JPH0334495B2 - - Google Patents

Info

Publication number
JPH0334495B2
JPH0334495B2 JP58128155A JP12815583A JPH0334495B2 JP H0334495 B2 JPH0334495 B2 JP H0334495B2 JP 58128155 A JP58128155 A JP 58128155A JP 12815583 A JP12815583 A JP 12815583A JP H0334495 B2 JPH0334495 B2 JP H0334495B2
Authority
JP
Japan
Prior art keywords
polyethylene
extruder
foam
added
lewis acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58128155A
Other languages
Japanese (ja)
Other versions
JPS6019520A (en
Inventor
Tomoo Shiobara
Kenji Shirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP58128155A priority Critical patent/JPS6019520A/en
Publication of JPS6019520A publication Critical patent/JPS6019520A/en
Publication of JPH0334495B2 publication Critical patent/JPH0334495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2096/00Use of specified macromolecular materials not provided for in a single one of main groups B29K2001/00 - B29K2095/00, as moulding material
    • B29K2096/02Graft polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised

Landscapes

  • Molding Of Porous Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明はポリエチレン架橋発泡体の製造方法に
関する。 従来より、ポリエチレン架橋発泡体を製造する
方法として、ポリエチレンペレツトにビニルアル
コキシシランをクラフトさせたビニルアルコキシ
シラングラフトポリエチレンに、シブチルスズジ
ラウレート等のシラノール縮合用触媒を混合しさ
らに熱分解発泡剤等の発泡剤を加えて押出機等で
成形し、得られた成形物を熱水等で処理してシラ
ノール縮合を行いながら加熱して発泡体を製造す
ることが行われているが、ビニルアルコキシシラ
ンをポリエチレンにグラフトさせる工程や発泡性
成形物をシラノール縮合させる工程を要し、発泡
体の製造工程が複雑である。 本発明はより簡便にアルコキシシランがグラフ
トしたポリエチレンが用いられたポリエチレン架
橋発泡体を製造する方法を提供することを目的と
してなされたものであり、その要旨はルイス酸が
付加したビニルアルコキシシラン及びラジカル発
生剤をポリエチレンに混合した混合物を押出機に
供給して加熱溶融し、該押出機の途中から加熱溶
融されたポリエチレン混合物中に発泡剤を圧入
し、押出機内で混練した発泡性組成物を低圧領域
に押出すことを特徴とするポリエチレン架橋発泡
体の製造方法に存する。 本発明において用いられるビニルアルコキシシ
ランとは、ビニル基及び少なくとも1個のアルコ
キシ基が1個のケイ素原子に結合した構造のシラ
ン系化合物を指し、本発明に用いられて好適なも
のとしては、ビニルトリメトキシシラン、ビニル
トリエトキシシラン、ビニルトリス2−メトキシ
エトキシシラン、ビニルメチルジエトキシシラ
ン、ビニルトリフエノキシシラン、トリビニルエ
トキシシラン等が挙げられる。又、本発明に用い
られるルイス酸とは、広義のルイス酸のうち分子
中に遊離し得る水素を含まないものを脂し、例え
ばBF3、BF3.O(−C2H52、Alcl3、Zncl2、Fecl3
Sncl4、Ticl4等が挙げられる。 上記の様なルイス酸はビニルアルコキシシラン
のアルコキシ基の酸素位置に付加する性質を有し
ており、ルイス酸付加のビニルアルコキシシラン
を用意するには、例えば常態液状のビニルアルコ
キシシランに、ガス状、液状若しくは固体状のル
イス酸を適宜な方法で加え合せて均一に撹拌する
ことにより、常温下においても両者の反応が進行
し、容易に上記付加物が生成する。なお、ビニル
アルコキシシランに付加するルイス酸の量は、該
シラン1モルに対し1/10〜1/4モルの範囲で、本
発明の効果を十分奏し得る。そして、該付加物の
生成の確認は、上記による反応生成物の核磁気共
鳴吸収(NMR)又は赤外線スペクトル吸収
(IR)の測定を行い、NMRにおいてはビニル基
水素の吸収に変化がないがアルコキシ基の水素の
吸収位置が移動していること、IRにおいてはSi
−O結合の吸収波長が移動していることを検出す
ることにより行うことが出来る。 次にラジカル発生剤としてはベンゾイルパーオ
キサイド、ジクミルパーオキサイド等の有料過酸
化物を用いることが出来、通常ろポリエチレンの
溶融温度で分解してラジカルを発生するものが好
適に用いられる。 本発明にもとづいてポリエチレン架橋発泡体を
製造するには、上記で用意したルイス酸が付加し
たビニルアルコキシシラン及びラジカル発生剤を
ポリエチレンに混合し、この混合物を押出機に供
給して加熱溶融し、押出機の途中から上記により
加熱溶融されたポリエチレン混合物中に発泡剤を
圧入し、押出機内で混練した発泡性組成物を大気
等の低圧領域に押出せばよいが、その際のラジカ
ル発生剤の使用量は、使用したビニルアルコキシ
シラン100重量部に対し0.1〜10重量部となる範囲
とするのがよく、又、ポリエチレン100重量部に
対するビニルアルコキシシランの使用量が0.5〜
5重量部となる量的範囲で、ポリエチレンにルイ
ス酸付加ビニルアルコキシシランを適用するのが
好ましい。なお、発泡剤としては押出機内で分解
してガスを発生する分解型発泡剤を使用すること
も可能であるがフレオンガスその他の揮発性発泡
剤を使用するのが好適である。 かくして得られるポリエチレン発泡体は、押
出・発泡された時点ですでに架橋されており、発
泡成形後1日間程度大気中に放置しておくとさら
に架橋が進行し、実用上問題がない程度の架橋度
のものとなるので、従来における様なシラン架橋
を行うための熱水処理等の操作は特に行わずとも
よい。ただし、必要に応じて熱水処理等の操作を
行えばさらに架橋度を短時間のうちに高めること
が出来る。 この様に本発明方法によれば、ポリエチレンに
ルイス酸が付加したビニルアルコキシシラン及び
ラジカル発生剤を混合したものを押出機により加
熱・溶融して押出発泡成形することにより一挙に
架橋されたポリエチレン発泡体を得ることが出来
るのであるが、これはルイス酸付加のビニルアル
コキシシランがポリエチレンに対し極めて高いグ
ラフト重合性を有しているため、ラジカル発生剤
の作用によつてこれらが押出機中で加熱・溶融さ
れる際に、該ルイス酸付加ビニルアルコキシシラ
ンがポリエチレンにグラフト重合し、さらに発泡
成形時の加熱によつて活性化されているクラフト
されたルイス酸付加ビニルアルコキシシランが樹
脂中に存在する微量の水分によりシラノール縮合
反応を開始し、この反応が発泡成形中若しくは発
泡成形直後の短い期間に連鎖的に波及し、それに
よつてポリエチレン発泡体の架橋が行われるもの
とし推測される。本発明ポリエチレン架橋発泡体
の製造方法は上述の通りの方法であり、とくにル
イス酸が付加したビニルアルコキシシラン及びラ
ジカル発生剤をポリエチレンに混合した混合物を
押出機に供給して加熱し、該押出機の途中から加
熱溶融されたポリエチレン混合物中に発泡剤を圧
入し、押出機内で混練した発泡性組成物を低圧領
域に押出すことを特徴とするものであるから、極
めて簡略化された工程で耐熱性等にすぐれた高品
質の架橋されたポリエチレン発泡体を製造するこ
とが出来るのである。 次に本発明を実施例にもとづいて説明する。 なお、以下において部とあるのは重量部を意味
する。 実施例 ビニルトリメトキシシランにルイス酸として、
BF3・O(−C2H52をビニルシラン1モルに対し
1/8モルの割合で滴下しながら加えて撹拌・溶解
し、60℃加温バス中で減圧下で未反応物及び遊離
物質を除去してビニルトリメトキシシランの
BF3・O(−C2H52付加物を用意した。 なお、上記付加物生成の確認は、反応生成物を
NMR及びIRにかけ、NMRにおいてはビニル基
の水素の位置が不要であるがメトキシ基の水素の
位置が移置していること、IRにおいてはSi−O
結合の吸収波長がシフトしていることをそれぞれ
確めることにより行つた。 上記付加物に、該付加物1部当り0.05部の割合
でジクミルバーオキサイドを加えて溶解させ、こ
れをポリエチレンペレツト100部に対し、ビニル
トリメトキシシランの使用量が1部又は2部とな
る量的比率で加え、さらにタルクを1部加えて混
合し、スクリユー径65mm、L/D=30の押出機に
供給し、押出機内で180〜200℃の温度で加熱混練
しながら、押出機の途中からフオレンガスを圧入
しながら約110℃に冷却された金型を通じてシト
状に押出し、発泡倍率約30倍、厚さ約40mmの発泡
シートを作成した。(実験No.1、2) 又、比較のために、上記で用いたのと同じポリ
エチレンペレツト100部に対し、ビニルトリメト
キシシラン1部、ジクミルパーオキサイド0.05部
及びタルク1部を加えた混合物、及び上記で用い
たのと同じポリエチレンペレツト100部に対し、
ビニルトリメトキシシラン1部、ジクミルバーオ
キサイド0.05部、タルク1部及び水架橋触媒(ジ
ブチルスズジラウレート)0.01部を加えた混合物
の夫々について、押出機に供給し、以下上記実施
例と同じ条件で発泡押出を行い発泡シートを作成
した。(実験No.3、4) かくして作成された発泡シートにつき架橋ゲル
率を、製造直後のもの、製造後室温で1日間放置
のもの、製造後60℃熱水に1日間浸漬したもの及
び同上で1ケ月放置後のものについて測定し、
又、得られた発泡体を120℃で1週間放置した際
の体積維持率を測定した所、第1表に示される通
りであつた。 なお、架橋ゲル分率は、試料片を120℃のキシ
レンで24時間抽出し、抽出されなかつた樹脂分の
試料片に対する重量比率を%で表示したものであ
る。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing crosslinked polyethylene foam. Conventionally, as a method for producing crosslinked polyethylene foam, a silanol condensation catalyst such as sibutyltin dilaurate is mixed with vinylalkoxysilane-grafted polyethylene, which is obtained by crafting vinylalkoxysilane into polyethylene pellets, and then a pyrolytic blowing agent or the like is added. Foams are produced by adding a blowing agent and molding using an extruder, etc., and then treating the resulting molded product with hot water, etc., and heating it while performing silanol condensation. The manufacturing process of the foam is complicated, as it requires a step of grafting onto polyethylene and a step of condensing the foamable molded product with silanol. The present invention was made for the purpose of providing a method for easily producing a polyethylene crosslinked foam using polyethylene grafted with alkoxysilane, and the gist thereof is to provide a method for manufacturing a polyethylene crosslinked foam using polyethylene grafted with a Lewis acid, and the gist thereof is to provide a method for manufacturing a polyethylene crosslinked foam using polyethylene grafted with a Lewis acid. A mixture of a generating agent mixed with polyethylene is supplied to an extruder and heated and melted, a blowing agent is press-fitted into the heated and melted polyethylene mixture from the middle of the extruder, and the foamable composition kneaded in the extruder is heated under low pressure. The present invention relates to a method for producing a crosslinked polyethylene foam, which comprises extruding it into a polyethylene foam. The vinyl alkoxysilane used in the present invention refers to a silane compound having a structure in which a vinyl group and at least one alkoxy group are bonded to one silicon atom. Examples include trimethoxysilane, vinyltriethoxysilane, vinyltris-2-methoxyethoxysilane, vinylmethyldiethoxysilane, vinyltriphenoxysilane, and trivinylethoxysilane. Further, the Lewis acids used in the present invention refer to Lewis acids in a broad sense that do not contain free hydrogen in the molecule, such as BF 3 , BF 3 .O(-C 2 H 5 ) 2 , Alcl 3 , Zncl 2 , Fecl 3 ,
Examples include Sncl 4 and Ticl 4 . The above-mentioned Lewis acids have the property of adding to the oxygen position of the alkoxy group of vinylalkoxysilane, and in order to prepare vinylalkoxysilane added with a Lewis acid, for example, normally liquid vinylalkoxysilane is added to the gaseous state. By adding , liquid or solid Lewis acid by an appropriate method and stirring uniformly, the reaction between the two proceeds even at room temperature, and the above adduct is easily produced. The effects of the present invention can be sufficiently exerted when the amount of Lewis acid added to the vinyl alkoxysilane is in the range of 1/10 to 1/4 mole per mole of the silane. The formation of the adduct can be confirmed by measuring nuclear magnetic resonance absorption (NMR) or infrared spectral absorption (IR) of the reaction product as described above. In NMR, there is no change in absorption of vinyl group hydrogen, but alkoxy The hydrogen absorption position of the group has moved, and in IR, Si
This can be done by detecting that the absorption wavelength of the -O bond is shifting. Next, as the radical generator, paid peroxides such as benzoyl peroxide and dicumyl peroxide can be used, and those which decompose at the melting temperature of the filtered polyethylene to generate radicals are preferably used. To produce a crosslinked polyethylene foam according to the present invention, the Lewis acid-added vinyl alkoxysilane prepared above and a radical generator are mixed with polyethylene, and this mixture is fed to an extruder and melted by heating. The foaming agent may be injected into the polyethylene mixture heated and melted as described above from the middle of the extruder, and the foamable composition kneaded in the extruder may be extruded into a low pressure region such as the atmosphere. The amount used is preferably 0.1 to 10 parts by weight per 100 parts by weight of the vinylalkoxysilane used, and the amount of vinylalkoxysilane used is 0.5 to 10 parts by weight per 100 parts by weight of polyethylene.
It is preferable to apply Lewis acid-added vinyl alkoxysilane to polyethylene in a quantitative range of 5 parts by weight. As the blowing agent, it is possible to use a decomposable blowing agent that decomposes in the extruder to generate gas, but it is preferable to use Freon gas or other volatile blowing agents. The polyethylene foam obtained in this way is already crosslinked when it is extruded and foamed, and if it is left in the air for about a day after foam molding, the crosslinking will progress further, and the crosslinking will not cause any practical problems. Therefore, there is no need to carry out operations such as hot water treatment for silane crosslinking as in conventional methods. However, if necessary, the degree of crosslinking can be further increased in a short time by performing operations such as hot water treatment. As described above, according to the method of the present invention, polyethylene foam is crosslinked at once by heating and melting a mixture of polyethylene, vinyl alkoxysilane to which a Lewis acid has been added, and a radical generator and extrusion foam molding. This is because the Lewis acid-added vinyl alkoxysilane has extremely high graft polymerizability to polyethylene, so it is heated in the extruder by the action of a radical generator.・When melted, the Lewis acid-added vinyl alkoxysilane is graft-polymerized to polyethylene, and a crafted Lewis acid-added vinyl alkoxysilane that is activated by heating during foam molding is present in the resin. It is presumed that a trace amount of moisture initiates a silanol condensation reaction, and this reaction spreads in a chain reaction during or immediately after foam molding, thereby causing crosslinking of the polyethylene foam. The method for producing the crosslinked polyethylene foam of the present invention is as described above, in particular, a mixture of polyethylene mixed with vinyl alkoxysilane to which a Lewis acid has been added and a radical generator is supplied to an extruder and heated. The process is characterized by injecting a foaming agent into the heated and melted polyethylene mixture midway through the process, and extruding the foamable composition kneaded in an extruder into a low-pressure region. This makes it possible to produce high-quality crosslinked polyethylene foam with excellent properties. Next, the present invention will be explained based on examples. In addition, in the following, parts mean parts by weight. Example Vinyltrimethoxysilane as a Lewis acid,
BF3.O ( -C2H5 ) 2 was added dropwise at a ratio of 1/8 mole to 1 mole of vinylsilane, stirred and dissolved, and unreacted and free substances were removed under reduced pressure in a 60℃ heating bath. Remove the substance and remove vinyltrimethoxysilane.
A BF3.O ( -C2H5 ) 2 adduct was prepared. The above adduct formation can be confirmed by checking the reaction product.
When subjected to NMR and IR, the hydrogen position of the vinyl group was unnecessary in NMR, but the hydrogen position of the methoxy group was shifted, and in IR it was found that the hydrogen position of the vinyl group was shifted, and in the IR
This was done by confirming that the absorption wavelength of each bond was shifted. Dicumyl peroxide is added and dissolved in the above adduct at a ratio of 0.05 part per part of the adduct, and the amount of vinyltrimethoxysilane used is 1 part or 2 parts per 100 parts of polyethylene pellets. 1 part of talc was added and mixed, and then fed to an extruder with a screw diameter of 65 mm and L/D = 30. A foam sheet with an expansion ratio of approximately 30 times and a thickness of approximately 40 mm was created by extruding it into a sheet through a mold cooled to approximately 110°C while injecting fluorene gas into the middle of the process. (Experiment Nos. 1 and 2) For comparison, 1 part of vinyltrimethoxysilane, 0.05 part of dicumyl peroxide, and 1 part of talc were added to 100 parts of the same polyethylene pellets used above. mixture and for 100 parts of the same polyethylene pellets used above,
A mixture containing 1 part of vinyltrimethoxysilane, 0.05 part of dicumyl peroxide, 1 part of talc, and 0.01 part of a water-crosslinking catalyst (dibutyltin dilaurate) was supplied to an extruder and foamed under the same conditions as in the above example. Extrusion was performed to create a foamed sheet. (Experiment Nos. 3 and 4) The cross-linked gel percentage of the foamed sheets thus created was determined for those immediately after production, those left at room temperature for one day after production, those immersed in hot water at 60°C for one day after production, and those same as above. Measured after leaving it for one month,
Further, the volume retention rate of the obtained foam was measured when it was left at 120° C. for one week, and the results were as shown in Table 1. Note that the crosslinked gel fraction is the weight ratio of the unextracted resin to the sample piece after extracting the sample piece with xylene at 120° C. for 24 hours, expressed in %. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ルイス酸が付加したビニルアルコキシシラン
及びラジカル発生剤をポリエチレンに混合した混
合物を押出機に供給して加熱溶融し、該押出機の
途中から加熱溶融されたポリエチレン混合物中に
発泡剤を圧入し、押出機内で混練した発泡性組成
物を低圧領域に押出すことを特徴とするポリエチ
レン架橋発泡体の製造方法。
1. A mixture of vinyl alkoxysilane to which a Lewis acid has been added and a radical generator mixed with polyethylene is supplied to an extruder and heated and melted, and a blowing agent is pressurized into the heated and melted polyethylene mixture from the middle of the extruder, A method for producing a crosslinked polyethylene foam, which comprises extruding a foamable composition kneaded in an extruder into a low pressure region.
JP58128155A 1983-07-13 1983-07-13 Preparation of polyethylene crosslinked foamed body Granted JPS6019520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58128155A JPS6019520A (en) 1983-07-13 1983-07-13 Preparation of polyethylene crosslinked foamed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58128155A JPS6019520A (en) 1983-07-13 1983-07-13 Preparation of polyethylene crosslinked foamed body

Publications (2)

Publication Number Publication Date
JPS6019520A JPS6019520A (en) 1985-01-31
JPH0334495B2 true JPH0334495B2 (en) 1991-05-22

Family

ID=14977740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58128155A Granted JPS6019520A (en) 1983-07-13 1983-07-13 Preparation of polyethylene crosslinked foamed body

Country Status (1)

Country Link
JP (1) JPS6019520A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581050B2 (en) * 1986-12-01 1997-02-12 日本電気株式会社 Voice analysis and synthesis device
CN106604954B (en) * 2014-08-28 2021-02-12 陶氏环球技术有限责任公司 Foamed peroxide modified linear low density polyethylene composition and process for producing foamed composition thereof

Also Published As

Publication number Publication date
JPS6019520A (en) 1985-01-31

Similar Documents

Publication Publication Date Title
US4247667A (en) Method of crosslinking poly-α-olefin series resins
WO1998002483A1 (en) Cross-linked foamable compositions of silane-grafted, essentially linear polyolefins blended with polypropylene
US4762860A (en) Alcohol control of lightly crosslinked foamed polymer production
JPS5861129A (en) Preparation of foam
JPH08176332A (en) Cross linked foam structure of linear polyolefin and its production
JPH062839B2 (en) Method for producing polymer foam
DE2310040B2 (en) Foamable polymer compositions
JPH0334495B2 (en)
JPH0373577B2 (en)
JPH0447688B2 (en)
JPS5818921B2 (en) Method for producing silane-modified propylene polymer
JPS6234243B2 (en)
JPH0320417B2 (en)
JPH0231727B2 (en)
JPS596215B2 (en) Method for manufacturing heat-shrinkable polyethylene moldings
JPH04153235A (en) Production of silane-grafted polyethylene foam
JPS5882735A (en) Manufacture of crosslinked polyolefin hollow body
JPS58134131A (en) Crosslinkable and expandable propylene type resin composition
JPH0280436A (en) Production of crosslinked olefin resin foam
JPH058279A (en) Preparation of polyethylene foam
JPS60262829A (en) Production of heat-shrinkable polyolefin tube
JPS6058251B2 (en) Method for producing silane crosslinked polyolefin molded product
JPS5831100B2 (en) Manufacturing method of polyolefin resin foam
JPS6084346A (en) Cross-linkable polyolefin resin composition
JPH04311730A (en) Production of silane-crosslinked polyolefin molded product