JPH0333795B2 - - Google Patents

Info

Publication number
JPH0333795B2
JPH0333795B2 JP60119844A JP11984485A JPH0333795B2 JP H0333795 B2 JPH0333795 B2 JP H0333795B2 JP 60119844 A JP60119844 A JP 60119844A JP 11984485 A JP11984485 A JP 11984485A JP H0333795 B2 JPH0333795 B2 JP H0333795B2
Authority
JP
Japan
Prior art keywords
plating
turn
corrosion resistance
annealing
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60119844A
Other languages
Japanese (ja)
Other versions
JPS61279696A (en
Inventor
Kazuhiko Yoshinari
Masanori Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11984485A priority Critical patent/JPS61279696A/en
Publication of JPS61279696A publication Critical patent/JPS61279696A/en
Publication of JPH0333795B2 publication Critical patent/JPH0333795B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は自動車のガソリンタンクやラジエータ
ーの外枠等に使用されているターンシートの製造
法に係り、その耐食性を飛躍的に高めることを目
的としたものである。 従来の技術 従来のターンシートは普通鋼の冷延薄板にター
ンメツキ(PbにSnを5〜15%程度添加したもの)
したもので、主として自動車のガソリンタンクや
ラジエーターの外枠として使用されているが、海
岸地方で使用する自動車や寒冷地で使用する自動
車は道路に使用する凍結防止剤の悪影響で腐食が
著しく、耐用年数が劣る結果をまねいている。 発明が解決しようとする問題点 このような状況から、ステンレスのように耐食
性があり、しかもハンダ性の良好なターンシート
が求められるようになつた。 しかしながら、ステンレスは耐食性はよいもの
のハンダ性が悪いところから、そのままではター
ンメツキはつきにくく、ターンシートは製造でき
ない。 問題点を解決するための手段 本発明はステンレス鋼等の含Cr鉄基材表面に
ターンメツキを施して耐食性とハンダ性を同時に
改良した耐食性にずくれたターンシートの製造方
法を提供するもので、ステンレス鋼板等へのター
ンメツキの密着性の問題をステンレス鋼板表面に
Ni系メツキを施こし、還元性雰囲気で500℃以上
に加熱することにより解決したものである。 すなわち、本発明は含Cr鉄基材の冷延薄板に
Ni又はNi合金メツキを施こし、次いで還元性雰
囲気で500℃以上に加熱し、引続きターンシート
を施こすことを特徴とする耐食性のすぐれたター
ンシートの製造方法である。 ところで、本出願人は先に特開昭59−140389
「ステンレス薄板の製造法」でステンレスの冷延
薄板にNiメツキを施こし、続いて連続焼鈍する
方法で耐食性の良いステンレス薄板を製造するこ
とを開示した。 このようにして製造したステンレス薄板は長時
間の焼鈍では母材のステンレスからCrが熱拡散
して表面にCrの不働態皮膜が形成されるが、適
当な雰囲気と温度と時間を設定することにより、
最表面はNi又はNi合金であり、Crはまだ表面に
まで拡散していない状態を得ることができるが、
かかる状態でターンを溶融した槽に通板すると密
着性の良好なターンメツキを形成することができ
るのである。 このようにNi又はNi合金のメツキ密着性がよ
く、しかもCrが最表面にまで拡散してこないメ
ツキ厚さと焼鈍条件は、各種ステンレス薄板およ
び含Cr耐熱鋼等の含Cr鉄基材のCr含有量により
異なる。 Cr含有量が多い鋼種は当然のことながら最表
面へのCr拡散速度が早く、他方、材質面から、
鋼種による焼鈍温度、時間もある程度制約され
る。 なお、オフラインにおけるメツキ密着性のため
の加熱処理の場合も同様の制約がある。 本発明における加熱雰囲気はH21%以上を含む
還元性雰囲気であり、加熱処理は連続処理である
から、均熱時間は約10〜60秒である。 本発明者らが上記制約条件を種々研究した結
果、第1図(均熱30秒間)に示すように、含Cr
鉄基材のCr含有量によつてきまる斜線よりNi又
はNi合金メツキ厚さが厚い方向にあればターン
メツキの密着性が良好であることが判明した。 即ち、図中◎印の斜線は、Cr量17%以上の鋼
種の場合を示し、代表的には、SUS304または、
SUS430がこれにあたる。 SUS304はオーステナイトステンレスのため焼
鈍温度は1000℃以上必要であり、その場合Crの
熱拡散速度が早くなるため、メツキ厚みが5μm
以上必要になる。 この場合メツキ厚みを厚くすることは、経済的
にコストが高くなるため、焼鈍の終つた製品板に
Niメツキしてメツキ密着性をよくするためのみ
の再熱処理し、ターンメツキする方法も可能であ
る(この製造方法を、オフライン製造という)。 このオフラインの場合でも、メツキ密着性をよ
くするには、500℃以上の熱処理が必要であり、
この際、メツキ厚は図に示すように0.01μmであ
ればよい。 SUS430の場合は、焼鈍時間が800℃〜900℃×
均熱時間10〜20秒であるため、Niメツキの厚み
は1μm程度必要である。 ○印の斜線は、Cr量13%程度のSUS410や
SUS409の低価格のステンレスの場合を示し、こ
の鋼種の焼鈍温度は、700〜800℃程度などで、
Niメツキ厚みは、0.05〜0.1μm程度であればよ
い。 さらに、Cr含有量の少ない(Cr=1%)の鋼
板の場合は、●印で示すように焼鈍温度が700〜
800℃であるので、Niメツキ量を薄くすることが
可能となる。 このようにターンシートに要求される耐食性に
応じて母材の含Cr鉄基材はSUS304からSUS430、
ないしSUS410まで自由に選べるし、場合によつ
てはこれまでのステンレス(Cr12%以上)より
もつと低Crの母材を使うことも可能である。し
たがつて本発明でいう耐食性のよいターンシート
を製造するための母材の含Cr鉄基材とはCr量1
%以上の薄鋼板と規定する。 また、本発明によるターンメツキ前処理条件
は、上述のようにCr含有量によつてNiメツキ量
が特定されるが、これによりNiメツキ後の加熱
温度も特定される。 該加熱工程は上述の如く、冷延薄板の焼鈍処理
を兼ねた場合と、焼鈍処理後のオフラインで加熱
する場合の両方を含むものである。オフライン製
造では、Niメツキの密着性を良くするだけでよ
いので、500℃以上の加熱温度であればよい。 従つて、本発明では還元性雰囲気での加熱温度
を500℃以上に特定したものである。 次に本発明法を用いて製造したターンシートの
ハンダ性および耐食性を実施例にもとづいて説明
する。 実施例 1 SUS430冷延板にNiメツキを0.1〜1μmほどこ
し、連続焼鈍で800℃×20sec加熱して、冷却過程
(300〜350℃)でターンメツキ(Pb:98%、Sn:
8%)をして耐食性のよいターンシートを製造し
た。 ハンダぬれ性と耐食性の試験は表1のとおりで
ある。 表1より明らかなように、Niメツキをしない
SUS430はターンメツキがつかず、当然のことな
がらハンダもつかない。 Niメツキ0.1μmのメツキ厚みでは焼鈍後のタ
ーンメツキに点状の不メツキ部分が生じ、ターン
のつかないところは、ハンダもつかない状況であ
つた。 Niメツキ0.5μm以上になると、ターンメツキ
も美麗であり、通常のターンシートと何ら遜色な
く、耐食性は普通鋼のターンシートより飛躍的に
良い傾向を示した。 実施例 2 SUS410および409D、その他鋼中Crの成分を10
%以下にした種々のCr含有鋼を試作して、冷延
板にNiメツキを施し、メツキ厚み、焼鈍温度を
変えてターンシートを試作し、実施例1と同じ手
法でハンダぬれ性および耐食性の試験をした。 Cr量13%のSUS410は焼鈍温度800℃でNiメツ
キ0.1μm以上必要であり、SUS409DはTiを含ん
でいることもあつて焼鈍温度850℃必要なことか
ら、Niメツキは0.5μm以上必要である。 Cr含有量7%以下の鋼ではCr量の少ないこと
と、焼鈍温度を下げることができるため、Niメ
ツキ0.05μm以上でターンメツキができて、Cr量
1.0%の鋼では0.01μmのメツキ厚で十分であ
る。 しかしながら、Cr含有量1.0%でもNiメツキを
しない鋼は焼鈍過程でごく薄いCrの不働態皮膜
が形成されるためターンメツキが十分につかな
い。 実施例 3 耐食性の最も厳しく要求されるところでは
SUS304(18%Cr、8%Ni)のターンシートの製
造も本発明の方法を用いることによつて可能であ
る。 SUS304は焼鈍温度が高いため、Niメツキの厚
みが薄いと、SUS中のCrが表面に拡散してきて、
ターンメツキが十分につかない。 焼鈍温度1000℃で5μm近く必要である。 SUS304の場合、焼鈍前処理としてのNiメツキ
とするより、オフラインで焼鈍後の304にNiメツ
キを施し、再度熱拡散のための焼鈍をして、ター
ンメツキする方が経済的である。 この場合、表3より明らかなとおり、再焼鈍の
温度が400℃以下になると、メツキ層と母材との
界面における相互拡散が不十分でメツキ密着性が
悪くなる傾向にある。 実施例 4 耐食性がよくて、しかもハンダ性のよいと思わ
れるNi合金メツキについても種々試験した。結
果は表4のとおりである(メツキ原板はSUS410
冷延板、焼鈍温度800℃×20sec)。 表4より明らかなとおり、Ni単独メツキと同
等もしくは同等以上の耐食性を示すのはNi−P、
Ni−B、Ni−P−Bの合金メツキで、CuやFeと
の合金メツキはメツキ性は良いものの耐食性はや
や劣る方向にある。 その他Ni合金の成分としてTi、Mo、W等も考
えられるが、メツキ浴の価格が高く、浴管理も難
かしくなる問題がある。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing turn sheets used for the outer frames of automobile gasoline tanks and radiators, and is aimed at dramatically increasing the corrosion resistance of the turn sheets. Conventional technology Conventional turn sheets are cold-rolled thin sheets of common steel that are turn-plated (approximately 5 to 15% Sn added to Pb).
It is mainly used as the outer frame of automobile gasoline tanks and radiators, but automobiles used in coastal regions and automobiles used in cold regions are severely corroded due to the harmful effects of antifreeze agents used on roads, and their durability is limited. The number of years has led to inferior results. Problems to be Solved by the Invention Under these circumstances, there has been a demand for a turn sheet that is corrosion resistant like stainless steel and has good solderability. However, although stainless steel has good corrosion resistance, it has poor solderability, so turn plating is difficult to form as is, and turn sheets cannot be manufactured. Means for Solving the Problems The present invention provides a method for manufacturing a turn sheet with poor corrosion resistance, which simultaneously improves corrosion resistance and solderability by applying turn plating to the surface of a Cr-containing iron base material such as stainless steel. Solved the problem of adhesion of turn plating to stainless steel plate surface.
This was solved by applying Ni-based plating and heating it to over 500℃ in a reducing atmosphere. That is, the present invention applies to cold-rolled thin sheets of Cr-containing iron base materials.
This is a method for producing a turn sheet with excellent corrosion resistance, which is characterized by applying Ni or Ni alloy plating, then heating to 500°C or higher in a reducing atmosphere, and then applying a turn sheet. By the way, the present applicant previously published Japanese Patent Application Laid-Open No. 59-140389.
The ``Method for Manufacturing Stainless Steel Thin Sheets'' discloses the production of stainless steel thin sheets with good corrosion resistance by applying Ni plating to cold-rolled stainless steel sheets and then continuously annealing them. When the thin stainless steel plate manufactured in this way is annealed for a long time, Cr will thermally diffuse from the base stainless steel and a passive film of Cr will be formed on the surface, but by setting an appropriate atmosphere, temperature, and time, ,
The outermost surface is Ni or Ni alloy, and it is possible to obtain a state in which Cr has not yet diffused to the surface.
If the plate is passed through a tank in which the turns are melted in such a state, a turn plating with good adhesion can be formed. In this way, the plating thickness and annealing conditions that provide good plating adhesion for Ni or Ni alloys and prevent Cr from diffusing to the outermost surface are suitable for Cr-containing iron base materials such as various stainless steel sheets and Cr-containing heat-resistant steels. Varies depending on quantity. Steel types with a high Cr content naturally have a fast Cr diffusion rate to the outermost surface, and on the other hand, from the material standpoint,
The annealing temperature and time are also limited to some extent by the steel type. Note that similar restrictions exist in the case of off-line heat treatment for plating adhesion. The heating atmosphere in the present invention is a reducing atmosphere containing 1% or more of H2 , and the heating treatment is a continuous treatment, so the soaking time is about 10 to 60 seconds. As a result of various studies by the present inventors on the above-mentioned constraint conditions, as shown in Figure 1 (soaking for 30 seconds), Cr-containing
It was found that the adhesion of turn plating is good if the thickness of Ni or Ni alloy plating is thicker than the diagonal line determined by the Cr content of the iron base material. In other words, the diagonal lines marked ◎ in the figure indicate steel types with a Cr content of 17% or more, typically SUS304 or
This is SUS430. SUS304 is an austenitic stainless steel, so the annealing temperature must be 1000℃ or higher, and in that case, the thermal diffusion rate of Cr becomes faster, so the plating thickness is 5μm.
More than that will be needed. In this case, increasing the thickness of the plating increases the economic cost, so
It is also possible to perform a reheat treatment only to improve plating adhesion by Ni plating, and then turn plating (this manufacturing method is referred to as offline manufacturing). Even in this offline case, heat treatment at 500℃ or higher is required to improve plating adhesion.
At this time, the plating thickness may be 0.01 μm as shown in the figure. For SUS430, annealing time is 800℃~900℃×
Since the soaking time is 10 to 20 seconds, the thickness of the Ni plating needs to be about 1 μm. The diagonal lines marked with ○ indicate SUS410 with a Cr content of approximately 13%.
This shows the case of low-priced stainless steel such as SUS409, and the annealing temperature of this steel type is around 700 to 800℃.
The Ni plating thickness may be about 0.05 to 0.1 μm. Furthermore, in the case of steel sheets with low Cr content (Cr = 1%), the annealing temperature is 700~
Since the temperature is 800°C, it is possible to reduce the amount of Ni plating. In this way, depending on the corrosion resistance required for the turn sheet, the base material containing Cr iron can be selected from SUS304 to SUS430.
You can freely choose from SUS410 to SUS410, and in some cases it is also possible to use a base material with lower Cr than conventional stainless steel (12% or more Cr). Therefore, in the present invention, the Cr-containing iron base material used as the base material for producing a turn sheet with good corrosion resistance has a Cr content of 1.
% or more thin steel plate. Further, in the turn plating pretreatment conditions according to the present invention, the amount of Ni plating is specified by the Cr content as described above, and the heating temperature after Ni plating is also specified thereby. As described above, the heating step includes both a case where the cold-rolled sheet is annealed and a case where the sheet is heated off-line after the annealing process. In offline production, it is only necessary to improve the adhesion of the Ni plating, so a heating temperature of 500°C or higher is sufficient. Therefore, in the present invention, the heating temperature in a reducing atmosphere is specified to be 500°C or higher. Next, the solderability and corrosion resistance of turn sheets produced using the method of the present invention will be explained based on Examples. Example 1 A SUS430 cold-rolled plate was plated with Ni to a thickness of 0.1 to 1 μm, heated at 800°C for 20 seconds by continuous annealing, and turned plated (Pb: 98%, Sn:
8%) to produce a turn sheet with good corrosion resistance. Table 1 shows the solder wettability and corrosion resistance tests. As is clear from Table 1, do not use Ni plating.
SUS430 cannot be turn-plated, and of course cannot be soldered. With Ni plating having a plating thickness of 0.1 μm, dot-like unplated areas appeared in the turn plating after annealing, and the areas where no turns were attached were not even soldered. When the Ni plating was 0.5 μm or more, the turn plating was beautiful and no inferior to normal turn sheets, and the corrosion resistance showed a tendency to be significantly better than ordinary steel turn sheets. Example 2 Cr content in SUS410 and 409D and other steels is 10
% or less, cold-rolled sheets were plated with Ni, and turned sheets were made by changing the plating thickness and annealing temperature. I took the test. SUS410 with a Cr content of 13% requires Ni plating of 0.1 μm or more at an annealing temperature of 800°C, and SUS409D requires an annealing temperature of 850°C because it contains Ti, so Ni plating of 0.5 μm or more is required. . Steel with a Cr content of 7% or less has a small Cr content and the annealing temperature can be lowered, so turn plating can be performed with Ni plating of 0.05 μm or more, and the Cr content can be reduced.
For 1.0% steel, a plating thickness of 0.01 μm is sufficient. However, even with a Cr content of 1.0%, steel without Ni plating will not be sufficiently turn-plated because a very thin Cr passive film is formed during the annealing process. Example 3 Where corrosion resistance is most strictly required
It is also possible to manufacture a turned sheet of SUS304 (18% Cr, 8% Ni) by using the method of the present invention. SUS304 has a high annealing temperature, so if the Ni plating is thin, Cr in the SUS will diffuse to the surface.
The turn is not sufficiently sharp. Approximately 5 μm is required at an annealing temperature of 1000°C. In the case of SUS304, rather than using Ni plating as a pre-annealing treatment, it is more economical to apply Ni plating to 304 after annealing off-line, annealing it again for thermal diffusion, and then turn plating. In this case, as is clear from Table 3, when the re-annealing temperature is 400° C. or lower, mutual diffusion at the interface between the plating layer and the base material is insufficient and plating adhesion tends to deteriorate. Example 4 Various tests were also conducted on Ni alloy plating, which is thought to have good corrosion resistance and good solderability. The results are shown in Table 4 (the base plate is SUS410).
Cold rolled plate, annealing temperature 800℃ x 20sec). As is clear from Table 4, Ni-P shows the same or better corrosion resistance than Ni plating alone.
Ni-B, Ni-P-B alloy plating, and alloy plating with Cu or Fe has good plating properties, but corrosion resistance is slightly inferior. Ti, Mo, W, etc. are also considered as other components of the Ni alloy, but there are problems in that the plating bath is expensive and bath management is difficult.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 発明の効果 本発明はハンダのつかないステンレスに、Ni
またはNi合金を予めメツキし、焼鈍時に熱拡散
でメツキ密着性を向上させ、連続焼鈍の冷却過程
でターンメツキすることにより、これまでの普通
鋼のターンシートより耐食性に飛躍的にすぐれた
ターンシートを経済的に製造することができる。
[Table] Effects of the Invention The present invention can be applied to non-solderable stainless steel.
Alternatively, by pre-plating with Ni alloy, improving plating adhesion through thermal diffusion during annealing, and turn-plating during the cooling process of continuous annealing, we can create a turn sheet that has significantly better corrosion resistance than conventional ordinary steel turn sheets. Can be manufactured economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は含Cr鉄基材のCr含有量と加熱温度
(均熱30秒間)とNi又はNi合金メツキ厚さとの関
係を示した図である。
FIG. 1 is a diagram showing the relationship between the Cr content of a Cr-containing iron base material, heating temperature (soaking for 30 seconds), and Ni or Ni alloy plating thickness.

Claims (1)

【特許請求の範囲】 1 含Cr鉄基材の冷延薄板に、前記含Cr鉄基材
のCr含有量および予備めつき後になされる熱処
理温度と時間によつて決まる第1図に示す範囲と
なるように厚さを制御してNi或はNiは合金を予
備めつきし、次いで、還元性雰囲気下に500℃以
上の温度域で10〜60秒間均熱処理し、引続きター
ンめつきすることを特徴とする耐食性のすぐれた
ターンシートの製造方法。 2 予備めつきにおけるめつき金属が、Niを主
成分とし、これにPまたはBの1種または2種を
含有するNi合金である特許請求の範囲第1項機
記載の方法。
[Scope of Claims] 1. A cold-rolled thin sheet of a Cr-containing iron base material is coated with the range shown in FIG. The Ni or Ni alloy is pre-plated by controlling the thickness so that the thickness is controlled, and then soaked in a reducing atmosphere at a temperature of 500℃ or higher for 10 to 60 seconds, followed by turn plating. A method for producing a turn sheet with excellent corrosion resistance. 2. The method according to claim 1, wherein the plating metal in the preliminary plating is a Ni alloy containing Ni as a main component and containing one or both of P or B.
JP11984485A 1985-06-04 1985-06-04 Production of turne sheet having excellent corrosion resistance Granted JPS61279696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11984485A JPS61279696A (en) 1985-06-04 1985-06-04 Production of turne sheet having excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11984485A JPS61279696A (en) 1985-06-04 1985-06-04 Production of turne sheet having excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPS61279696A JPS61279696A (en) 1986-12-10
JPH0333795B2 true JPH0333795B2 (en) 1991-05-20

Family

ID=14771660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11984485A Granted JPS61279696A (en) 1985-06-04 1985-06-04 Production of turne sheet having excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPS61279696A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960013481B1 (en) * 1993-06-29 1996-10-05 니홍고오깡 가부시키가이샤 Surface treated steel sheet and method thereof
CN1041641C (en) * 1993-06-29 1999-01-13 日本钢管株式会社 Surface treated steel sheet and method therefor
JP2002263744A (en) * 2001-03-06 2002-09-17 Toyota Motor Corp Metal stock drawing method, and press die for drawing
JP5202902B2 (en) * 2007-08-13 2013-06-05 本田技研工業株式会社 Manufacturing method of fuel cell
CN108315788B (en) * 2018-01-03 2020-01-14 江苏九天光电科技有限公司 Stainless steel continuous electroplating nickel-phosphorus-boron alloy coiled plate and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023345A (en) * 1973-06-29 1975-03-13
JPS51115240A (en) * 1975-04-03 1976-10-09 Nippon Steel Corp Method of melttplating iron and steel with lead or lead alloy
JPS52130433A (en) * 1976-04-27 1977-11-01 Nippon Steel Corp Method of plating ironnsteel material with molten leaddtin alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023345A (en) * 1973-06-29 1975-03-13
JPS51115240A (en) * 1975-04-03 1976-10-09 Nippon Steel Corp Method of melttplating iron and steel with lead or lead alloy
JPS52130433A (en) * 1976-04-27 1977-11-01 Nippon Steel Corp Method of plating ironnsteel material with molten leaddtin alloy

Also Published As

Publication number Publication date
JPS61279696A (en) 1986-12-10

Similar Documents

Publication Publication Date Title
JP4724780B2 (en) Aluminum-plated steel sheet for rapid heating hot press, manufacturing method thereof, and rapid heating hot pressing method using the same
CN101466860B (en) Method for continuously annealing and preparing strip of high-strength steel for the purpose of hot-dip galvanizing it
JPS62274060A (en) Molten aluminum coated chromium alloy steel
JP4264373B2 (en) Method for producing molten Al-based plated steel sheet with few plating defects
JPH0333795B2 (en)
JP3718479B2 (en) Hot-dip Zn-Al-Cr alloy-plated steel with excellent corrosion resistance
JPS60262950A (en) Manufacture of aluminized steel sheet having superior heat and corrosion resistance
JPH0238549A (en) Manufacture of alloyed hot-dip galvanized steel sheet
JPH0328359A (en) Production of hot-dip aluminized chromium-containing steel sheet
JP3114609B2 (en) Method for producing galvannealed steel sheet with excellent surface properties
JP2769350B2 (en) Manufacturing method of hot-dip coated steel sheet
KR950000915A (en) Manufacturing method of galvanized steel sheet
JPS62161944A (en) Aluminized steel sheet
JPS61104091A (en) Manufacture of surface-treated steel sheet
JPH0428852A (en) Method and device for producing hot-dip coated band steel
JPH0463258A (en) Production of galvannealed steel sheet excellent in workability
JP2001200351A (en) METHOD OF MANUFACTURING FOR HIGH TENSILE STRENGTH HOT- DIP ZN-Al ALLOY COATED STEEL SHEET
JP2724045B2 (en) Method for producing chromium-containing steel sheet plated with hot-dip zinc or zinc alloy
JPH0575831B2 (en)
JPH04168262A (en) Production of al-ni alloy steel material
JPS59166664A (en) Heat resistant zinc alloy plated product
JPH07252626A (en) Production of high corrosion-resisting aluminum/ chromium double layer plated steel sheet excellent in workability and plating appearance
JPH0987859A (en) Production of hot-dip aluminum base plated steel sheet having excellent workability
JPS62192597A (en) Plated steel sheet having superior powdering resistance
JPH11293438A (en) High tensile strength galvannealed steel sheet and its production