JPS6234243B2 - - Google Patents

Info

Publication number
JPS6234243B2
JPS6234243B2 JP8147280A JP8147280A JPS6234243B2 JP S6234243 B2 JPS6234243 B2 JP S6234243B2 JP 8147280 A JP8147280 A JP 8147280A JP 8147280 A JP8147280 A JP 8147280A JP S6234243 B2 JPS6234243 B2 JP S6234243B2
Authority
JP
Japan
Prior art keywords
chlorinated polyethylene
group
carbon atoms
graftomer
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8147280A
Other languages
Japanese (ja)
Other versions
JPS578203A (en
Inventor
Hideo Sunatsuka
Yasusada Sekiguchi
Ikuo Fujimoto
Masaki Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP8147280A priority Critical patent/JPS578203A/en
Publication of JPS578203A publication Critical patent/JPS578203A/en
Publication of JPS6234243B2 publication Critical patent/JPS6234243B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、塩素化ポリエチレンの架橋方法に関
するものである。 塩素化ポリエチレンを架橋する方法として、従
来から有機過酸化物による方法が知られている。 しかし、この従来より広く実施されている方法
は、架橋するのに100℃以上の高温を必要とし、
常温、常圧下では必要とする架極物を得ることが
できない。例えば有機過酸化物で一般に良く使用
されているデイクミルパーオキサイドによる加硫
法では、優れた加硫促進剤を併用しても、プレス
加硫の場合150℃で30〜60分間加熱する必要があ
る。また蒸気加硫の場合には連続加硫機を用い、
押出し成形されたものを加硫管に導き、高温、高
圧蒸気によつて加熱し、加硫を行つている。或い
は押出し成形した上にテープ又は鉛を被せて加硫
釜の中に入れて、直接高温、高圧蒸気を導入し加
硫を行つている。 このように従来の加硫法ではいずれにしても加
熱を必要とするため電熱や高温、高圧蒸気等、多
くの熱エネルギーが消費されるという欠点があ
る。さらにこれら従来の加硫のためには、加熱プ
レス、連続加硫機、加硫釜等特別な製造設備が必
要となり設備費がかかるという欠点がある。 本発明は、従来のこのような欠点を解消するた
めになされたもので、特にその目的とするところ
は、常温、常圧下では塩素化ポリエチレンを架橋
できる方法を提供することにある。 かかる目的を達成する本発明の特徴は、アミノ
基含有のアミノ有機シラン化合物と塩素化ポリエ
チレンとを反応させて架橋可能な塩素化ポリエチ
レン、所謂塩素化ポリエチレンのシラングラフト
マーを作り、このシラングラフトマーをシラノー
ル縮合触媒の存在下で水分と接触させることによ
り架橋させる塩素化ポリエチレンの架橋方法にあ
る。 前記アミノ有機シラン化合物は、 一般式 RR′oSiX3-o (但し、式中Rは硅素対炭素結合を介して硅素と
結合し、20個以下の炭素原子を有する有機基であ
り、該R基は炭素、水素、窒素および場合により
酸素で構成されかつ少なくとも1個のアミノ基を
含み、R′は1ないし9個の炭素原子を有する1
価の炭化水素基であり、Xは1ないし6個の炭素
原子を有するアルコキシ、又はアルコキシアルコ
キシ基あるいは炭素原子14個以下のオキシム基で
あり、nは0または1である)で表わされ、より
具体的には前記のようにRは有機基であつて少な
くとも1個のアミノ基を含有する。このアミノ基
には第一、第二及び第三アミノが含有されかつイ
ミノも包含される。それ故にR基の例としては、
−(CH23NHCH2CH2NH2、−
(CH24NHCH2CH2NH2、−
(CH23NHCH2CH2NHCH2CH2NH2、−
CH2CHCH3CH2NH(CH26NH2、−(CH23NH2
−(CH24NHCH3、−(CH211NH2、−NHSi
(CH33、−(CH23NHCH2CH2NHCO・NH2、及び
The present invention relates to a method for crosslinking chlorinated polyethylene. As a method for crosslinking chlorinated polyethylene, a method using an organic peroxide is conventionally known. However, this conventionally widely practiced method requires high temperatures of 100°C or more for crosslinking.
The required cross-pole cannot be obtained at normal temperature and pressure. For example, in the vulcanization method using Deikmil peroxide, which is commonly used as an organic peroxide, even if an excellent vulcanization accelerator is used, press vulcanization requires heating at 150℃ for 30 to 60 minutes. be. In the case of steam vulcanization, a continuous vulcanizer is used,
The extruded product is introduced into a vulcanization tube and heated with high-temperature, high-pressure steam to perform vulcanization. Alternatively, the material is extruded, covered with tape or lead, placed in a vulcanization pot, and vulcanized by directly introducing high-temperature, high-pressure steam. As described above, conventional vulcanization methods require heating in any case, and therefore have the disadvantage that a large amount of thermal energy, such as electric heating, high temperature, and high pressure steam, is consumed. Furthermore, these conventional vulcanization methods require special manufacturing equipment such as a hot press, a continuous vulcanizer, and a vulcanizing pot, resulting in high equipment costs. The present invention has been made to overcome these conventional drawbacks, and its particular purpose is to provide a method that can crosslink chlorinated polyethylene at room temperature and under normal pressure. A feature of the present invention that achieves this object is to react an amino group-containing aminoorganosilane compound with chlorinated polyethylene to produce a crosslinkable chlorinated polyethylene, a so-called chlorinated polyethylene silane graftomer. A method for crosslinking chlorinated polyethylene by contacting it with moisture in the presence of a silanol condensation catalyst. The aminoorganosilane compound has the general formula RR′ o SiX 3-o (wherein R is an organic group bonded to silicon via a silicon-to-carbon bond and has 20 or less carbon atoms; The group is composed of carbon, hydrogen, nitrogen and optionally oxygen and contains at least one amino group, R' being 1 having 1 to 9 carbon atoms.
is a valent hydrocarbon group, X is an alkoxy group having 1 to 6 carbon atoms, or an alkoxyalkoxy group or an oxime group having up to 14 carbon atoms, and n is 0 or 1); More specifically, as mentioned above, R is an organic group containing at least one amino group. The amino group includes primary, secondary and tertiary amino, and also includes imino. Therefore, as an example of an R group,
−(CH 2 ) 3 NHCH 2 CH 2 NH 2 , −
(CH 2 ) 4 NHCH 2 CH 2 NH 2 , −
(CH 2 ) 3 NHCH 2 CH 2 NHCH 2 CH 2 NH 2 , −
CH 2 CHCH 3 CH 2 NH(CH 2 ) 6 NH 2 , −(CH 2 ) 3 NH 2 ,
−(CH 2 ) 4 NHCH 3 , −(CH 2 ) 11 NH 2 , −NHSi
(CH 3 ) 3 , −(CH 2 ) 3 NHCH 2 CH 2 NHCO・NH 2 , and

【式】等が挙げられる。 これらのうちで、Rは式−QNH2、又は−
QNHCH2CH2NH2(式中、Qは−(CH23−、−
(CH24−、又は−CH2CHCH3−である)で示さ
れるものが好ましい。 R′は炭素原子1ないし9個を有する1価の炭
化水素基である。 また各X置換基は1ないし6個の炭素原子を有
するアルコキシあるいはアルコキシアルコキシ
基、例えばメトキシ、エトキシ、プロポキシ又は
メトキシエトキシあるいは14個以下の炭素原子を
有するオキシム基、例えば−ON=C(CH3
(C2H5)、又は−ON=C(CH3)(C6H5)であつて
よい。本発明において使用するのに好ましいアミ
ノ有機シラン化合物はXが1ないし4個の炭素原
子を有するアルコキシ基であつて、例えば
H2NC3H6Si(OC2H53、CH3・NH・C3H6Si
(OC2H53、H2NC2H4NHC3H6Si(OCH33等が好
ましい。 次に本発明における塩素化ポリエチレンの架橋
について述べる。 先ず塩素化ポリエチレンとアミノ有機シラン化
合物を反応させて架橋可能な塩素化ポリエチレン
のシラングラフトマーを作る。この反応は次の反
応式によると考えられる。(但し、アミノ有機シ
ラン化合物はH2NRR′oSi(OR″)3-oで表わす。) このような塩素化ポリエチレンのシラングラフ
トマーを得る具体的な方法は、塩素化ポリエチレ
ンとアミノ有機シラン化合物を100℃以下、好ま
しくは40℃〜80℃で十分に混合すれば良く、この
ような混合は例えば2本ロール混練機、バンバリ
ーミキサー、ニーダー、押出機等によつて行うこ
とができる。この際使用されるアミノ有機シラン
化合物の混合量は塩素化ポリエチレン100重量部
に対して0.1〜20重量部であつて、好ましくは1
〜10重量部である。 このようにして得たシラングラフト塩素化ポリ
エチレンは、通常の押出し、又は他の方法によつ
て成形した後、シラノール縮合触媒の存在下で水
に接触させることによつて架橋させることができ
る。この場合の架橋は大気中に存在する湿気でも
十分に起る。 また、水分を放出する化合物を直接、塩素化ポ
リエチレンのシラングラフトマーに混合して成形
してもよい。水分を放出する化合物としては、常
温で水分の吸収速度及び吸収量が大きく、ポリマ
ー中の水分を結晶水として包含し、押出加工時の
熱により分解され結晶水を放出する無水の無機塩
例えば硫酸ナトリウム、亜硫酸ナトリウム、硫酸
マグネシウム、硫酸タリウム、塩化ストロンチウ
ム等が挙げられる。 シラノール縮合触媒としては、水分の存在下で
シロキサン結合の形成を促進する物質が使用でき
る。このシラノール縮合触媒の存在下での塩素化
ポリエチレンのグラフトマーの水分による架橋は
次の反応式と考えられる。 シラノール縮合触媒として既に効果的な種々の
物質が公知であるが、カルボン酸の金属塩、チタ
ンキレート、アルキルチタン酸エステル、有機酸
等がある。その例として例えば、ジラウリン酸ジ
ブチルスズ、ジオクタン酸ジブチルスズ、オクタ
ン酸鉛、オクタン酸コバルト、チタン酸テトラブ
チル、P−トルエンスルホン酸、酢酸等がある。
このうちで好ましい触媒は有機金属化合物で、さ
らに詳細にはカルボン酸スズ、例えば上記ジラウ
リン酸ジブチルスズ及びジ酢酸ジブチルスズを挙
げることができる。 シラノール縮合触媒の配合は塩素化ポリエチレ
ンのグラフトマーを100重量部として0.01〜10重
量部まで変化してもよい。しかしながら好ましく
は0.01〜1重量部がよい。 そしてこのシラノール縮合触媒は加工成形直前
に塩素化ポリエチレンのグラフトマーに配合する
のが好ましい。例えばシラノール縮合触媒を未処
理の塩素化ポリエチレンに配合した触媒マスター
パツチを予め作つておいて、加工成形する際に、
塩素化ポリエチレンのグラフトマーに混合すれば
よい。また別の方法としては、塩素化ポリエチレ
ンのグラフトマーを加工成形したものをシラノー
ル縮合触媒を分散させて水溶液に接触してもよ
い。 本発明に従つて製造される塩素化ポリエチレン
のグラフトマーには必要に応じて、充填材、顔
料、老化防止剤、加工助剤等をグラフトマーを作
る前にあるいは作つた後で配合することができ
る。 このように本発明に従つて製造される架橋塩素
化ポリエチレンは従来法で架橋した塩素化ポリエ
チレンが使用されている部所に何等支障なく使え
る。例えば電線ケーブルの被覆材、シール材、管
等に使用できる。 以下、本発明の実施例を説明するが、勿論本発
明はこれに限定されるものではない。 <実施例> 配合A(グラフトマー) 塩素化ポリエチレン(エラスレン401A)
100重量部 シランA1100、H2NC3H6Si(OC2H53(日本ユニ
カー製) 2 〃 SPFカーボン 3 〃 硬質クレー 60 〃 DOP 15 〃 上記配合のものを約60℃でロール混練してグラ
フトマーを作つた。 配合B(触媒コンク) 塩素化ポリエチレン(エラスレン401A)
100重量部 ジラウリン酸ジブチルスズ 1 〃 上記配合のものを約60℃でロール混練して触媒
コンクを作つた。 このようにして作つた配合Aのグラフトマー
100重量部と配合Bの触媒コンク5重量部とを混
練したものを押出機に供給し、5.5mm2の導体上に
被覆した。この押出したものを室温の水中に1日
浸漬し、被覆層の特性を測定したところ、次の結
果を得た。 200%モジユラス 0.6Kg/mm2 引張り強さ 1.7Kg/mm2 伸び 450% 加熱変形率 27% 永久変形率 5% <比較例> 配合C 塩素化ポリエチレン(エラスレン401A)
100重量部 三塩基性硫酸鉛 5 〃 デイクミルパーオキサイド 2.5 〃 トリアリルイソシアネート 2 〃 SRFカーボン 3 〃 DOP 15 〃 本発明との比較のため、従来法に従つて上記配
合Cのものを約60℃でロール混練後、押出機に供
給し導体上に被覆した。この被覆層の上に布テー
プを巻いて、150℃の加硫釜に入れて約15分間加
熱して加硫した。このようにして加硫させた被覆
層の特性を測定したところ、次の結晶を得た。 200%モジユラス 0.6Kg/mm2 引張り強さ 1.8Kg/mm2 伸び 460% 加熱変形率 25% 永久変形率 6% 以上の実施例及び比較例の結果から、本発明で
の水分による架橋塩素化ポリエチレンの特性と、
従来法による加熱によつて架橋させたものの特性
が略同じであることがわかる。 このように本発明によれば、加熱加圧すること
なく、塩素化ポリエチレンを架橋させることがで
きる。したがつて加熱のための電熱や高温、高圧
蒸気等の多くの熱エネルギーが不要となり、製造
コストの低減を図ることができる。また加熱プレ
ス、連続加硫機、加硫釜等の特別な製造設備が不
要になり、設備コストの低減になると同時に熱管
理等の必要がなくなり、設備の保守等が著しく簡
略化される利点もある。
Examples include [Formula]. Among these, R is of the formula -QNH 2 or -
QNHCH 2 CH 2 NH 2 (wherein, Q is -(CH 2 ) 3 -, -
( CH2 ) 4- or -CH2CHCH3- ) is preferred. R' is a monovalent hydrocarbon radical having 1 to 9 carbon atoms. Each X substituent may also be an alkoxy or alkoxyalkoxy group having 1 to 6 carbon atoms, such as methoxy, ethoxy, propoxy or methoxyethoxy, or an oxime group having up to 14 carbon atoms, such as -ON=C(CH 3 )
( C2H5 ) , or -ON=C( CH3 )( C6H5 ) . Preferred aminoorganosilane compounds for use in the present invention are those in which X is an alkoxy group having 1 to 4 carbon atoms, e.g.
H 2 NC 3 H 6 Si (OC 2 H 5 ) 3 , CH 3・NH・C 3 H 6 Si
(OC 2 H 5 ) 3 , H 2 NC 2 H 4 NHC 3 H 6 Si(OCH 3 ) 3 and the like are preferred. Next, crosslinking of chlorinated polyethylene in the present invention will be described. First, chlorinated polyethylene and an aminoorganosilane compound are reacted to produce a crosslinkable chlorinated polyethylene silane graftomer. This reaction is thought to be based on the following reaction formula. (However, aminoorganosilane compounds are expressed as H 2 NRR′ o Si(OR″) 3-o .) A specific method for obtaining such a silane graftomer of chlorinated polyethylene is to sufficiently mix chlorinated polyethylene and an aminoorganosilane compound at 100°C or lower, preferably at 40°C to 80°C. This can be carried out using, for example, a two-roll kneader, a Banbury mixer, a kneader, an extruder, or the like. The amount of the aminoorganosilane compound used at this time is 0.1 to 20 parts by weight, preferably 1 part by weight, based on 100 parts by weight of chlorinated polyethylene.
~10 parts by weight. The silane-grafted chlorinated polyethylene thus obtained can be shaped by conventional extrusion or other methods and then crosslinked by contacting with water in the presence of a silanol condensation catalyst. In this case, crosslinking can occur even with moisture present in the atmosphere. Alternatively, a compound that releases moisture may be directly mixed with a chlorinated polyethylene silane graftomer and then molded. Compounds that release water include anhydrous inorganic salts that have a high absorption rate and amount of water at room temperature, contain water in the polymer as water of crystallization, and release water of crystallization when decomposed by the heat during extrusion processing, such as sulfuric acid. Examples include sodium, sodium sulfite, magnesium sulfate, thallium sulfate, and strontium chloride. As the silanol condensation catalyst, a substance that promotes the formation of siloxane bonds in the presence of moisture can be used. The crosslinking of the chlorinated polyethylene graftomer with water in the presence of this silanol condensation catalyst is considered to be according to the following reaction formula. Various substances are already known that are effective as silanol condensation catalysts, including metal salts of carboxylic acids, titanium chelates, alkyl titanate esters, and organic acids. Examples include dibutyltin dilaurate, dibutyltin dioctoate, lead octoate, cobalt octoate, tetrabutyl titanate, P-toluenesulfonic acid, acetic acid, and the like.
Among these, preferred catalysts are organometallic compounds, and more specifically tin carboxylates, such as the above-mentioned dibutyltin dilaurate and dibutyltin diacetate. The blending of the silanol condensation catalyst may vary from 0.01 to 10 parts by weight based on 100 parts by weight of the chlorinated polyethylene graftomer. However, it is preferably 0.01 to 1 part by weight. This silanol condensation catalyst is preferably blended into the chlorinated polyethylene graftomer immediately before processing and molding. For example, a catalyst master patch in which a silanol condensation catalyst is blended with untreated chlorinated polyethylene is made in advance, and when processing and molding it,
It can be mixed with chlorinated polyethylene graftomer. Alternatively, a silanol condensation catalyst may be dispersed in a processed and molded chlorinated polyethylene graftomer and the resulting product may be brought into contact with an aqueous solution. If necessary, fillers, pigments, anti-aging agents, processing aids, etc. can be added to the chlorinated polyethylene graftomer produced according to the present invention before or after making the graftomer. As described above, the crosslinked chlorinated polyethylene produced according to the present invention can be used without any problem in areas where conventionally crosslinked chlorinated polyethylene is used. For example, it can be used for covering materials for electric wires and cables, sealing materials, pipes, etc. Examples of the present invention will be described below, but of course the present invention is not limited thereto. <Example> Formulation A (graftomer) Chlorinated polyethylene (Elastrene 401A)
100 parts by weight Silane A1100, H 2 NC 3 H 6 Si (OC 2 H 5 ) 3 (manufactured by Nippon Unicar) 2 SPF carbon 3 Hard clay 60 DOP 15 Roll kneading the above mixture at approximately 60℃ I made a graftomer. Blend B (Catalyst Conc) Chlorinated polyethylene (Elastrene 401A)
100 parts by weight dibutyltin dilaurate 1 The above formulation was roll kneaded at about 60°C to prepare a catalyst concrete. Graftomer of formulation A prepared in this way
A mixture of 100 parts by weight and 5 parts by weight of catalyst concretion B was fed into an extruder and coated onto a 5.5 mm 2 conductor. The extruded product was immersed in water at room temperature for one day, and the properties of the coating layer were measured, and the following results were obtained. 200% Modulus 0.6Kg/mm 2 Tensile Strength 1.7Kg/mm 2 Elongation 450% Heating Deformation Rate 27% Permanent Deformation Rate 5% <Comparative Example> Blend C Chlorinated Polyethylene (Elastrene 401A)
100 parts by weight Tribasic lead sulfate 5 Deicmil peroxide 2.5 Triallyl isocyanate 2 SRF carbon 3 DOP 15 For comparison with the present invention, the above formulation C was heated at about 60°C according to the conventional method. After kneading with rolls, the mixture was fed to an extruder and coated onto a conductor. A cloth tape was wrapped on top of this coating layer, and the mixture was placed in a vulcanization pot at 150°C and heated for about 15 minutes to vulcanize it. When the properties of the coating layer thus vulcanized were measured, the following crystals were obtained. 200% Modulus 0.6Kg/ mm2 Tensile strength 1.8Kg/ mm2 Elongation 460% Heating deformation rate 25% Permanent deformation rate 6% From the results of the above examples and comparative examples, it is clear that cross-linked chlorinated polyethylene due to moisture in the present invention and the characteristics of
It can be seen that the properties of those crosslinked by heating using the conventional method are almost the same. As described above, according to the present invention, chlorinated polyethylene can be crosslinked without applying heat and pressure. Therefore, a large amount of thermal energy such as electric heat, high temperature, and high pressure steam for heating is not required, and manufacturing costs can be reduced. In addition, special manufacturing equipment such as heated presses, continuous vulcanizers, and vulcanizing pots is no longer required, which reduces equipment costs and eliminates the need for heat management, which significantly simplifies equipment maintenance. be.

Claims (1)

【特許請求の範囲】[Claims] 1 塩素化ポリエチレンと一般式RR′nSiX3-o
(但し、式中Rは硅素対炭素結合を介して硅素と
結合し、20個以下の炭素原子を有する有機基であ
り、該R基は炭素、水素、窒素および場合により
酸素で構成されかつ少なくとも1個のアミノ基を
含み、R′は1ないし9個の炭素原子を有する1
価の炭化水素基であり、Xは1ないし6個の炭素
原子を有するアルコキシ、又はアルコキシアルコ
キシ基あるいは炭素原子14個以下のオキシム基で
あり、nは0または1である)で表されるアミノ
有機シラン化合物とを反応させて架橋可能な塩素
化ポリエチレンとし、これをシラノール縮合触媒
の存在下において水分と接触させることを特徴と
する塩素化ポリエチレンの架橋方法。
1 Chlorinated polyethylene and general formula RR′ n SiX 3-o
(However, in the formula, R is an organic group bonded to silicon through a silicon-to-carbon bond and having 20 or less carbon atoms, and the R group is composed of carbon, hydrogen, nitrogen, and optionally oxygen, and at least 1 containing one amino group and R' having 1 to 9 carbon atoms
a valent hydrocarbon group, X is an alkoxy group having 1 to 6 carbon atoms, or an alkoxyalkoxy group or an oxime group having up to 14 carbon atoms, and n is 0 or 1) A method for crosslinking chlorinated polyethylene, which comprises reacting an organic silane compound to obtain crosslinkable chlorinated polyethylene, and contacting this with moisture in the presence of a silanol condensation catalyst.
JP8147280A 1980-06-18 1980-06-18 Crosslinking of chlorinated polyethylene Granted JPS578203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8147280A JPS578203A (en) 1980-06-18 1980-06-18 Crosslinking of chlorinated polyethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8147280A JPS578203A (en) 1980-06-18 1980-06-18 Crosslinking of chlorinated polyethylene

Publications (2)

Publication Number Publication Date
JPS578203A JPS578203A (en) 1982-01-16
JPS6234243B2 true JPS6234243B2 (en) 1987-07-25

Family

ID=13747336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8147280A Granted JPS578203A (en) 1980-06-18 1980-06-18 Crosslinking of chlorinated polyethylene

Country Status (1)

Country Link
JP (1) JPS578203A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493924A (en) * 1983-06-10 1985-01-15 Union Carbide Corporation Water-curable, silane modified chlorosulfonated olefinic polymers and a process for the preparation thereof
EP0171986B1 (en) * 1984-08-06 1989-10-18 Fujikura Ltd. Silane-crosslinkable halogenated polymer composition and process of crosslinking the same
JP2519036B2 (en) * 1986-06-30 1996-07-31 日本ゼオン 株式会社 Method for producing water-crosslinkable halogen-containing polymer
FR2810330B1 (en) * 2000-06-19 2002-08-30 Cit Alcatel OIL AND FIRE PROPAGATION INSULATING COMPOSITION AND METHOD OF IMPLEMENTING SAME
US7456231B2 (en) 2005-02-02 2008-11-25 Shawcor Ltd. Radiation-crosslinked polyolefin compositions

Also Published As

Publication number Publication date
JPS578203A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
EP0135923B1 (en) Production of water-curable, silane modified thermoplastic polymers
JP2844341B2 (en) Manufacturing method of stabilizing filler or pigment
DE69117040T2 (en) Improved room temperature curable silicone compositions and methods of making them
JPH0641373A (en) Filled hydrolyzable copolymer composition resistant to premature crosslinking reaction
JPS6017353B2 (en) Crosslinking method for polyolefin resin
BRPI0606968B1 (en) process for cross-linking polymer and cross-linked polymer
JPS5813093B2 (en) rubber composition
JPS62167324A (en) Continuous production of room temperature crosslinkable silicone compound
JPH0432084B2 (en)
JP2003531939A (en) Molecular melt and method of making and using molecular melt
EP1006146B1 (en) Organopolysiloxane compositions, curable into elastomers by elimination of alcohols
JP5395085B2 (en) In situ generation of water by dehydration of metal salt hydrates for moisture cross-linking of polyolefins
BR112016013613B1 (en) PROCESS FOR PRODUCING A POLYOLEFIN RETICULATED WITH SILANO, GRAFTABLE SILANO COMPOSITION AND POLYOLEFIN RETICULATED WITH SILANO
JPH07196803A (en) Production of fluorinated polydiorganosiloxane base material and stock
EP2539349B1 (en) Carboxyl-functionalized silicon-containing precursor compound of various organic carboxylic acids
DE10134634A1 (en) RTV-1 silicone rubber mixtures crosslinking via alkoxy groups
JPS6234243B2 (en)
CN1414573A (en) Method for making cable evelope layer by extruded and cross-linked silane graft polymer composition and cable containing sheath
JPS641501B2 (en)
DE69229852T2 (en) Crosslinkable polymer composition
JPS6352642B2 (en)
Munteanu Moisture cross-linkable silane-modified polyolefins
US4959413A (en) Crosslinkable polymers
DE68917820T2 (en) Compositions for water resistant films.
JPS6155529B2 (en)