JPH0334455A - Photoelectric conversion apparatus - Google Patents

Photoelectric conversion apparatus

Info

Publication number
JPH0334455A
JPH0334455A JP1166833A JP16683389A JPH0334455A JP H0334455 A JPH0334455 A JP H0334455A JP 1166833 A JP1166833 A JP 1166833A JP 16683389 A JP16683389 A JP 16683389A JP H0334455 A JPH0334455 A JP H0334455A
Authority
JP
Japan
Prior art keywords
opening region
photoelectric conversion
region
low
high opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1166833A
Other languages
Japanese (ja)
Inventor
Masato Shinohara
真人 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1166833A priority Critical patent/JPH0334455A/en
Publication of JPH0334455A publication Critical patent/JPH0334455A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To approximately double the resolution without dropping sensitivity even if different color filters are placed by a method wherein inside a photoelectric conversion element is divided into a high opening region and a low opening region where opening rate drops due to wiring or the like while the high opening region and the low opening region are made adjacent to each other. CONSTITUTION:A pixel being a photoelectric conversion element is such that the upper half is a high opening region S1 and the lower half is a low opening region S2 or the upper half is a low opening region S2 and the lower half is the high opening region S1. The structure of pixels in a first line is such that the upper half is the high opening region S1 and the lower half is the low opening region S2 wherein they are two-dimensionally placed so that the high opening regions S1 and the low opening regions S2 exhibit checkers. As for placement of color filters, Cr (chrome) is placed at the low opening region S1 while W (white) is placed at the high opening region S1 positioned at the lower half of a cell. On the high opening region S1 positioned on the upper half of the cell, Ye(yellow) or Cy(cyan) is placed wherein Ye and Cy filters are placed alternatively with respect to longitudinal and lateral directions. Thus compared to a conventional method wherein one color filter is placed in one cell to obtain a brightness signal by summing up signals of two lines, the mentioned method can double the vertical resolution.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野] 本発明は光電変換装置に係り、特に複数の光電変換要素
から構成される光電変換装置に関する。 [従来の技術] 従来の単板カラー用固体撮像装置のセル配置は次のよう
なものであった。 第4図は、従来の二次元固体撮像装置のセル配列を示す
説明図である。 一つの正方形が単位セルを示し、この単位セル上に配置
された色フィルタの種類をA、B、C。 Dで表わしである。このような単位セルからの信号の読
み出しは二行同時読み出しが行われ、通常のインクレー
ス方式では、例えばoddフィールドでは、第1行と第
2行、第3行と第4行、第5行と第6行、・・・・、の
順に読み出し走査が行われ、evenフィールドでは、
第2行と第3行、第4行と第5行、第6行と第7行、・
・・、の順に読み出し走査が行われていく。 二行の信号の中で、A、B、C,Dそれぞれのカラーフ
ィルタに対応するセルからの信号より赤、緑、青の色信
号が得られる。また、二行の加算された信号、つまり(
A+C)、(B+D)が輝度信号となる。 以上述べたように、二行同時読み出しによって、カラー
信号に必要な輝度信号と色信号が得られる。
[Industrial Application Field] The present invention relates to a photoelectric conversion device, and particularly to a photoelectric conversion device composed of a plurality of photoelectric conversion elements. [Prior Art] The cell arrangement of a conventional single-chip color solid-state imaging device is as follows. FIG. 4 is an explanatory diagram showing a cell arrangement of a conventional two-dimensional solid-state imaging device. One square represents a unit cell, and the types of color filters placed on this unit cell are A, B, and C. It is represented by D. When reading out signals from such a unit cell, two rows are read out simultaneously. In the normal incremental method, for example, in an odd field, the signals are read out from the first and second rows, the third and fourth rows, and the fifth row. Read scanning is performed in the order of , 6th line, etc., and in the even field,
2nd and 3rd rows, 4th and 5th rows, 6th and 7th rows,
The readout scan is performed in the order of . Among the two rows of signals, red, green, and blue color signals are obtained from the signals from the cells corresponding to the A, B, C, and D color filters, respectively. Also, the summed signals of two rows, i.e. (
A+C) and (B+D) become luminance signals. As described above, the luminance signal and color signal necessary for the color signal can be obtained by reading out two rows simultaneously.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、上記の二次元固体撮像装置のセル配列で
は、解像度を決める輝度信号は、二行の加算によって作
られるため、−行毎の読み出しである白黒方式に比べ、
垂直解像度は約半分に落ちる。また水平方向に関しても
、第4図でいえば、セルの1ピツチ毎に(A+C)、(
B十D)という2ビット周期の信号が出てくるため(A
+C)と(B+D)との差が大きい程水平解像度が落ち
てくる。つまり、従来の単板カラー化方式は色信号を得
るために、最低三種類の色フィルタが必要であり、その
ために解像度が犠牲になる。 逆にいえば、白黒方式と同じ程度の解像度を得るために
は、画素サイズを半分にし、画素数を二倍に増やさなけ
ればならない課題があった。 [課題を解決するための手段] 本発明の光電変換装置は複数の光電変換要素から構成さ
れる光電変換装置において、 前記光電変換要素を開口率の高い第1の領域(以下、高
開口領域と呼ぶ)と開口率の低い第2の領域(以下、低
開口領域と呼ぶ)とに分けて形成したことを特徴とする
。 [作 用] 本発明は、光電変換要素内を高開口領域と配線等によっ
て開口率が低下する低開口領域とを分けて形成し、高開
口領域と低開口領域とを互いに隣接するように配列させ
ることを可能とするものであり、高開口領域と低開口領
域とを互いに隣接するように配列すれば、−行の光電変
換要素で実質的に二行の配列を得ることができ、単位光
電変換要素の前記高開口領域及び前記低開口領域に異な
る種類のカラーフィルターを配置した場合においても、
白黒方式と変わらない解像度を保ったままカラー信号を
出力可能となる。 [実施例] 以下1本発明の実施例を図面を用いて詳細に説明する。 第1図(A)は本発明の光電変換装置の第1実施例のフ
ィルタ配置図であり、第1図(B)は光電変換要素の構
成を示す説明図である。 第1図(A)に示すように、光電変換要素たる一つの画
素は、上半分が高開口領域S1で、下半分が低開口領域
S8.または上半分が低開口領域S2で、下半分が高開
口領域Slである。第1図(B)は第1列目の画素の構
成を示すもので、上半分が高開口領域S1で、下半分が
低開口領域S2となっている。 このような画素を高開口領域Slと低開口領域8つとが
市松模様となるように二次元状に配置する0色フィルタ
ーの配置については、低開口領域8オにはCr(クロム
)を置く。セルの下半分に位置する高開口領域Slには
W(ホワイト)を置く、セルの上半分に位置する高開口
領域S1にはYe(イエロー)又はCy(シアン)を置
くが、Yeとcyとは上下左右に互い違いに配置される
。 次に第1図(A) (B)をもとに、カラーセンサとし
ての動作について説明する。 読み出し方法は従来と同じ二行同時読みだしであるが、
信号の合成方法は次のようになる。 今、第1行と第2行が読み出された場合、輝度信号は第
1行におけるW出力値および第1行におけるYe(又は
Cy)出力値と第2行におけるCy(又はYe)出力値
との出力平均値で作られる。つまりWと1/2 (Ye
十Cy)との交互の出力が輝度信号となる0色信号につ
いては、R=W−Cy、G=Ye+Cy−W、B=W−
Yeの演算で作られるが、色信号生成に用いるWは第1
行のWと、輝度信号には用いられなかった第2行のWと
の平均出力値を用いる。 このように、第n行と第(n+ 1 )行の二行同時読
み出しにおいて、解像度を決める輝度信号は、第n行の
W及び第n行のYe (Cy)と第(n+1)行のCy
 (Ye)との出力平均値で作られるので、従来の1つ
のセルに1つの色フィルターを置き、二層の信号の加算
で輝度信号を得る方法に比べると、垂直解像度を二倍に
することができる。しかも本実施例で用いられたw、Y
e。 C,yの色フィルタは光の利用効率が良く、高感度を保
てる。また、W=R+G+B、l/2(Ye+Cy)=
R/2+G+B/2であッテ、wト1/2(Ye十Cy
)との出力差が小さいため、水平解像度も良好である。 第3図は、本発明の光電変換要素及びフィルタ配置を用
いた光電変換装置の一例の構造を示す部分平面図である
。 第3図において、1はアルミで形成されたエミッタに接
続する垂直出力線を表わし、2はポリシリコン等で形成
された水平駆動線を示す、3はLOCO3法で形成され
た画素分離領域を示す。配線の部分は感光部にならない
ため、画素を上下に分けた時片方は低開口領域となり、
上記実施例のような画素配置になっている。この各部分
に既に記述したような色フィルターを適用すれば、垂直
解像度が従来の二倍であるカラー二リアセンサが実現す
る。 第2図(A)は本発明の光電変換装置の第2実施例のフ
ィルタ配置図であり、第2図(B)は光電変換要素の構
成を示す説明図である。 高開口領域SIと低開口領域の配置Ss、色フィルター
の配置関係は第1図と同様であるが、単位セルの左右半
分づつが、それぞれ高開口領域SIと低開口領域S2に
なっている。第2図のようなセンサでは三層同時読み出
しが行われる。例えば第1.2.3行がよみだされた時
、輝度信号は第1行と第3行との出力平均値1/2(Y
e+Cy)及び第2行の出力Wから形成される。単位セ
ルが左右二つに区分されているため、従来方法に比べ画
素数が同じであっても水平解像度を二倍にすることがで
きる。 [発明の効果J 以上説明したように、本発明の光電変換装置によれば、
光電変換要素内を高開口領域と配線等によって開口率が
低下する低開口領域とを分けて形成し、高開口領域と低
開口領域とを互いに隣接するように配列させることを可
能とするものであり、高開口領域と低開口領域とを互い
に隣接するように配列すれば、−行の光電変換要素で実
質的に二層の配列を得ることができ、単位光電変換要素
の前記高開口領域及び前記低開口領域に異なる種類のカ
ラーフィルターを配置した場合においても、感度を落と
さずに解像度を約二倍にすることができる。
However, in the cell array of the two-dimensional solid-state imaging device described above, the luminance signal that determines the resolution is created by adding two rows, so compared to the black-and-white method that reads out each row,
Vertical resolution drops by about half. Also, regarding the horizontal direction, in Figure 4, each pitch of the cell is (A+C), (
Since a signal with a 2-bit period called (B + D) is output, (A
The larger the difference between +C) and (B+D), the lower the horizontal resolution. In other words, the conventional single-chip colorization method requires at least three types of color filters to obtain color signals, which sacrifices resolution. Conversely, in order to obtain the same level of resolution as the black-and-white method, the pixel size had to be halved and the number of pixels had to be doubled. [Means for Solving the Problems] A photoelectric conversion device of the present invention is a photoelectric conversion device composed of a plurality of photoelectric conversion elements, in which the photoelectric conversion elements are arranged in a first region with a high aperture ratio (hereinafter referred to as a high aperture region). It is characterized by being formed separately into a second region (hereinafter referred to as a low aperture region) and a second region with a low aperture ratio (hereinafter referred to as a low aperture region). [Function] In the present invention, a high aperture region and a low aperture region where the aperture ratio is reduced due to wiring etc. are formed separately in a photoelectric conversion element, and the high aperture region and the low aperture region are arranged adjacent to each other. By arranging the high aperture region and the low aperture region adjacent to each other, it is possible to obtain a substantially two-row arrangement with - row photoelectric conversion elements, and a unit photoelectric conversion element can be arranged in two rows. Even when different types of color filters are arranged in the high aperture area and the low aperture area of the conversion element,
It becomes possible to output color signals while maintaining the same resolution as the black and white system. [Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1(A) is a filter arrangement diagram of a first embodiment of a photoelectric conversion device of the present invention, and FIG. 1(B) is an explanatory diagram showing the configuration of a photoelectric conversion element. As shown in FIG. 1(A), one pixel serving as a photoelectric conversion element has a high aperture area S1 in the upper half and a low aperture area S8 in the lower half. Alternatively, the upper half is the low aperture region S2, and the lower half is the high aperture region Sl. FIG. 1(B) shows the configuration of the pixels in the first row, in which the upper half is a high aperture region S1 and the lower half is a low aperture region S2. Regarding the arrangement of a 0-color filter in which such pixels are arranged two-dimensionally so that a high aperture region Sl and eight low aperture regions form a checkerboard pattern, Cr (chromium) is placed in the low aperture region 8O. W (white) is placed in the high aperture area S1 located in the lower half of the cell, and Ye (yellow) or Cy (cyan) is placed in the high aperture area S1 located in the upper half of the cell. are arranged alternately vertically and horizontally. Next, the operation as a color sensor will be explained based on FIGS. 1(A) and 1(B). The reading method is the same as before, reading two lines at the same time, but
The signal synthesis method is as follows. Now, when the first and second rows are read out, the luminance signal is the W output value in the first row, the Ye (or Cy) output value in the first row, and the Cy (or Ye) output value in the second row. It is created by the output average value of . In other words, W and 1/2 (Ye
For the 0 color signal whose output is the luminance signal alternately with 10Cy), R=W-Cy, G=Ye+Cy-W, B=W-
It is created by calculating Ye, but W used for color signal generation is the first
The average output value of W in the row and W in the second row, which was not used for the luminance signal, is used. In this way, in simultaneous reading of two rows, the n-th row and the (n+1)-th row, the luminance signal that determines the resolution is W in the n-th row, Ye (Cy) in the n-th row, and Cy in the (n+1)-th row.
(Ye), so compared to the conventional method of placing one color filter in one cell and obtaining a luminance signal by adding two layers of signals, the vertical resolution can be doubled. I can do it. Moreover, w, Y used in this example
e. C and y color filters have good light usage efficiency and can maintain high sensitivity. Also, W=R+G+B, l/2(Ye+Cy)=
R/2+G+B/2 is Atte, w 1/2 (Ye 1 Cy
), the horizontal resolution is also good. FIG. 3 is a partial plan view showing the structure of an example of a photoelectric conversion device using the photoelectric conversion element and filter arrangement of the present invention. In FIG. 3, 1 represents a vertical output line connected to an emitter formed of aluminum, 2 represents a horizontal drive line formed of polysilicon, etc., and 3 represents a pixel isolation region formed by the LOCO3 method. . Since the wiring part does not become a photosensitive area, when the pixel is divided into upper and lower parts, one side becomes a low aperture area.
The pixel arrangement is similar to that of the above embodiment. By applying color filters as already described to each of these parts, a color dual-reactor sensor with twice the vertical resolution of conventional sensors can be realized. FIG. 2(A) is a filter arrangement diagram of a second embodiment of the photoelectric conversion device of the present invention, and FIG. 2(B) is an explanatory diagram showing the configuration of the photoelectric conversion element. The arrangement Ss of the high aperture region SI and the low aperture region and the arrangement relationship of the color filters are the same as in FIG. 1, but the left and right halves of the unit cell are respectively the high aperture region SI and the low aperture region S2. In a sensor like the one shown in FIG. 2, simultaneous three-layer readout is performed. For example, when lines 1, 2, and 3 are read out, the luminance signal is the output average value 1/2 (Y
e+Cy) and the output W of the second row. Since the unit cell is divided into left and right halves, the horizontal resolution can be doubled compared to conventional methods even if the number of pixels is the same. [Effect of the invention J As explained above, according to the photoelectric conversion device of the present invention,
A high aperture region and a low aperture region where the aperture ratio is reduced due to wiring etc. are formed separately in the photoelectric conversion element, and the high aperture region and the low aperture region can be arranged adjacent to each other. If the high aperture region and the low aperture region are arranged adjacent to each other, a substantially two-layer arrangement can be obtained with the - row photoelectric conversion elements, and the high aperture region and the low aperture region of the unit photoelectric conversion element Even when different types of color filters are arranged in the low aperture region, the resolution can be approximately doubled without reducing sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明の光電変換装置の第1実施例のフ
ィルタ配置図であり、第1図(B)は光電変換要素の構
成を示す説明図である。 第2図(A)は本発明の光電変換装置の第2実施例のフ
ィルタ配置図であり、第2図(B)は光電変換要素の構
成を示す説明図である。 第3図は、本発明の光電変換要素及びフィルタ配置を用
いた光電変換装置の一例の構造を示す部分平面図である
。 第4図は、従来の二次元固体撮像装置のセル配列を示す
説明図である。 SI :高開口領域、 1 :低開口領域、 1:垂 直出力線、 :水平駆動線、 :画素分離領域。
FIG. 1(A) is a filter arrangement diagram of a first embodiment of a photoelectric conversion device of the present invention, and FIG. 1(B) is an explanatory diagram showing the configuration of a photoelectric conversion element. FIG. 2(A) is a filter arrangement diagram of a second embodiment of the photoelectric conversion device of the present invention, and FIG. 2(B) is an explanatory diagram showing the configuration of the photoelectric conversion element. FIG. 3 is a partial plan view showing the structure of an example of a photoelectric conversion device using the photoelectric conversion element and filter arrangement of the present invention. FIG. 4 is an explanatory diagram showing a cell arrangement of a conventional two-dimensional solid-state imaging device. SI: High aperture region, 1: Low aperture region, 1: Vertical output line, : Horizontal drive line, : Pixel isolation region.

Claims (3)

【特許請求の範囲】[Claims] (1)複数の光電変換要素から構成される光電変換装置
において、 前記光電変換要素を開口率の高い第1の領域と開口率の
低い第2の領域とに分けて形成したことを特徴とする光
電変換装置。
(1) A photoelectric conversion device composed of a plurality of photoelectric conversion elements, characterized in that the photoelectric conversion elements are formed separately into a first region with a high aperture ratio and a second region with a low aperture ratio. Photoelectric conversion device.
(2)前記第1の領域及び前記第2の領域が市松模様と
なるように、前記複数の光電変換要素を配列したことを
特徴とする請求項1記載の光電変換装置。
(2) The photoelectric conversion device according to claim 1, wherein the plurality of photoelectric conversion elements are arranged so that the first region and the second region form a checkered pattern.
(3)単位光電変換要素の前記第1の領域及び前記第2
の領域に異なる種類のカラーフィルターを配置したこと
を特徴とする請求項1または2記載の光電変換装置。
(3) The first region and the second region of the unit photoelectric conversion element
3. The photoelectric conversion device according to claim 1, wherein different types of color filters are arranged in the regions.
JP1166833A 1989-06-30 1989-06-30 Photoelectric conversion apparatus Pending JPH0334455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1166833A JPH0334455A (en) 1989-06-30 1989-06-30 Photoelectric conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1166833A JPH0334455A (en) 1989-06-30 1989-06-30 Photoelectric conversion apparatus

Publications (1)

Publication Number Publication Date
JPH0334455A true JPH0334455A (en) 1991-02-14

Family

ID=15838502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1166833A Pending JPH0334455A (en) 1989-06-30 1989-06-30 Photoelectric conversion apparatus

Country Status (1)

Country Link
JP (1) JPH0334455A (en)

Similar Documents

Publication Publication Date Title
JP4139641B2 (en) Solid-state image sensor
JP3830590B2 (en) Solid-state imaging device
JPH03135184A (en) Color solid-state image pickup element
US5345319A (en) Linear color charge coupled device for image sensor and method of driving the same
JPS6359587B2 (en)
WO2012114993A1 (en) Color imaging device
JP5380629B2 (en) Color image sensor
KR0168451B1 (en) Color solid image sensing device
JP4207736B2 (en) Solid-state imaging device
JP4460751B2 (en) Imaging device and imaging apparatus
JP4603455B2 (en) Solid-state imaging device
JPH0334455A (en) Photoelectric conversion apparatus
WO2012114994A1 (en) Color image pick-up element
JP2008016862A (en) Solid state imaging apparatus
JPH0399574A (en) Color image sensor
EP0133835A2 (en) CCD area image sensor and method for color imaging
JP2001156281A (en) Solid-state image pickup device, method of driving the same, and camera system
JP2519720B2 (en) Color solid-state imaging device and manufacturing method thereof
JPS62269588A (en) Color separating filter
JP2744705B2 (en) Color solid-state imaging device
JP2591182B2 (en) Color solid-state imaging device
JPS62159591A (en) Color solid-state image pickup device
JPH0420091A (en) Color solid-state image pickup element
JPS5887976A (en) Solid-state image pickup element
JPS6284690A (en) Solid-state image pickup element for color picture