによυ形成した
炭化珪素半導体MOS電界効果トランジスタ(図中(b
))の特性とを比較して示す。
Figure 2 shows a silicon carbide semiconductor MOS formed as in this example.
Field effect transistor ((a) in the figure) and conventional source,
A silicon carbide semiconductor MOS field effect transistor whose drain a is formed by ion-implanting phosphorus ((b) in the figure)
)).

ゲート電圧が5vにおける相互コンダクタンスの値は従
来の電界効果トランジスタで0.4 mS/mm。
The value of mutual conductance at a gate voltage of 5V is 0.4 mS/mm for a conventional field effect transistor.

本実施例による電界効果トランジスタで1.5mS/m
mであった。従来のリンをイオン注入した層を用いたも
のに比べて、本実施例による窒素をイオン注入した層を
用いることによシ相互コンダクタンスの値のよシ大きな
良好な特性を示すMO5電界効果トランジスタを形成す
ることができた。
1.5 mS/m in the field effect transistor according to this example
It was m. By using the layer implanted with nitrogen ions according to this embodiment, an MO5 field effect transistor exhibiting better characteristics with a larger mutual conductance value than a conventional layer implanted with phosphorous ions was obtained. was able to form.

〈発明の効果〉 本発明によル良好な特性を示す炭化珪素電界効果トラン
ジスタを形成することができるようになるため炭化珪素
半導体を用いた各種の半導体素子への応用が飛躍的に進
むことになυ、珪素などの他の半導体素子への応用が飛
躍的に進むことにな9、珪素などの他の半導体では実現
不可能な高温、高出力、高周波用電子素子の実用化が可
能となる。
<Effects of the Invention> Since the present invention makes it possible to form a silicon carbide field effect transistor exhibiting good characteristics, the application of silicon carbide semiconductors to various semiconductor devices will progress dramatically. υ, its application to other semiconductor devices such as silicon will progress dramatically9, making it possible to put into practical use high-temperature, high-output, and high-frequency electronic devices that are impossible to achieve with other semiconductors such as silicon. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図(a)
は本実施例によるドレイン電流−ドレイン電圧特性図、
第2図(b)は従来例によるドレイン電流−ドレイン電
圧特性図である。 1:珪素基板  2:n型炭化珪素単結晶膜3ニホウ素
添加p型炭化珪素単結晶膜 4:熱酸化膜  5ニリンを添加した多結晶珪素膜  
6:イオン注入ソース、ドレイン電流 ニアルミニウム配線層
Figure 1 is a sectional view showing one embodiment of the present invention, Figure 2 (a)
is a drain current-drain voltage characteristic diagram according to this embodiment,
FIG. 2(b) is a drain current-drain voltage characteristic diagram according to a conventional example. 1: Silicon substrate 2: N-type silicon carbide single crystal film 3 Niboron-doped p-type silicon carbide single crystal film 4: Thermal oxide film 5 Niphosphorus-doped polycrystalline silicon film
6: Ion implantation source and drain current NiAluminum wiring layer

Claims (1)

【特許請求の範囲】 1、炭化珪素半導体を用いたMOS(Metal−Ox
ide−Semiconductor)型電界効果トラ
ンジスタであって、 ホウ素を添加した炭化珪素半導体からなるチャネル形成
層と、 窒素イオンをイオン注入した層からなるソース、ドレイ
ン層を備えたことを特徴とする炭化珪素電界効果トラン
ジスタ。
[Claims] 1. MOS (Metal-Ox) using silicon carbide semiconductor
IDE-Semiconductor) type field effect transistor, which is characterized by having a channel forming layer made of a silicon carbide semiconductor doped with boron, and source and drain layers made of layers implanted with nitrogen ions. effect transistor.
JP17030489A 1989-06-30 1989-06-30 Silicon carbide field effect transistor Pending JPH0334573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17030489A JPH0334573A (en) 1989-06-30 1989-06-30 Silicon carbide field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17030489A JPH0334573A (en) 1989-06-30 1989-06-30 Silicon carbide field effect transistor

Publications (1)

Publication Number Publication Date
JPH0334573A true JPH0334573A (en) 1991-02-14

Family

ID=15902488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17030489A Pending JPH0334573A (en) 1989-06-30 1989-06-30 Silicon carbide field effect transistor

Country Status (1)

Country Link
JP (1) JPH0334573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024055A1 (en) * 1994-03-04 1995-09-08 Siemens Aktiengesellschaft Silicon carbide-based mis structure with high latch-up resistance
KR100271106B1 (en) * 1992-11-24 2000-11-01 크리 인코포레이티드 Power mosfet in silicon carbide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100271106B1 (en) * 1992-11-24 2000-11-01 크리 인코포레이티드 Power mosfet in silicon carbide
WO1995024055A1 (en) * 1994-03-04 1995-09-08 Siemens Aktiengesellschaft Silicon carbide-based mis structure with high latch-up resistance

Similar Documents

Publication Publication Date Title
JP2542448B2 (en) Field effect transistor and method of manufacturing the same
US6197701B1 (en) Lightly nitridation surface for preparing thin-gate oxides
CN109727846B (en) Method for preparing two-dimensional molybdenum telluride in-plane heterojunction with metal phase in contact with semiconductor in large area and application
JPH0766971B2 (en) Silicon carbide semiconductor device
JPS61159768A (en) Manufacture of field effect transistor
JPS5856409A (en) Production of semiconductor device
JPS5897877A (en) Thin film mos phototransistor, method of producing same and driving method
JPH10261588A (en) Semiconductor device
JP3313432B2 (en) Semiconductor device and manufacturing method thereof
US20070096107A1 (en) Semiconductor devices with dielectric layers and methods of fabricating same
JPH0334573A (en) Silicon carbide field effect transistor
JP3949192B2 (en) Method for manufacturing diamond semiconductor device
JP2005175254A (en) Doping method and semiconductor element using the same
Tsui et al. Degradation mechanism of Ge N+-P shallow junction with thin GeSn surface layer
JPH0770726B2 (en) Field effect transistor using silicon carbide
JPH03209834A (en) Manufacture of mis semiconductor device
JPH05259075A (en) Manufacture of semiconductor device
JPH02203564A (en) Silicon carbide semiconductor device
JP3493860B2 (en) Vertical field-effect transistor
JPH06224416A (en) Mos field effect transistor and its manufacture, and semiconductor device using mos field effect transistor
CN117238758A (en) Method for passivating SiC MOS interface defects by sacrificial oxidation NANO-P doping EPI
JP3153202B2 (en) Method for manufacturing semiconductor device
JPH03200319A (en) Formation of poly-crystalline silicon
JP2635086B2 (en) Method for manufacturing semiconductor device
Ohkawa et al. Highly reliable gate oxidation using catalytic water vapor generator (WVG) for MOS device fabrication