JPH0334248A - Electron beam sensor - Google Patents

Electron beam sensor

Info

Publication number
JPH0334248A
JPH0334248A JP1169256A JP16925689A JPH0334248A JP H0334248 A JPH0334248 A JP H0334248A JP 1169256 A JP1169256 A JP 1169256A JP 16925689 A JP16925689 A JP 16925689A JP H0334248 A JPH0334248 A JP H0334248A
Authority
JP
Japan
Prior art keywords
electron beam
beam sensor
metal back
single crystal
back coat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1169256A
Other languages
Japanese (ja)
Inventor
Toshio Shoji
利男 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1169256A priority Critical patent/JPH0334248A/en
Publication of JPH0334248A publication Critical patent/JPH0334248A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an electron beam sensor offering excellent durability and efficiency as compared with fluorescent powder by forming the sensor into a circular truncated one while an Ag metal back coat is applied. CONSTITUTION:An electron beam sensor made up from a mono-crystal oxide, for example, CexY(1-x)AlO3, is formed into a circular truncated cone. In this case, an angle formed by an outgoing surface 1 and a side inclined surface 2 shall be 33 deg., and the whole of the surface of a mono-crystal element in a circular truncated cone shape which is as thin as 2mm for example, is polished to a mirror-like surface so that Ag is applied onto an incident surface 3 and the inclined surface 2 in the form of an Ag metal back coat 4 as thin as 500Angstrom . MgF2 with a specified refraction factor is deposited onto the incident surface of the specimen to the extent as thin as lambda/4 so that loss in refraction is minimized. Applying the metal back coating permits the electron beam sensor to be obtained, which offers excellent durability and emission efficiency as the electron beam sensor while being low in loss in refraction but high in efficiency.

Description

【発明の詳細な説明】 イ0発明の目的 〔産業上の利用分野〕 本発明は、走査型電子顕微M(SEM)等に用いられる
電子線センサに関係し、特にその酸化物単結晶電子線セ
ンサ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention [Field of Industrial Application] The present invention relates to an electron beam sensor used in a scanning electron microscope (SEM), etc., and particularly relates to an oxide single crystal electron beam The present invention relates to a sensor element.

〔従来の技術〕[Conventional technology]

従来、電子線センサとしては、粉末蛍光体9の電子線セ
ンサ(例えば市販の蛍光体P−47等)が用いられてい
た。第4図に示すように粉末蛍光体9の電子線センサは
ガラス基板8上に粉末蛍光体9を沈降させて、その表面
にA1などをメタルバックコートしてつくられる。メタ
ルバック材料としては、電子線の透過し易い比較的原子
番号の小さなAI金金属が用いられる。A1メタルバッ
クコート10を透過した電子線によって励起された蛍光
体からの光(以下CLと称す)が発生し、そのCL先は
粉末内を乱反射しながらガラス基板内に入射してその後
方に位置する光誘導管(ライトパイプ)内を透過した後
、光電子増倍管(フォトマル)に達して電気信号に変換
される。この時、ガラス基板の屈折率(n2)と真空中
の屈折率(nl)が異なるため次の式で示される反射ロ
スが生じる。
Conventionally, as an electron beam sensor, an electron beam sensor using powder phosphor 9 (for example, commercially available phosphor P-47, etc.) has been used. As shown in FIG. 4, an electron beam sensor using a powder phosphor 9 is made by depositing the powder phosphor 9 on a glass substrate 8 and coating the surface with a metal backcoat such as A1. As the metal back material, AI gold metal, which has a relatively small atomic number and is easily transmitted by electron beams, is used. Light (hereinafter referred to as CL) from the phosphor excited by the electron beam transmitted through the A1 metal back coat 10 is generated, and the tip of the CL enters the glass substrate while diffusing inside the powder and is located behind it. After passing through a light guide tube (light pipe), the light reaches a photomultiplier tube (photomultiplier) and is converted into an electrical signal. At this time, since the refractive index (n2) of the glass substrate is different from the refractive index (nl) in vacuum, a reflection loss occurs as shown by the following equation.

R” (n2  n+ / n+ 十rl )2(光の
入射角が0度の場合) 入射角度が大きくなるに従って、反射ロスは増加し、次
の式で示される臨界角度0以上では全反射が起こり、ガ
ラス基板の側面から外部に射出する。
R” (n2 n+ / n+ 10rl)2 (when the angle of incidence of light is 0 degrees) As the angle of incidence increases, the reflection loss increases, and total reflection occurs at a critical angle of 0 or more shown by the following formula. , is injected to the outside from the side of the glass substrate.

θ=si「’ (n+/ n2) 以上の理由により従来の粉末蛍光体を使用した電子線セ
ンサでは50%程度しかCL光を取り出せない。
θ=si' (n+/n2) For the above reasons, an electron beam sensor using a conventional powder phosphor can only extract about 50% of the CL light.

一方、蛍光体が単結晶の場合、ガラスよりも屈折率が大
きいために更に反射損失が大きくなる。
On the other hand, when the phosphor is a single crystal, its refractive index is higher than that of glass, so the reflection loss is even greater.

例えば屈折率が1.8のYAG単結晶を素子として使用
した場合では光電子倍増管(フォトマル)で検出される
光が実際に発光した光の25%以下になる。
For example, when a YAG single crystal with a refractive index of 1.8 is used as an element, the light detected by a photomultiplier is less than 25% of the actually emitted light.

従って、光を多く取り出せる粉末蛍光体の電子線センサ
のほうが有利である。しかし、蛍光体の粉末では真空系
に接するガラスの表面で反射した光が、再度蛍光体面で
散乱を次々繰り返すために見掛は上置光寿命が長くなり
、解像度が低下するという問題があった。又、蛍光体の
粉末を素子に使用した場合は、紫外線や電子線によって
劣化するために数年ごとに交換しなければならないとい
う問題があった。
Therefore, an electron beam sensor made of powdered phosphor, which can extract a large amount of light, is more advantageous. However, with phosphor powder, the light reflected from the glass surface in contact with the vacuum system is repeatedly scattered again by the phosphor surface, resulting in an apparent longer light lifetime and lower resolution. . Furthermore, when phosphor powder is used in an element, there is a problem in that it deteriorates due to ultraviolet rays or electron beams, so it must be replaced every few years.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

電子線センサとして耐久力のある酸化物単結晶電子線セ
ンサの形状・表面状態を改良することにより高効率化し
、耐久力のある高効率電子線センサを提供しようとする
ものである。
The present invention aims to improve the efficiency of an oxide single crystal electron beam sensor, which is durable as an electron beam sensor, by improving its shape and surface condition, thereby providing a durable and highly efficient electron beam sensor.

口9発明の構成 〔課題を解決するための手段〕 本発明は、酸化物単結晶からなる電子線センサの形状を
円錐台状とし、該単結晶素子の電子線照射面にはAg(
fi)をメタルバックコーティングすることにより反射
ロスの少ない解像度の高い、しかも寿命の長い電子線セ
ンサ素子を提供しようとするものである。
9. Structure of the Invention [Means for Solving the Problems] The present invention provides an electron beam sensor made of an oxide single crystal having a truncated conical shape, and the electron beam irradiation surface of the single crystal element is coated with Ag (
The present invention attempts to provide an electron beam sensor element with low reflection loss, high resolution, and long life by applying a metal back coating to fi).

即ち本発明は、蛍光イオンをドープした酸化物単結晶を
検出子として用いる電子線センサにおいて、酸化物単結
晶電子線センサ素子の形状を円錐台状にすることを特徴
とする電子線センサ、及び前記電子線センサにおいて、
円錐台状の酸化物単結晶電子線センサ素子の電子線照射
面にAg(#)をコーティングしたことを特徴とする電
子線センサを提供するものである。
That is, the present invention provides an electron beam sensor using an oxide single crystal doped with fluorescent ions as a detector, wherein the oxide single crystal electron beam sensor element has a truncated conical shape; In the electron beam sensor,
The present invention provides an electron beam sensor characterized in that the electron beam irradiation surface of a truncated conical oxide single crystal electron beam sensor element is coated with Ag (#).

〔作用〕[Effect]

電子線センサの表面に垂直な方向に進むほとんどの光(
反射ロス8%を除く)が出光面から射出し、水平方向に
近い角度で進む光も円錐台状の側部傾斜面で垂直方向へ
と修正されて出光面から射出する。蛍光体の粉末を使用
した場合に比べ散乱が無いため、見掛は上の蛍光寿命が
長くない。
Most of the light traveling in the direction perpendicular to the surface of the electron beam sensor (
(excluding reflection loss of 8%) is emitted from the light exit surface, and light traveling at an angle close to the horizontal direction is also corrected in the vertical direction by the truncated conical side inclined surface and exits from the light exit surface. Since there is no scattering compared to when phosphor powder is used, the apparent lifetime of the fluorescence is not as long.

又、単結晶の場合、粉末に比べて結晶欠陥が少ないので
、結晶内でのエネルギーの伝播がスムーズになり、有効
に発光イオンを励起できるため、粉末に比べ単結晶の場
合、づろ光効率の良い素子が得られる。又、メタルバッ
クコート側に放出された光は、Agメタルバックコート
膜で反射されて出光面から出射するがAgはAIより反
射率が高いためAIよりも多くの光が得られる。
In addition, single crystals have fewer crystal defects than powders, so energy propagates smoothly within the crystal and can effectively excite light-emitting ions, so single crystals have lower optical efficiency than powders. A good element can be obtained. Further, the light emitted to the metal back coat side is reflected by the Ag metal back coat film and exits from the light exit surface, but since Ag has a higher reflectance than AI, more light can be obtained than with AI.

〔実施例〕〔Example〕

次に本発明の実施例を図面を用いて説明する。 Next, embodiments of the present invention will be described using the drawings.

本実施例では蛍光イオンとしてCe3+イオンを含有す
る酸化物単結晶であるCezY(1−χ)AIO,単結
晶(以下Ce : YAPと記す)を用いた。原料には
純度が99、99%のY2 (hとA12o3、及びC
eO2を用イcefi度1.0at%の単結晶を育成し
た。第1図に本発明による電子線センサ素子の正面断面
図を示す。出光面1が9φで出光面1と側部傾斜面2の
なす角度が33度とした。厚みが2鳳醜の円錐台状のC
e : YAP単結晶の素子の全面を鏡面研磨加工した
後、入射面3と側部傾斜面2にAgを500オングスト
ロームの厚さにAgメタルバックコート4した。この試
料の入射面には、屈折率1.38のMgF2をλ/4(
本実施例ではλ= 0.38μm)蒸着して反射損失が
最小になるようにした。前記の本実施例のAgメタルバ
ックコート4した円錐台状のCe : YAP単結晶6
の電子センサ素子を用いた試料(a)と、比較試料とし
て、本発明による素子にAIのメタルバックコートした
試料(b)と直径9■、厚さ2+smの全面を鏡面仕上
げされた円板状のCe : YAP単結晶7を用いた試
料(c)と市販されている粉末蛍光体9の電子線センサ
素子(P−47)を用いた試料(d)により比較した。
In this example, CezY(1-χ)AIO, a single crystal oxide (hereinafter referred to as Ce:YAP), which is an oxide single crystal containing Ce3+ ions, was used as the fluorescent ion. The raw materials include Y2 (h, A12o3, and C
A single crystal with a cefi degree of 1.0 at% was grown using eO2. FIG. 1 shows a front sectional view of an electron beam sensor element according to the present invention. The light emitting surface 1 was 9φ, and the angle between the light emitting surface 1 and the side inclined surface 2 was 33 degrees. A truncated conical C with a thickness of 2 mm
e: After mirror-polishing the entire surface of the YAP single crystal element, the incident surface 3 and side inclined surfaces 2 were coated with Ag metal back coat 4 to a thickness of 500 angstroms. MgF2 with a refractive index of 1.38 was placed on the incident surface of this sample at λ/4 (
In this example, λ=0.38 μm) was deposited to minimize reflection loss. The truncated cone-shaped Ce: YAP single crystal 6 coated with Ag metal back coat 4 of this example
A sample (a) using an electronic sensor element according to the present invention, and a comparative sample (b) in which an element according to the present invention is coated with an AI metal back coat, and a disk-shaped sample with a diameter of 9 cm and a thickness of 2+ cm with a mirror finish on the entire surface. Ce: A comparison was made between a sample (c) using YAP single crystal 7 and a sample (d) using a commercially available electron beam sensor element (P-47) of powdered phosphor 9.

このP−47の組成はCe z Y(2−z )Sin
5でAlメタルバックコート10がなされている。これ
らの試料について゛加速電圧10KVの電子線を照射し
て電子線蛍光強度(CL)を測定した。
The composition of this P-47 is Cez Y(2-z)Sin
5 has an Al metal back coat 10. These samples were irradiated with an electron beam at an acceleration voltage of 10 KV, and the electron beam fluorescence intensity (CL) was measured.

その結果を第5図に示す。両面を鏡面研磨した円板状の
Ce : YAP単結晶の素子(試料(C))の開光強
度を1とした場合、本実施例の素子(試料(a))で6
、Atメタルバックコート10シた素子(試料(b))
で5゜5、P−47(試料d)で2であった。
The results are shown in FIG. When the open light intensity of a disk-shaped Ce:YAP single crystal element (sample (C)) with mirror polished surfaces on both sides is 1, the element of this example (sample (a)) has an intensity of 6.
, At metal back coated element (sample (b))
It was 5°5 for P-47 (sample d) and 2 for P-47 (sample d).

第5図に示すように電子線照射による劣化は、P−47
のみに見られ、単結晶では全く見られなかった。
As shown in Figure 5, the deterioration due to electron beam irradiation is
It was observed only in single crystals, and was not observed at all in single crystals.

本発明による素子とP−47をSEM装置に取り付けて
像を観察したところP−47よりも像が明るく解像度が
良くなった。
When the element according to the present invention and P-47 were attached to a SEM apparatus and images were observed, the images were brighter and had better resolution than P-47.

ハ、開明の効果 〔づ6明の効果〕 以上述べたごとく本発明によれば、電子線センサの形状
を円錐台状にしてAgメタルバックコートすることによ
って粉末蛍光体に比べて耐久性のある高効率な電子線セ
ンサが得られる。
C. Bright effect [6. Bright effect] As described above, according to the present invention, the shape of the electron beam sensor is shaped like a truncated cone, and by coating it with an Ag metal back coat, it is more durable than powdered phosphor. A highly efficient electron beam sensor can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の電子線センサ素子を示す
正面断面図。 第2図は、本発明の他の一実施例を示し電子線センサ素
子にAtメタルバックコート膜を蒸着した状態の正面断
面図。 第3図は、従来用いられていた形状の円板状の電子綿セ
ンサ素子を示す正面断面図でAgメタルバックコートが
施されている。 第4図は、従来用いられていた粉末蛍光体(P−47)
の電子線センサの正面断面図。 第5図は、本実施例と比較例の電子線蛍光強度(CL)
の時間変化を示すグラフ。 1・・・出光面、2・・・側部傾斜面、3・・・入射面
、4・・・Agメタルバックコート、5・・・MgF2
無反射コート膜、6・・・円錐台状のCe : YAP
単結晶、7・・・円板状のCe:YAP単結晶、8・・
・ガラス基板、9・・・粉末蛍光体、10・・・Atメ
タルバックコート。 試料(a)・・・本発明の実施例のAgメタルバックコ
ートした円錐台状のCe : YAP単結晶の電子線セ
ンサ素子。 試料(b)・・・試料(a)と同一材質で同一形状に仕
上げられた単結晶にAtメタルバックコートを施した円
錐台状のCe : YAP単結晶の電子線センサ素子。 試料(c)・・・試料(a)と同一材質で直径9 ma
l、厚さ2IIImの全面鏡面仕上げされた円板状のC
e : YAP単結晶の電子線センサ素子。 試料(d)・・・市販されている蛍粉末光体の電子線セ
ンサ素子(P−47)。
FIG. 1 is a front sectional view showing an electron beam sensor element according to an embodiment of the present invention. FIG. 2 is a front cross-sectional view showing another embodiment of the present invention, in which an At metal back coat film is deposited on an electron beam sensor element. FIG. 3 is a front sectional view showing a conventionally used disc-shaped electronic cotton sensor element, which is coated with an Ag metal back coat. Figure 4 shows the conventionally used powder phosphor (P-47).
FIG. 2 is a front sectional view of an electron beam sensor. Figure 5 shows the electron beam fluorescence intensity (CL) of this example and comparative example.
A graph showing changes over time. DESCRIPTION OF SYMBOLS 1... Light exit surface, 2... Side inclined surface, 3... Incident surface, 4... Ag metal back coat, 5... MgF2
Anti-reflection coating film, 6... truncated conical Ce: YAP
Single crystal, 7...Disc-shaped Ce:YAP single crystal, 8...
-Glass substrate, 9...Powder phosphor, 10...At metal back coat. Sample (a): A truncated cone-shaped Ce:YAP single crystal electron beam sensor element coated with an Ag metal backcoat according to an example of the present invention. Sample (b): A truncated cone-shaped Ce: YAP single crystal electron beam sensor element made of the same material and finished in the same shape as sample (a) and coated with an At metal back coat. Sample (c)...Same material as sample (a), diameter 9ma
L, 2IIIm thick disk-shaped C with mirror finish on the entire surface
e: YAP single crystal electron beam sensor element. Sample (d): A commercially available phosphor powder electron beam sensor element (P-47).

Claims (1)

【特許請求の範囲】 1、蛍光イオンをドープした酸化物単結晶を検出子とし
て用いる電子線センサにおいて、酸化物単結晶電子線セ
ンサ素子の形状を円錐台状にすることを特徴とする電子
線センサ。 2、請求項第1項記載の電子線センサにおいて、円錐台
状の酸化物単結晶電子線センサ素子の電子線照射面にA
g(銀)をコーティングしたことを特徴とする電子線セ
ンサ。
[Claims] 1. An electron beam sensor using an oxide single crystal doped with fluorescent ions as a detector, characterized in that the oxide single crystal electron beam sensor element has a truncated conical shape. sensor. 2. In the electron beam sensor according to claim 1, A is provided on the electron beam irradiation surface of the truncated cone-shaped oxide single crystal electron beam sensor element.
An electron beam sensor characterized by being coated with g (silver).
JP1169256A 1989-06-29 1989-06-29 Electron beam sensor Pending JPH0334248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1169256A JPH0334248A (en) 1989-06-29 1989-06-29 Electron beam sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1169256A JPH0334248A (en) 1989-06-29 1989-06-29 Electron beam sensor

Publications (1)

Publication Number Publication Date
JPH0334248A true JPH0334248A (en) 1991-02-14

Family

ID=15883140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1169256A Pending JPH0334248A (en) 1989-06-29 1989-06-29 Electron beam sensor

Country Status (1)

Country Link
JP (1) JPH0334248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654104B2 (en) 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9654104B2 (en) 2007-07-17 2017-05-16 Apple Inc. Resistive force sensor with capacitive discrimination

Similar Documents

Publication Publication Date Title
US7349093B2 (en) Fluorescence measurement apparatus
JP2003521671A (en) Composite nanoluminescent screen for radiation detection
JP5833645B2 (en) Fiber optic phosphor screen with angle filter
KR101701071B1 (en) Electron microscope and electron beam detector
EP0403802A2 (en) X-ray image intensifier and method of manufacturing input screen
JPH0334248A (en) Electron beam sensor
JPH07209495A (en) X-ray image amplifier
JPS62235600A (en) Radiation conversion screen
US4598228A (en) High resolution output structure for an image tube which minimizes Fresnel reflection
JP3145643B2 (en) Fiber optic probe
US5219606A (en) Method of manufacturing phosphor screen for intensifier
WO2013168488A1 (en) Charged particle beam microscope
CN113454750A (en) Method for manufacturing phosphor panel, image intensifier, and scanning electron microscope
JPH039287A (en) Electron beam sensor
JP2001516888A (en) Scintillation detector, refractive coating for scintillator, and process for producing the coating
JPH03129642A (en) Cathode luminescent screen for cathode-ray tube
JPS59158058A (en) Phosphor screen
JPS58223250A (en) Reflected electron diffraction unit
TW202236346A (en) Light guide, electron ray detector, and charged particle device
JPH03233977A (en) Electron beam sensor
JPS59139025A (en) Fluorescent screen and its production
JPS6030040A (en) X-ray fluorescent multiplier tube
JPS60133638A (en) Incandescent screen
JPH04154032A (en) X-ray fluorescent image intensifying tube
JPH0695160B2 (en) X-ray mirror