JPH0333903B2 - - Google Patents

Info

Publication number
JPH0333903B2
JPH0333903B2 JP58154182A JP15418283A JPH0333903B2 JP H0333903 B2 JPH0333903 B2 JP H0333903B2 JP 58154182 A JP58154182 A JP 58154182A JP 15418283 A JP15418283 A JP 15418283A JP H0333903 B2 JPH0333903 B2 JP H0333903B2
Authority
JP
Japan
Prior art keywords
coal
pressure
gas
temperature
combustion furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58154182A
Other languages
Japanese (ja)
Other versions
JPS6069410A (en
Inventor
Takao Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15418283A priority Critical patent/JPS6069410A/en
Publication of JPS6069410A publication Critical patent/JPS6069410A/en
Publication of JPH0333903B2 publication Critical patent/JPH0333903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【発明の詳細な説明】 本発明は石炭焚きコンバインドプラント、特に
そのプラント効率の向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal-fired combined plant, and more particularly to improving the efficiency of the plant.

従来、石炭による発電方式としては、(イ)微粉炭
燃焼、ストーカ燃焼、流動床燃焼方式等のボイラ
と蒸気タービンとの組合せによる発電プラント、
(ロ)石炭ガス化炉とガスタービンと蒸気タービンと
の組合せによる石炭ガス化複合発電プラント等が
あり、高効率を目指すものとして(ロ)の石炭ガス化
複合発電プラントがクローズアツプされている。
即ち、微粉砕機で粉砕された微粉炭を石炭ガス化
炉でガスに生成し、このガスを燃焼炉により高温
ガスとしてガスタービンに送り発電した後、その
排熱エネルギを排熱ボイラで蒸気化して蒸気ター
ビンを駆動して発電するものである。
Conventionally, power generation methods using coal include (a) power generation plants using a combination of boilers and steam turbines such as pulverized coal combustion, stoker combustion, and fluidized bed combustion methods;
(b) There are coal gasification combined cycle plants that combine a coal gasifier, gas turbine, and steam turbine, and (b) coal gasification combined cycle plants are attracting attention as they aim to achieve high efficiency.
In other words, pulverized coal is pulverized in a pulverizer and turned into gas in a coal gasifier, and this gas is sent to a gas turbine as high-temperature gas in a combustion furnace to generate electricity, and then the waste heat energy is vaporized in a waste heat boiler. This system drives a steam turbine to generate electricity.

上記石炭ガス化複合発電プラントはガスタービ
ンのガス温度を高くすることにより効率が高い。
The coal gasification combined cycle power plant described above has high efficiency by increasing the gas temperature of the gas turbine.

しかしながら、石炭ガス化炉にて発生した可燃
ガスはCO、H2、ハイドロカーボンを主成分と
し、多量の粉塵を含有しているので、そのままガ
スタービン燃料として使用できない。そのため、
サイクロン等のような除塵器を用いて除塵を行な
つている。そして石炭ガスは高温高圧となるの
で、除塵器が粉塵による熱的損傷を受けやすく集
塵が困難になりやすい。そこでガス化されたガス
の温度、圧力をボイラ等で一旦減温した後、除塵
され、更にガスタービンに導かれ燃焼し、仕事を
した後、排ガスボイラに導かれる。
However, the combustible gas generated in the coal gasifier is mainly composed of CO, H 2 and hydrocarbon and contains a large amount of dust, so it cannot be used as a gas turbine fuel as it is. Therefore,
Dust is removed using a dust remover such as a cyclone. Since coal gas is at high temperature and high pressure, the dust remover is susceptible to thermal damage due to dust, making it difficult to collect dust. After the temperature and pressure of the gasified gas are lowered in a boiler or the like, dust is removed, and the gas is further led to a gas turbine where it is combusted to perform work and then led to an exhaust gas boiler.

上記のように高温の可燃ガスを一旦低温の蒸気
で冷却するため、もともと利用価値の高い高温エ
ネルギーの高効率が失われる。又、システムが非
常に複雑の割に効率の向上が顕著でない。
As mentioned above, since high-temperature combustible gas is once cooled with low-temperature steam, the high efficiency of high-temperature energy, which originally has high utility value, is lost. Furthermore, although the system is very complex, the improvement in efficiency is not significant.

本発明は石炭焚きコンバインドプラントにおけ
るガスタービンとの最適組合せにより、石炭ガス
化炉以上の高効率を可能とする複合発電プラント
を提供することを目的とするものである。
An object of the present invention is to provide a combined power generation plant that enables higher efficiency than that of a coal gasifier by optimal combination with a gas turbine in a coal-fired combined plant.

即ち本発明は、微粉炭を高温高圧空気で燃焼炉
に導入して燃焼し、生成した燃焼ガスをガスター
ビンに送つて発電を行ない、その排ガスによつて
蒸気を発生させ、同蒸気により蒸気タービンで発
電を行なう石炭焚きコンバインドプラントにおい
て、前記ガスタービンと直結した空気圧縮機と、
この空気圧縮機からの高温高圧空気の一部分を一
次空気として導入し石炭バンカからの石炭を乾燥
粉砕して微粉炭とする高圧ミルと、この高圧ミル
からの高温高圧空気と微粉炭とを導入して燃焼す
る石炭灰溶融燃焼炉と、この石炭灰溶融燃焼炉に
連設された高圧石炭燃焼炉内に設けられ前記石炭
で生成した燃焼ガス中の溶融灰を分離して第一次
除塵を行なう炉内サイクロンと、前記高圧石炭燃
焼炉の下部に設けられ前記空気圧縮機からの高温
高圧空気の残りの部分を前記溶融灰と熱交換せし
める溶融灰冷却器と、前記高圧石炭燃焼炉内に前
記炉内サイクロンの上方において開口し前記溶融
灰冷却器からの二次空気を燃焼ガスと混合して前
記高圧石炭燃焼炉の出口ガス温度を所要温度に減
温する二次空気噴出ノズルと、前記高圧石炭燃焼
炉の出口に設けられ排出された燃焼ガスの第二次
除塵を行ない前記ガスタービンへ導くサイクロン
とを有することを特徴とする石炭焚きコンバイン
ドプラントにある。
That is, in the present invention, pulverized coal is introduced into a combustion furnace using high-temperature, high-pressure air and combusted, the generated combustion gas is sent to a gas turbine to generate electricity, the exhaust gas is used to generate steam, and the steam is used to power a steam turbine. In a coal-fired combined plant that generates electricity, an air compressor directly connected to the gas turbine;
A high-pressure mill introduces a portion of the high-temperature, high-pressure air from this air compressor as primary air and dry-pulverizes the coal from the coal bunker to produce pulverized coal, and the high-temperature, high-pressure air and pulverized coal from this high-pressure mill are introduced. A coal ash melting combustion furnace that burns coal ash and a high pressure coal combustion furnace connected to the coal ash melting combustion furnace are installed to separate the molten ash in the combustion gas generated from the coal and perform primary dust removal. an in-furnace cyclone; a molten ash cooler provided at the lower part of the high-pressure coal combustion furnace for causing the remaining portion of the high-temperature and high-pressure air from the air compressor to exchange heat with the molten ash; a secondary air jet nozzle that opens above the in-furnace cyclone and mixes secondary air from the molten ash cooler with combustion gas to reduce the temperature of the outlet gas of the high-pressure coal combustion furnace to a required temperature; The coal-fired combined plant has a cyclone installed at the outlet of the coal combustion furnace to perform secondary dust removal of the discharged combustion gas and guide it to the gas turbine.

以下、本発明の実施例を図面と共に詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示す系統図であつ
て、各構成及びその作用は下記の通りである。
FIG. 1 is a system diagram showing one embodiment of the present invention, and each structure and its operation are as follows.

大気条件の空気はガスタービン6と同軸で連結
された空気圧縮器15により10〜30ataの高圧に
圧縮され、また断熱圧縮効果により空気温度は
250〜500℃に達する。高温高圧になつた空気は高
圧ミル18及び2次空気噴出ノズル3に各々連絡
管22を通り分配される。その分配割合は連絡管
22に設けられた流量分配ダンパ16により石炭
の乾燥粉砕に必要な流量に応じて分配される。
Air under atmospheric conditions is compressed to a high pressure of 10 to 30 ata by an air compressor 15 coaxially connected to the gas turbine 6, and the air temperature decreases due to the adiabatic compression effect.
Reaching 250-500℃. The high-temperature, high-pressure air is distributed to the high-pressure mill 18 and the secondary air jet nozzle 3 through communication pipes 22, respectively. The distribution ratio is distributed by a flow rate distribution damper 16 provided in the communication pipe 22 according to the flow rate required for drying and pulverizing the coal.

高圧ミル18に導かれた空気は石炭バンカ17
より導入された原炭を高圧ミル18にて粉砕して
微粉炭として乾燥した後、コールパイプ19を通
り石炭灰溶融燃焼炉2に微粉炭を導入する作用を
する。微粉炭は石炭灰溶融燃焼炉2で高温高圧に
て燃焼を行ない、燃焼ガスを生成する。そして、
燃焼ガスは石炭灰溶融燃焼炉2に連設された高圧
石炭燃焼炉1内に設けられた炉内サイクロン20
の炉壁接線方向に第2図に示すように高速にて噴
出される。このため、石炭灰溶融燃焼炉2で大部
分の灰は溶融状態になり、石炭燃焼炉1の炉壁に
沿つて下部ホツパー23へと流れ落ち、その他の
溶融灰は炉内サイクロン20により取除かれ同様
に下部ホツパー23へ落下し、第1次除塵が行な
われる。これらの溶融灰は高温であるので、下部
ホツパー23の底部に設けられた溶融灰冷却器4
を通つて、前記した2次空気噴出ノズル3に導か
れる2次空気と熱交換を行つた後、適当な固さに
まで調整され、排出される。
The air led to the high pressure mill 18 is fed to the coal bunker 17.
After the raw coal introduced from the pulverized coal is pulverized in a high-pressure mill 18 and dried as pulverized coal, the pulverized coal is introduced into the coal ash melting furnace 2 through a coal pipe 19. Pulverized coal is combusted at high temperature and pressure in a coal ash melting combustion furnace 2 to generate combustion gas. and,
Combustion gas is passed through an in-furnace cyclone 20 installed in a high-pressure coal combustion furnace 1 connected to a coal ash melting combustion furnace 2.
It is ejected at high speed in the tangential direction of the furnace wall as shown in FIG. Therefore, most of the ash in the coal ash melting and combustion furnace 2 becomes molten and flows down along the furnace wall of the coal ash combustion furnace 1 to the lower hopper 23, and the remaining molten ash is removed by the in-furnace cyclone 20. Similarly, the dust falls to the lower hopper 23 and primary dust removal is performed. Since these molten ash have a high temperature, a molten ash cooler 4 provided at the bottom of the lower hopper 23 is used.
After exchanging heat with the secondary air introduced to the secondary air jet nozzle 3, the air is adjusted to an appropriate hardness and discharged.

一方、石炭灰溶融燃焼炉2及び炉内サイクロン
20により灰分を除去された高温高圧の燃焼ガス
は、高圧石炭燃焼炉1の上部へと移動し、上部に
設けられた2次空気噴出ノズル3より導入された
高圧空気と混合し減温される。混合後のガス温度
はガスタービン6の入口温度の許容量に応じて
1000゜〜1200℃ないし1300゜〜1500℃の適切な値に
制御される。
On the other hand, the high-temperature, high-pressure combustion gas from which ash has been removed by the coal ash melting combustion furnace 2 and the in-furnace cyclone 20 moves to the upper part of the high-pressure coal combustion furnace 1 and passes through the secondary air jet nozzle 3 provided at the upper part. The temperature is reduced by mixing with the introduced high-pressure air. The gas temperature after mixing depends on the allowable inlet temperature of the gas turbine 6.
It is controlled to an appropriate value of 1000° to 1200°C to 1300° to 1500°C.

その後、燃焼ガスは高圧石炭燃焼炉1の出口に
設けられた2〜3段の高温マルチサイクロン5に
よりガスタービン6の許容できる範囲である数
mg/Nm3以下、例えば10〜5mg/Hm3のばいじん
濃度まで第2次除塵される。ほぼ完全に除塵され
た高温高圧の燃焼ガスはガスタービン66に導か
れ、発電機7を作動させた後、排ガスダクト24
へと排出される。
Thereafter, the combustion gas is passed through a two- to three-stage high-temperature multi-cyclone 5 provided at the outlet of the high-pressure coal combustion furnace 1 to a number within the allowable range of the gas turbine 6.
Secondary dust removal is performed to a dust concentration of mg/Nm 3 or less, for example 10 to 5 mg/Hm 3 . The high-temperature, high-pressure combustion gas from which dust has been almost completely removed is led to the gas turbine 66, operates the generator 7, and then passes through the exhaust gas duct 24.
is discharged to.

次いでガスタービン6の排ガスは排熱ボイラ8
へ送られ蒸気タービン9を駆動する蒸気を発生さ
せる。蒸気タービン9の駆動によりS/T発電機
10が回転し発電する。S/T発電機10を作動
させた蒸気は蒸気タービン9から排出された復水
器11で凝縮され、復水ポンプ12を経て脱気器
13で脱気され排熱ボイラ8へ回収される。
Next, the exhaust gas from the gas turbine 6 is sent to the exhaust heat boiler 8.
It generates steam that is sent to the steam turbine 9 and drives the steam turbine 9. Driven by the steam turbine 9, the S/T generator 10 rotates and generates electricity. The steam that operated the S/T generator 10 is discharged from the steam turbine 9 and is condensed in the condenser 11, passes through the condensate pump 12, is degassed in the deaerator 13, and is recovered to the waste heat boiler 8.

更に必要に応じて排ガスダクト24を通る排ガ
スから脱硫、脱硝する装置21を連設して煙突1
4から排出される。
Furthermore, if necessary, a device 21 for desulfurizing and denitrating the exhaust gas passing through the exhaust gas duct 24 is connected to the chimney 1.
It is discharged from 4.

なお、上記石炭焚きコンバインドプラントは、
空気及び燃焼ガスは高圧であるので、高圧に耐え
る構造が必要となることは言うまでもない。例え
ば石炭燃焼炉1は耐火材又はレンガ等を内張りし
た10〜30ataに耐える耐圧容器として構成される。
The above coal-fired combined plant is
Since air and combustion gas are under high pressure, it goes without saying that a structure that can withstand high pressure is required. For example, the coal combustion furnace 1 is configured as a pressure-resistant container lined with refractory material, bricks, etc. and capable of withstanding 10 to 30 ATA.

また、2次空気噴出ノズル3及び石炭灰溶融燃
焼炉2への適切な空気吹込みにより炉内で脱硝も
ある程度可能となる。
Further, by appropriately blowing air into the secondary air injection nozzle 3 and the coal ash melting combustion furnace 2, denitrification can also be carried out to some extent within the furnace.

上記のように本発明の石炭焚きコンバインドプ
ラントを構成したので下記の効果が奏成される。
Since the coal-fired combined plant of the present invention is configured as described above, the following effects are achieved.

(1) 石炭燃焼ガスの持つ高温高圧を直接タービン
動力として取出すことにより、従来型の石炭焚
きボイラと蒸気タービン発電機の組合せによる
火力炉プラント及び石炭ガス化炉プラント等で
得られるプラント効率よりも高いプラント効率
が維持できる。
(1) By extracting the high temperature and high pressure of coal combustion gas directly as turbine power, the plant efficiency is higher than that obtained with a thermal furnace plant or coal gasifier plant that combines a conventional coal-fired boiler and a steam turbine generator. High plant efficiency can be maintained.

(2) 石炭ガス化プラントに比較してプラント全体
がシンプルとなる。
(2) The entire plant is simpler than a coal gasification plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す石炭焚きコン
バインドプラントの系統図、第2図は第1図のA
−A矢視断面図である。 1……高圧石炭燃焼炉、2……石炭灰溶融燃焼
炉、3……2次空気噴出ノズル、4……溶融灰冷
却器、5……高温マルチサイクロン、6……ガス
タービン、7……発電機、8……排熱ボイラ、9
……蒸気タービン、10……S/T発電機、11
……復水器、12……復水ポンプ、13……脱気
器、14……煙突、15……空気圧縮器、16…
…流量分配ダンパ、17……石炭バンカ、18…
…高圧ミル、19……コールパイプ、20……炉
内サイクロン、21……脱硫、脱硝装置、22…
…連絡管、23……下部ホツパ、24……排ガス
ダクト。
Figure 1 is a system diagram of a coal-fired combined plant showing one embodiment of the present invention, and Figure 2 is A of Figure 1.
-A cross-sectional view. 1... High pressure coal combustion furnace, 2... Coal ash melting combustion furnace, 3... Secondary air jet nozzle, 4... Molten ash cooler, 5... High temperature multi-cyclone, 6... Gas turbine, 7... Generator, 8...Exhaust heat boiler, 9
...Steam turbine, 10...S/T generator, 11
... Condenser, 12 ... Condensate pump, 13 ... Deaerator, 14 ... Chimney, 15 ... Air compressor, 16 ...
...Flow distribution damper, 17...Coal bunker, 18...
...High pressure mill, 19... Coal pipe, 20... In-furnace cyclone, 21... Desulfurization, denitration equipment, 22...
...Communication pipe, 23...Lower hopper, 24...Exhaust gas duct.

Claims (1)

【特許請求の範囲】[Claims] 1 微粉炭を高温高圧空気で燃焼炉に導入して燃
焼し、生成した燃焼ガスをガスタービンに送つて
発電を行ない、その排ガスによつて蒸気を発生さ
せ、同蒸気により蒸気タービンで発電を行なう石
炭焚きコンバインドプラントにおいて、前記ガス
タービンと直結した空気圧縮機と、この空気圧縮
機からの高温高圧空気の一部分を一次空気として
導入し石炭バンカからの石炭を乾燥粉砕して微粉
炭とする高圧ミルと、この高圧ミルからの高温高
圧空気と微粉炭とを導入して燃焼する石炭灰溶融
燃焼炉と、この石炭灰溶融燃焼炉に連設された高
圧石炭燃焼炉内に設けられ前記石炭で生成した燃
焼ガス中の溶融灰を分離して第一次除塵を行なう
炉内サイクロンと、前記高圧石炭燃焼炉の下部に
設けられ前記空気圧縮機からの高温高圧空気の残
りの部分を前記溶融灰と熱交換せしめる溶融灰冷
却器と、前記高圧石炭燃焼炉内に前記炉内サイク
ロンの上方において開口し前記溶融灰冷却器から
の二次空気を燃焼ガスと混合して前記高圧石炭燃
焼炉の出口ガス温度を所要温度に減温する二次空
気噴出ノズルと、前記高圧石炭燃焼炉の出口に設
けられ排出された燃焼ガスの第二次除塵を行ない
前記ガスタービンへ導くサイクロンとを有するこ
とを特徴とする石炭焚きコンバインドプラント。
1 Pulverized coal is introduced into a combustion furnace using high-temperature, high-pressure air and combusted, the generated combustion gas is sent to a gas turbine to generate electricity, the exhaust gas is used to generate steam, and the steam is used to generate electricity in a steam turbine. In a coal-fired combined plant, there is an air compressor directly connected to the gas turbine, and a high-pressure mill that introduces a portion of the high-temperature, high-pressure air from the air compressor as primary air to dry and crush the coal from the coal bunker to produce pulverized coal. A coal ash melting combustion furnace that introduces and burns high-temperature, high-pressure air and pulverized coal from this high-pressure mill, and a high-pressure coal combustion furnace that is connected to this coal ash melting and combustion furnace. an in-furnace cyclone that separates the molten ash in the combustion gas and performs primary dust removal; a molten ash cooler for heat exchange; and a molten ash cooler that opens in the high-pressure coal combustion furnace above the in-furnace cyclone and mixes secondary air from the molten ash cooler with combustion gas to produce outlet gas from the high-pressure coal combustion furnace. It is characterized by comprising a secondary air jet nozzle that reduces the temperature to a required temperature, and a cyclone that is provided at the outlet of the high-pressure coal combustion furnace to perform secondary dust removal of the discharged combustion gas and guide it to the gas turbine. A coal-fired combined plant.
JP15418283A 1983-08-25 1983-08-25 Coal burning combined plant Granted JPS6069410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15418283A JPS6069410A (en) 1983-08-25 1983-08-25 Coal burning combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15418283A JPS6069410A (en) 1983-08-25 1983-08-25 Coal burning combined plant

Publications (2)

Publication Number Publication Date
JPS6069410A JPS6069410A (en) 1985-04-20
JPH0333903B2 true JPH0333903B2 (en) 1991-05-20

Family

ID=15578625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15418283A Granted JPS6069410A (en) 1983-08-25 1983-08-25 Coal burning combined plant

Country Status (1)

Country Link
JP (1) JPS6069410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220114322A (en) * 2021-02-08 2022-08-17 한국전력공사 Modified coal-fired power generation system and power generation method using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615925B2 (en) * 1986-08-29 1994-03-02 三菱重工業株式会社 Combustion device for coal-fired MHD power generation
JP5986895B2 (en) * 2012-11-12 2016-09-06 三菱重工業株式会社 boiler
CN106168376B (en) * 2016-08-29 2019-01-04 营口绿源锅炉有限责任公司 A kind of twin furnace coal dust gasification low nitrogen burning Industrial Boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220114322A (en) * 2021-02-08 2022-08-17 한국전력공사 Modified coal-fired power generation system and power generation method using the same

Also Published As

Publication number Publication date
JPS6069410A (en) 1985-04-20

Similar Documents

Publication Publication Date Title
Quaak et al. Energy from biomass: a review of combustion and gasification technologies
US3818869A (en) Method of operating a combined gasification-steam generating plant
US5937652A (en) Process for coal or biomass fuel gasification by carbon dioxide extracted from a boiler flue gas stream
US4590868A (en) Coal-fired combined plant
US5666801A (en) Combined cycle power plant with integrated CFB devolatilizer and CFB boiler
TWI422739B (en) Mild gasification combined-cycle powerplant
CN1162643C (en) Combined circular coal-burning power generating system and method adopting partial gasification and air preheating
JPH041428A (en) Power generation facilities
US4212160A (en) Combined cycle power plant using low Btu gas
EP2379679A1 (en) Mild gasification combined-cycle powerplant
CN108949209B (en) Powdery active coke, heat and electricity cogeneration system and process
IE880245L (en) Gas turbine power plant fired by a water-bearing fuel
US4346302A (en) Oxygen blown coal gasifier supplying MHD-steam power plant
JP5634100B2 (en) Fluidized bed drying apparatus and fluidized bed drying equipment
JP2011220541A (en) Boiler facility
JP2021143347A (en) Gasification furnace facility and method of operating the same
JPH0333903B2 (en)
JP7236194B2 (en) Gas turbine facility, gasification facility, and method of operating gas turbine facility
US5987874A (en) Method and apparatus for power generation based on char and a fluidized bed reactor
JP5812575B2 (en) Boiler equipment
JP3337276B2 (en) Fossil fuel gasification plant
JP7286504B2 (en) Gasification facility and gasification combined cycle facility equipped with the same
SU1758338A1 (en) Steam-gas plant fluidized-bed furnace
JP3788149B2 (en) Combined power generation system
Knoef et al. Energy from biomass