JPH0333726B2 - - Google Patents

Info

Publication number
JPH0333726B2
JPH0333726B2 JP59068986A JP6898684A JPH0333726B2 JP H0333726 B2 JPH0333726 B2 JP H0333726B2 JP 59068986 A JP59068986 A JP 59068986A JP 6898684 A JP6898684 A JP 6898684A JP H0333726 B2 JPH0333726 B2 JP H0333726B2
Authority
JP
Japan
Prior art keywords
polymer
conductivity
present
air
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59068986A
Other languages
Japanese (ja)
Other versions
JPS60212420A (en
Inventor
Yasuyuki Murofushi
Masazumi Ishikawa
Mikio Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59068986A priority Critical patent/JPS60212420A/en
Priority to US06/719,461 priority patent/US4565860A/en
Priority to DE19853512476 priority patent/DE3512476A1/en
Publication of JPS60212420A publication Critical patent/JPS60212420A/en
Publication of JPH0333726B2 publication Critical patent/JPH0333726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 発明の関連する技術分野 本発明は4,4′,4″−トリフエニルアミン構造
を繰返し単位としてなる新規な重合体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel polymer comprising a 4,4',4''-triphenylamine structure as a repeating unit.

発明の開示 本発明はトリフエニルアミンが電子受容体と安
定な錯体を形成することを確め、幾多の研究の結
果得られたもので、高分子導電性材料および電極
材料として優れた4,4′,4″−トリフエニルアミ
ン構造を繰返し単位としてなる新規な重合体(ポ
リ(4,4′,4″−トリフエニルアミン))である。
Disclosure of the Invention The present invention was achieved by confirming that triphenylamine forms a stable complex with an electron acceptor, and was obtained as a result of numerous studies. This is a novel polymer (poly(4,4',4"-triphenylamine)) consisting of a repeating unit having a ',4'-triphenylamine structure.

本発明の新規な重合体は次式: (式中のnは10〜15を示す)で表される4,
4′,4″−トリフエニルアミン構造を繰返し単位と
してなり、かつ酸化電位がAg/AgClに対して
0.8〜1.1Vの範囲である高分子化合物である。
The novel polymer of the present invention has the following formula: (n in the formula represents 10 to 15) 4,
The 4′,4″-triphenylamine structure is used as a repeating unit, and the oxidation potential is relative to Ag/AgCl.
It is a high molecular compound with a voltage range of 0.8 to 1.1V.

上記構造を繰返し単位としてなる本発明の重合
体は従来知られていない新規な高分子化合物であ
り、これは次に示す化学反応式によつて作ること
ができる。
The polymer of the present invention having the above structure as a repeating unit is a novel polymer compound hitherto unknown, and can be produced by the chemical reaction formula shown below.

2K+MgCl2→Mg+2KCl (1) 上記反応式(1)は活性なマグネシウムの作り方と
して一般に知られている反応であり、上記反応式
(2)および(3)はグリニヤル試薬を中間状態とした重
合反応により行うことができる(山本氏ほか
「Bull.Chem.Soc.JaPan」51,2091(1978)、およ
び特公昭58−46268号公報)。これらの反応はハロ
ゲン置換位置において結合を生ずる重合反応とし
て知られている。なお、上記反応式(2)の右辺は一
方のみがグリニヤル試薬となつた中間状態を記述
したが、マグネシウムとの当量が保たれていれば
他の中間状態にすることができる。
2K+MgCl 2 →Mg+2KCl (1) The above reaction formula (1) is a generally known reaction for producing active magnesium, and the above reaction formula
(2) and (3) can be carried out by a polymerization reaction using a Grignard reagent in an intermediate state (Mr. Yamamoto et al. "Bull.Chem.Soc.JaPan" 51, 2091 (1978) and Japanese Patent Publication No. 58-46268) ). These reactions are known as polymerization reactions that produce bonds at halogen substitution positions. Although the right side of the above reaction formula (2) describes an intermediate state in which only one side is a Grignard reagent, other intermediate states can be created as long as the equivalence with magnesium is maintained.

本発明の新規な重合体を得るのに用いる単量体
としては、例えば4,4′,4″−トリブロモトフエ
ニルアミン、4,4′,4″−トリクロロトリフエニ
ルアミンの如き4,4′,4″−トリハロゲントリフ
エニルアミンを挙げることができる。
The monomers used to obtain the novel polymers of the present invention include, for example, 4,4′,4″-tribromotophenylamine, 4,4′,4″-trichlorotriphenylamine, etc. Mention may be made of ',4''-trihalogentriphenylamine.

上記反応に用いる溶媒としては、例えばテトラ
ヒドロフラン、ジエチルエーテル、ジブチルエー
テルの如きエーテル系溶媒を挙げることができ、
また触媒としては、例えばジクロロ(2,2′−ビ
ピリジン)ニツケル、ジクロロニツケル、ジブロ
モニツケル、ジブロモビス(トリフエニルホスフ
イン)ニツケル、1,5−シクロオクタジエンビ
ス(トリフエニルホスフイン)ニツケル等を挙げ
ることができる。
Examples of the solvent used in the above reaction include ether solvents such as tetrahydrofuran, diethyl ether, and dibutyl ether,
Examples of the catalyst include dichloro(2,2'-bipyridine)nickel, dichloronickel, dibromonnickel, dibromobis(triphenylphosphine)nickel, and 1,5-cyclooctadienebis(triphenylphosphine)nickel. be able to.

上述する新規な重合体はドーパントをドーピン
グすることによつて窒素原子が正電荷を帯び安定
な状態になると共に、導電性が高められ、特に電
極材料とする場合には酸化還元の繰返しに対して
安定し、電極性能の低下を防ぐことができる高分
子材料を作ることができる。
By doping the above-mentioned novel polymer with a dopant, the nitrogen atoms become positively charged and become stable, and the conductivity is increased. Especially when used as an electrode material, it is resistant to repeated redox reactions. It is possible to create polymeric materials that are stable and can prevent deterioration of electrode performance.

本発明の重合体を高分子導電性材料として用い
る場合にドーピングするのに使用するドーパント
としては、例えばヨウ素、臭素、ヨウ化臭素の如
きハロゲン化合物;五フツ化ヒ素、五塩化リン、
五フツ化リン、五フツ化アンチモン、四フツ化珪
素、塩化アルミニウム、臭化アルミニウム、フツ
化アルミニウム、塩化第2鉄の如き金属ハロゲン
化物;硫酸、硝酸、フルオロ硫酸の如きプロトン
酸;三酸化イオウ、二酸化窒素、ジフルオロスル
ホニルパーオキシドの如き酸化剤;およびテトラ
シアノキノジメタン、テトラシアノエチレンの如
き有機物を挙げることができ、また電極材料とし
て用いる場合には、例えば過塩素酸リチウム、ホ
ウフツ化リチウム等の有機電解質に用いる溶質を
挙げることができる。
When the polymer of the present invention is used as a polymer conductive material, dopants used for doping include, for example, halogen compounds such as iodine, bromine, and bromine iodide; arsenic pentafluoride, phosphorus pentachloride,
Metal halides such as phosphorus pentafluoride, antimony pentafluoride, silicon tetrafluoride, aluminum chloride, aluminum bromide, aluminum fluoride, and ferric chloride; protonic acids such as sulfuric acid, nitric acid, and fluorosulfuric acid; sulfur trioxide , nitrogen dioxide, difluorosulfonyl peroxide; and organic substances such as tetracyanoquinodimethane and tetracyanoethylene. When used as an electrode material, for example, lithium perchlorate, lithium borofluoride, etc. Solutes used in organic electrolytes such as

また、電気化学的にドーピングするドーパント
としては、例えばPF- 6,SbF- 3,ASF- 6の如きVa
族元素のハロゲン化物アニオン;BF- 4の如きa
族元素のハロゲン化物アニオン;I-(I- 3),Br-
Cl-の如きハロゲンアニオン;およびClO- 4の如き
過塩素酸アニオンの如き陰イオン等を挙げること
ができる。
In addition, examples of dopants to be electrochemically doped include Va, such as PF - 6 , SbF - 3 and ASF - 6.
Halide anions of group elements; a such as BF - 4
Halide anions of group elements; I - (I - 3 ), Br - ,
Mention may be made of halogen anions such as Cl - ; and anions such as perchlorate anions such as ClO - 4 .

なお本発明の重合体は未端基の水素の一部をハ
ロゲンで置換したものも含まれる。これは前述の
(3)式において、例えば4,4′,4″−トリブロモト
リフエニルアミンの反応に関与しなかつた臭素が
一部そのまま残ることがある。このように一部に
ハロゲンが水素と置換しているような構造も本発
明に含まれる。
The polymers of the present invention also include those in which some of the hydrogen atoms in the terminal groups are replaced with halogens. This is the above
In formula (3), for example, some of the bromine that did not participate in the reaction of 4,4',4''-tribromotriphenylamine may remain as it is. In this way, some of the bromine may be replaced by hydrogen. Structures such as these are also included in the present invention.

次に、本発明を実施例について説明する。 Next, the present invention will be explained with reference to examples.

実施例 1 金属カリウム0.8g(0.02グラム原子量)、塩化
マグネシウム0.95g(0.01モル)、テトラヒドロ
フラン50mlを100ml容積のフラスコ中窒素雰囲気
下で撹拌しながら加熱還流して反応させた。約1
時間後、黒色の粉末を生じ、金属マグネシウムの
生成を確めた。
Example 1 0.8 g (0.02 gram atomic weight) of potassium metal, 0.95 g (0.01 mol) of magnesium chloride, and 50 ml of tetrahydrofuran were heated to reflux and reacted in a 100 ml flask with stirring under a nitrogen atmosphere. Approximately 1
After a period of time, a black powder was produced, confirming the production of metallic magnesium.

次いで、この反応生成物に4,4′,4″−トリブ
ロモトリフエニルアミン3.2g(0.067モル)を添
加し、撹拌しながら加熱還流した。約1時間後、
金属マグネシウムが消費しつくされたことを確め
た。
Next, 3.2 g (0.067 mol) of 4,4',4''-tribromotriphenylamine was added to this reaction product, and the mixture was heated to reflux with stirring. After about 1 hour,
It was confirmed that metallic magnesium was completely consumed.

次いで、この反応物に触媒としてジクロロビス
(2,2′−ビピリジン)ニツケル10mgを添加し、
撹拌し、加熱還流することにより重合反応が円滑
に開始し、黄褐色の重合体が沈澱した。重合反応
を約2時間にわたり行い、生成した沈澱物を塩酸
酸性エタノール中に注ぎ、1時間にわたり撹拌し
た後過した。フイルター上においてエタノール
で十分に洗浄した後、ソツクスレー抽出器により
熱エタノールで12時間にわたり抽出し、不純物を
除去し、乾燥後収量1.9gの目的の重合体ポリ
(4,4′,4″−トリフエニルアミン)を得た。
Next, 10 mg of dichlorobis(2,2'-bipyridine)nickel was added to this reaction product as a catalyst,
The polymerization reaction started smoothly by stirring and heating under reflux, and a yellowish brown polymer was precipitated. The polymerization reaction was carried out for about 2 hours, and the resulting precipitate was poured into hydrochloric acid-acidic ethanol, stirred for 1 hour, and then filtered. After thoroughly washing with ethanol on the filter, it was extracted with hot ethanol for 12 hours using a Soxhlet extractor to remove impurities, and the desired polymer poly(4,4′,4″-trifluoride) was obtained, yielding 1.9 g after drying. enylamine) was obtained.

かようにして得た重合体は黄色の粉末で、空気
中で2ケ月間放置しても何んらの変化がみられず
極めて安定であつた。また、この重合体の熱重量
分析を行い、その結果を第1および2図に示す。
これらの図から、重合体は300℃まで減量するこ
となく、極めて高い熱安定性であり、また窒素雰
囲気中700℃の高温でも約70%の残存重量を示し
ていることがわかる。
The thus obtained polymer was a yellow powder and remained extremely stable without any change even after being left in the air for two months. Additionally, this polymer was subjected to thermogravimetric analysis, and the results are shown in Figures 1 and 2.
From these figures, it can be seen that the polymer has extremely high thermal stability without losing weight up to 300°C, and shows approximately 70% residual weight even at a high temperature of 700°C in a nitrogen atmosphere.

また、得られた重合体についての赤外スペクト
ル分析を行い、測定した赤外吸収スペクトルを第
3図に示す。この第3図から1270cm-1、1310cm
-1、1480cm-1および1590cm-1にトリフエニルアミ
ン構造に基づく強いピークを有し、また820cm-1
付近にパラ置換ベンゼンの吸収を有することがわ
かる。この事は、重合体が規則正しい繰返し単位
から構成され、前記式の構造を有することを証
明するものである。
Further, the obtained polymer was subjected to infrared spectrum analysis, and the measured infrared absorption spectrum is shown in FIG. From this figure 3, 1270cm -1 and 1310cm
-1 , with strong peaks based on the triphenylamine structure at 1480 cm -1 and 1590 cm -1 , and at 820 cm -1
It can be seen that there is an absorption of para-substituted benzene in the vicinity. This proves that the polymer is composed of regular repeating units and has the structure of the above formula.

また、重合体の元素分析を行いこの結果は次の
通りである: 重合体の元素分析値: 炭素 71.5%、 水 素 4.3% 窒素 4.4%、 ハロゲン 15.7% この分析値より C:H:N:Br=18:12.9:095:0.59 であり理論値C18H12Nに近い値であつた。Hにつ
いての余分の0.9およびBrの0.59は未端基の分と
思われる。分子量については、本発明の重合体が
通常の溶媒に溶けないため測定不能であつた。し
かし、他の類似の物質の反応およびHおよびBr
の数から判断してトリフエニルアミンが10〜15重
合しているものと思われる。
In addition, elemental analysis of the polymer was performed and the results are as follows: Elemental analysis values of the polymer: Carbon 71.5%, Hydrogen 4.3%, Nitrogen 4.4%, Halogen 15.7% From this analysis value, C:H:N: Br=18:12.9:095:0.59, which was close to the theoretical value C 18 H 12 N. The extra 0.9 for H and 0.59 for Br seem to be due to unterminated groups. The molecular weight could not be measured because the polymer of the present invention was not soluble in ordinary solvents. However, reactions of other similar substances and H and Br
Judging from the number of , it seems that 10 to 15 triphenylamines have been polymerized.

実施例 2 (空気不存在下での電導度測定) 実施例1で得た重合体について赤外分光光度計
用の錠剤成形機により8t・cm-2の圧力にて圧縮成
形したものを切り出し、両端に導電性接着剤(商
品名「エレクトロダツク」米国マチソン社製)を
用いて白金線を付け、電導度測定用の試験片を製
作した。
Example 2 (Measurement of electrical conductivity in the absence of air) The polymer obtained in Example 1 was compression-molded at a pressure of 8 t cm -2 using a tablet molding machine for infrared spectrophotometer, and then cut out. Platinum wires were attached to both ends using a conductive adhesive (trade name: ``Electrodak'', manufactured by Mattison, USA) to prepare a test piece for measuring conductivity.

この試験片の常温における電導度は1.3×
10-9S・cm-1の絶縁体であつた。この試験片を空
気の不存在で常温におけるヨウ素飽和蒸気に曝し
た場合に、1日後0.2S・cm-1、1週間後に0.8S・
cm-1という高い電導度を示した。また、色は黒色
に変化した。
The electrical conductivity of this test piece at room temperature is 1.3×
It was an insulator of 10 -9 S cm -1 . When this test piece was exposed to iodine-saturated steam at room temperature in the absence of air, it showed a value of 0.2S cm -1 after one day and a value of 0.8S cm after one week.
It showed a high conductivity of cm -1 . Also, the color changed to black.

実施例 3 (空気中での電導度測定) 実施例2において電導度を測定した後、試験片
を空気中に取出し、常温においてヨウ素を脱ドー
ピングした場合、空気中に出した直後において
0.8S・cm-1の電導度を示した。
Example 3 (Measurement of electrical conductivity in air) After measuring the electrical conductivity in Example 2, when the test piece was taken out into the air and dedoped with iodine at room temperature, immediately after taking it out into the air,
It showed an electrical conductivity of 0.8S cm -1 .

ヨウ素の脱着と共に、電導度は低下するが1週
間後で0.2S・cm-1、40日後で0.06S・cm-1という
高い電導度を保持していた。
The conductivity decreased as iodine was desorbed, but it maintained a high conductivity of 0.2 S·cm -1 after one week and 0.06 S·cm -1 after 40 days.

更に、試験片を空気の存在でヨウ素飽和蒸気圧
中で再度ドーピングを行つた所、24時間後に
0.6S・cm-1の電導度となり、48時間後に0.8S・cm
-1の導電度に回復した。この事から、高い電導度
が空気中で安定に維持されると共に、不可逆的な
電導度の低下を生じないことがわかる。
Furthermore, when the test piece was doped again in the presence of air at iodine saturated vapor pressure, after 24 hours
The conductivity becomes 0.6S・cm -1 and 0.8S・cm after 48 hours.
The conductivity was restored to -1 . This shows that high conductivity is stably maintained in the air and that there is no irreversible decrease in conductivity.

従来の高分子導電性材料としてはポリアセチレ
ンなどが高電導度であるが、ドーパントとして有
毒なASF5を用いていたり、あるいは空気と接触
すると酸化され電導度が著しく低下するという問
題点があつた。また、ポリパラフエニレンなども
良い導電性を示すが、やはり大気中に出すと大気
中の水分により水素が付加されてしまい電導度が
著しく低下するという問題点があつた。しかも、
これらの物質は酸化あるいは水素が付加されると
容易には元の状態に戻さないという欠点があつ
た。しかし、本発明の新規な重合体は空気中でも
安定であり、かつ電導度が高いという良好な性質
を示した。
Conventional conductive polymer materials, such as polyacetylene, have high conductivity, but they have had the problem of using toxic ASF 5 as a dopant, or of being oxidized when in contact with air, resulting in a significant decrease in conductivity. Polyparaphenylene and the like also exhibit good conductivity, but they also have the problem that when exposed to the atmosphere, hydrogen is added to them by moisture in the atmosphere, resulting in a significant decrease in conductivity. Moreover,
These substances have the disadvantage that they do not easily return to their original state when oxidized or hydrogen is added to them. However, the novel polymer of the present invention exhibited good properties such as being stable in air and having high electrical conductivity.

実施例 4 白金線の先端に微量の導電性接着剤(商品名
「エレクトロダツク」米国マチソン社製)を塗布
し、極く微量の上記実施例1で得たポリ(4,
4′,4″−トリフエニルアミン)重合体の粉末を接
着して測定用電極を製作した。
Example 4 A very small amount of conductive adhesive (trade name "Electrodak" manufactured by Mattison, USA) was applied to the tip of the platinum wire, and a very small amount of the poly(4,
Measurement electrodes were fabricated by bonding 4′,4″-triphenylamine) polymer powder.

次いで、溶媒としてプロピレンカーボネートお
よび溶質として過塩素酸リチウムを用いて1モ
ル/の電解液を作り、白金線を対極とし、
Ag/AgCl電極を参照電極として上記測定用電極
の酸化還元電位を窒素雰囲気中で測定した。電圧
の掃引速度は20mV/秒にした。この結果を第4
図に示す。本発明の重合体の酸化還元電位は約
0.98Vであつた。
Next, a 1 mol/mol electrolyte was prepared using propylene carbonate as a solvent and lithium perchlorate as a solute, and a platinum wire was used as a counter electrode.
The redox potential of the measurement electrode was measured in a nitrogen atmosphere using the Ag/AgCl electrode as a reference electrode. The voltage sweep rate was 20 mV/sec. This result is the fourth
As shown in the figure. The redox potential of the polymers of the present invention is approximately
It was 0.98V.

第4図から、酸化還元電位の測定を200回以上
繰返しても結果に殆んど変化がなく、本発明の重
合体から作つた電極は酸化還元の繰返しに対して
極めて安定であることがわかる。
From Figure 4, it can be seen that there is almost no change in the results even if the measurement of redox potential is repeated over 200 times, indicating that the electrode made from the polymer of the present invention is extremely stable against repeated redox reactions. .

更に、本発明の重合体を主成分として加圧成形
により、または接着剤を用いて任意の形状に形成
した成形体を電極として用いることができた。こ
の場合、上記接着剤以外に、例えばポリ四フツ化
エチレン、ポリフツ化ビニリデン、ポリエチレン
等を同様に用いることができた。また、上記電解
液以外に、例えば溶媒としてテトラヒドロフラ
ン、γ−ブチルラクトン等の有機溶媒に溶質とし
てホウフツ化リチウム等に溶解した有機電解質を
用いることができた。
Furthermore, a molded article formed into an arbitrary shape by pressure molding or using an adhesive using the polymer of the present invention as a main component could be used as an electrode. In this case, other than the above-mentioned adhesive, for example, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, etc. could be similarly used. In addition to the electrolytic solution described above, an organic electrolyte dissolved in an organic solvent such as tetrahydrofuran or γ-butyllactone as a solvent and lithium borofluoride as a solute could be used.

実施例 5 実施例4において窒素雰囲気中で測定した後、
空気中に取出した電極を用いて引き続いて酸化還
元電位の測定を行つた。電圧の掃引速度は
20mV/秒にした。この結果を第5図に示す。
Example 5 After measuring in a nitrogen atmosphere in Example 4,
The redox potential was subsequently measured using the electrode taken out into the air. The voltage sweep speed is
The voltage was set to 20mV/sec. The results are shown in FIG.

この測定において数時間にわたり空気中に曝さ
れ、電解液中に酸素や水分が溶け込んでも、第5
図から明らかなように酸化還元の繰返しに対して
極めて安定であることがわかる。
In this measurement, even if oxygen and moisture dissolve in the electrolyte after being exposed to air for several hours, the 5th
As is clear from the figure, it is extremely stable against repeated redox reactions.

本発明の重合体は繰返し単位当りの分子量が
242で、ヨウ素をドーピングすることにより繰返
し単位量当りの反応量は200%となり、g当りの
電気量は 96500÷1(g)/242/200=798〔c/g〕 となり、従来よく研究されているポリアセチレン
電極より1g当りの反応電気量は1.8倍となつた。
The polymer of the present invention has a molecular weight per repeating unit.
242, by doping with iodine, the amount of reaction per repeating unit amount becomes 200%, and the amount of electricity per g is 96500 ÷ 1 (g) / 242 / 200 = 798 [c/g], which has been well studied in the past. The amount of reaction electricity per gram was 1.8 times that of the polyacetylene electrode.

発明の効果 上述するように、本発明においては前記式の
4,4′,4″−トリフエニルアミン構造を繰返単位
としてなる新規重合体およびこれにドーピングし
た新規材料を得たことにより、高い導電性を安定
状態で維持でき、かつ酸化還元の繰返しでも性能
変化のない優れた高分子導電性および電極材料を
得ることができた。
Effects of the Invention As described above, in the present invention, by obtaining a new polymer having the 4,4',4''-triphenylamine structure of the above formula as a repeating unit and a new material doped with the same, We were able to obtain an electrode material with excellent polymer conductivity that can maintain stable conductivity and whose performance does not change even after repeated oxidation-reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の新規重合体の空気中での熱重
量分析の結果を示すグラフ、第2図は本発明の重
合体の窒素雰囲気中での熱重量分析の結果を示す
グラフ、第3図は本発明の重合体の赤外線吸収ス
ペクトルを示すグラフ、第4図は本発明の重合体
の窒素雰囲気中での酸化還元の結果を示すグラ
フ、および第5図は本発明の重合体の空気中での
酸化還元の結果を示すグラフである。
FIG. 1 is a graph showing the results of thermogravimetric analysis of the novel polymer of the present invention in air, FIG. 2 is a graph showing the results of thermogravimetric analysis of the polymer of the present invention in a nitrogen atmosphere, and FIG. FIG. 4 is a graph showing the infrared absorption spectrum of the polymer of the present invention, FIG. It is a graph showing the results of oxidation-reduction in

Claims (1)

【特許請求の範囲】 1 次式: (式中のnは10〜15を示す)で表される4,
4′,4″−トリフエニルアミン構造を繰返し単位と
してなり、かつ酸化電位がAg/AgClに対して、
0.8〜1.1Vの範囲であることを特徴とする重合体。
[Claims] Primary formula: (n in the formula represents 10 to 15) 4,
The 4′,4″-triphenylamine structure is used as a repeating unit, and the oxidation potential is relative to Ag/AgCl.
A polymer characterized in that it has a voltage in the range of 0.8 to 1.1V.
JP59068986A 1984-04-09 1984-04-09 Polymer having structural unit of triphenylamine Granted JPS60212420A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59068986A JPS60212420A (en) 1984-04-09 1984-04-09 Polymer having structural unit of triphenylamine
US06/719,461 US4565860A (en) 1984-04-09 1985-04-03 Polymer of triphenylamine
DE19853512476 DE3512476A1 (en) 1984-04-09 1985-04-04 Triphenylamine polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068986A JPS60212420A (en) 1984-04-09 1984-04-09 Polymer having structural unit of triphenylamine

Publications (2)

Publication Number Publication Date
JPS60212420A JPS60212420A (en) 1985-10-24
JPH0333726B2 true JPH0333726B2 (en) 1991-05-20

Family

ID=13389491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068986A Granted JPS60212420A (en) 1984-04-09 1984-04-09 Polymer having structural unit of triphenylamine

Country Status (1)

Country Link
JP (1) JPS60212420A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079262A1 (en) * 2016-10-24 2018-05-03 Jsr株式会社 Polymer, electrode, electric-storage device, and process for producing polymer

Also Published As

Publication number Publication date
JPS60212420A (en) 1985-10-24

Similar Documents

Publication Publication Date Title
US4615829A (en) Electroconductive organic polymer and method for producing the same
US4565860A (en) Polymer of triphenylamine
EP0365124B1 (en) Copolymers and electroactive polymers derived therefrom
JPH0333726B2 (en)
JPH0330618B2 (en)
JP2546617B2 (en) Conductive polymer compound with improved temperature characteristics
JPH0555532B2 (en)
JPS60212421A (en) Copolymer having structural unit of triphenylamine
JPH0236254A (en) High polymer composition
JPH0334774B2 (en)
JP2649670B2 (en) Method for producing conductive organic polymer
JPS6366224A (en) Polymer and electrically conductive high polymer having diphenylamine structural unit
JPH072834B2 (en) Conductive polymer
JPH0558227B2 (en)
JPS62225517A (en) Organic semiconductor
Ng et al. Poly (o-aminobenzylphosphonic acid): a novel water soluble, self-doped functionalized polyaniline
Chang et al. Synthesis and properties of the water-soluble self-acid-doped polypyrrole: poly [4-(3-pyrrolyl) butanesulfonic acid]
JPH0555533B2 (en)
JPS62226568A (en) Secondary battery
JPH01131231A (en) Production of highly conductive thiophene polymer
JPS6151050A (en) Production of electrically conductive polymer
JPH0668973B2 (en) Electrode active material
JPH02167335A (en) Novel copolymer and electrically active polymer derived therefrom
JPH083033B2 (en) Semiconductor manufacturing composition
JPS61258832A (en) Electrically conductive organic polymer and production thereof