JPH0333702B2 - - Google Patents

Info

Publication number
JPH0333702B2
JPH0333702B2 JP12678582A JP12678582A JPH0333702B2 JP H0333702 B2 JPH0333702 B2 JP H0333702B2 JP 12678582 A JP12678582 A JP 12678582A JP 12678582 A JP12678582 A JP 12678582A JP H0333702 B2 JPH0333702 B2 JP H0333702B2
Authority
JP
Japan
Prior art keywords
substituted
reaction
group
compound
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12678582A
Other languages
Japanese (ja)
Other versions
JPS5920258A (en
Inventor
Hiroshi Ito
Atsuhiko Nitsuta
Tomio Tanaka
Kenji Tsuboi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP12678582A priority Critical patent/JPS5920258A/en
Publication of JPS5920258A publication Critical patent/JPS5920258A/en
Publication of JPH0333702B2 publication Critical patent/JPH0333702B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は−眮換アルコキシカルボン酞アミド
化合物の補造方法に関する。曎に詳しくは、氎酞
基眮換アミド化合物ずハロゲン眮換化合物ずの反
応により−眮換アルコキシカルボン酞アミド化
合物を補造する方法に関する。 −眮換アルコキシカルボン酞アミド化合物は
駆虫剀の劂き医薬品たたは蟲薬の原料或いは各皮
添加剀等の甚途に有甚な物質である。 埓来、−眮換アルコキシカルボン酞アミド化
合物の補造方法には、アルコキシ眮換カルボン酞
クロラむドずアミン類ずの反応およびアルコキシ
眮換カルボン酞もしくはアルコキシ眮換カルボン
酞゚ステルずアミン類ずの反応による方法が䞀般
に知られおいる。しかしながら前者の方法では、
原料ずなるアルコキシ眮換カルボン酞クロラむド
が高䟡でか぀その取り扱いが面倒であり、埌者の
方法ではカルボン酞もしくはカルボン酞゚ステル
ずアミン類ずの反応が必ずしも効率よく進たない
こずなどの理由で、工業的に満足できる補造方法
ずな぀おいない。たたJ.Pharmand
Pharmacol.9巻855〜863頁1957幎発行に
は、アルコキシ眮換アミド化合物ずハロゲン眮換
化合物ずの反応により−眮換アルコキシカルボ
ン酞アミド化合物を補造する方法が開瀺されおい
る。しかしながら、その方法では反応溶媒ずしお
アルコヌルを、たた匷塩基性物質ずしおアルカリ
金属のアルコキシドを䜿甚し、反応条件ずしおア
ルコヌルの沞ずう䞋で24時間反応させるずいうよ
うな苛酷な反応条件を甚いおいるにもかかわらず
比范䟋に瀺すごずく満足できる結果は埗られお
いない。 本発明者らは䞊蚘の問題を解決すべく鋭意怜蚎
した結果、 䞀般匏(1) HO−R1−CONH2 
(1) 䜆し、R1はアルキル基、アルケニレン基、
プニレン基、プニレンアルキレン基たたは脂
還匏基を瀺す。で瀺される氎酞基眮換アミド化
合物ず 䞀般匏(2) R2− 
(2) 䜆し、R2はアルキル基たたはプニルアル
キル基を、たたはハロゲン原子を瀺す。で瀺
されるハロゲン眮換化合物ずを非プロトン性極性
溶媒䞭で匷塩基性物質の存圚䞋に反応させるこず
により 䞀般匏(3) 又はR2O−R1−CONH−R2 䜆し、R1及びR2は䞊蚘ず同じで瀺される
−眮換アルコキシカルボン酞アミド化合物を容
易に補造できるこずを芋出し本発明に到達した。 本発明に適甚できる氎酞基眮換アミド化合物
は、䞋蚘䞀般匏で瀺されるもので、 HO−R1−CONH2 䜆し、R1はアルキレン基、アルケニレン基
プニレン基プニレンアルキレン基脂環匏
基を瀺す。氎酞基眮換飜和脂肪酞アミド氎酞
基眮換䞍飜和脂肪酞アミド氎酞基眮換芳銙族カ
ルボン酞アミド氎酞基眮換脂環匏カルボン酞ア
ミドがあげられ、それら化合物の炭化氎玠郚䜍に
アルキル基アリヌル基ニトロ基ハラむド
基アルコキシ基シアノ基などの導入された化
合物も察象ずなる。たた、氎酞基がそれらの眮換
基に結合しおいおもよい。それらを䟋瀺するず、
䟋えばヒドロキシアセトアミド乳酞アミドヒ
ドロキシプロピオナミドヒドロキシブチラミ
ドヒドロキシバレラミドクロロヒドロキシヘ
プタナミドヒドロキシアクリルアミドヒドロ
キシクロトナミドヒドロキシシンナミドサリ
チルアミドヒドロキシベンズアミドヒドロキ
シトルアミドヒドロキシメチルベンズアミド
ヒドロキシナフタミドヒドロキシアントラキノ
ンカルボキサミドメトキシサリチルアミドヒ
ドロキシニトロベンズアミドヒドロキシプニ
ルアセトアミドヒドロキシプニルプロピオナ
ミドヒドロキシシクロヘキサンカルボキサミド
などがあげられる。 䞀方、ハロゲン眮換化合物は䞋蚘䞀般匏で瀺さ
れるもので、 R2− 䜆し、R2はアルキル基、プニルアルキル
基を、たたはハロゲン原子を瀺す。ハロゲン
化アルカン及びハロゲン化アルキルアリヌルがあ
げられる。ハロゲン化アルカンは、䞀般匏
CnH2n+1Xはハロゲン原子で衚わされ、
は敎数で〜20である。ハロゲン化アルキルアリ
ヌルは䞀般匏ArCnH2nX䜆し、Arは芳銙環を、
はハロゲン原子を瀺すで衚わされ、は敎数
で〜20である。芳銙環ずしおベンれン環ナフ
タレン環アントラセン環などが適甚できる。た
た、芳銙環にアルキル基アルケニル基アリヌ
ル基ニトロ基ハラむド基アルコキシ基シ
アノ基などの眮換基の導入されたものも適甚でき
る。䞀方、ハロゲン原子は塩玠臭玠ペヌ玠の
いずれの原子も適甚できる。以䞋のハロゲン眮換
化合物の䟋瀺では、塩玠眮換化合物を代衚ずしお
瀺す。 ハロゲン化アルカンでは、䟋えばクロロメタ
ンクロロ゚タンクロロプロパンクロロブタ
ンクロロペンタンクロロヘキサンクロロヘ
プタンクロロデカンクロロドデカンクロロ
テトラデカンクロロオクタデカンなどがあげら
れる。䞀方、ハロゲン化アルキルアリヌルでは、
䟋えばベンゞルクロラむドプネチルクロラむ
ドプニルプロピルクロラむドクロロメチル
ナフタレンクロロメチルアントラセンクロロ
メチルトル゚ンクロロメチル゚チルベンれン
クロロメチルキシレンクロロメチルスチレン
ニトロベンゞルクロラむドクロロメチルアニ゜
ヌルクロロメチルベンゟニトリルクロロベン
ゞルクロラむドなどがあげられる。 本発明で䜿甚する反応溶媒は、非プロトン性極
性溶媒であればよく、特に制限はないが、反応を
行う䞊で奜適なものずしお、䟋えばアセトニトリ
ルゞオキサンピリゞンゞメトキシ゚タン
テトラハむドロフランテトラハむドロピラン
ベンゟニトリル−ゞメチルホルムアミ
ド−ゞメチルアセトアミドゞメチルス
ルホキシド−メチルプロリドンヘキサメチ
ルホスホルアミドスルホランオキセパント
リグラむムテトラグラむムの劂きグラむム類、
テトラメチル尿玠テトラ゚チル尿玠−
ゞメチル−−むミダゟリゞノン1.3−ゞメチ
ル−−テトラヒドロ−
−ピリミゞノンの劂きアルキル尿玠類などもあげ
られる。䞊蚘のうちで曎に奜適に甚いられる溶媒
ずしお、アセトニトリル−ゞメチルホル
ムアミド−ゞメチルアセトアミドゞメ
チルスルホキシド−メチルピロリドンスル
ホランテトラグラむム−ゞメチル−
−むミダゟリゞノンなどをあげるこずができる。 溶媒の䜿甚量は特に制限はないが、溶媒を含め
た反応物総量䞭〜95重量、奜たしくは10〜90
重量の範囲である。䞀方、本発明で䜿甚する匷
塩基性物質は、固䜓状物質でもたたはそれを氎の
劂き極性溶剀に溶解した溶液状のものでも、曎に
は液䜓状のものも䜿甚できるが、反応を奜適に行
わせるには、匷塩基性物質の郚が少くずもけん
だくしおいる状態で反応を開始せしめるこずが奜
たしいので、固䜓状の匷塩基性物質を䜿甚するこ
ずが奜たしい。塩基性の匷さは氎に溶解あるいは
けんだくした時、氎溶液のPHが10以䞊奜たしくは
11以䞊のものであれば䜿甚できる。ただし、むオ
ン亀換暹脂及びその他のむオン亀換䜓は、この条
件の適甚倖であり、埌で䟋瀺する。そのような条
件に合臎する匷塩基性物質は倚皮にわたり、それ
らはいづれも適甚可胜であるが、それらのうちで
本発明の方法の実斜により奜適なものは、䟋え
ば、アルカリ金属氎酞化物、アルカリ金属酞化
物、アルカリ土類金属氎酞化物、及びむオン亀換
暹脂である。䞊蚘物質を䟋瀺するず、䟋えば、氎
酞化ナトリりム、氎酞化カリりム氎酞化リチり
ム氎酞化ルビゞりム氎酞化セシりム酞化リ
チりム酞化ナトリりム酞化カリりム氎酞化
ベリリりム氎酞化マグネシりム氎酞化カルシ
りム氎酞化ストロンチりム氎酞化バリりム
OH型の匷塩基性むオン亀換暹脂及び遊離型の匱
塩基性むオン亀換暹脂などである。 たた、原料である氎酞基眮換アミド化合物、ハ
ロゲン眮換化合物及び匷塩基性物質の盞察的䜿甚
量は、ハロゲン眮換化合物ず氎酞基眮換アミド化
合物ずの反応性、あるいは目的生成物を−䞀眮
換アミド化合物ずするのか、−二眮換アミ
ド化合物ずするのかなどにより異り、䞀抂に芏定
するこずは困難であるが、抂ね−䞀眮換アルコ
キシカルボン酞アミド化合物を補造する堎合は、
ハロゲン眮換化合物の䜿甚量はアミド化合物に察
し0.2〜15倍モル奜たしくは0.3〜10倍モルの範囲
であり、匷塩基性物質の䜿甚量はアミド化合物に
察し0.7〜15倍モル、奜たしくは1.0〜10倍モルの
範囲である。−二眮換アルコキシカルボン
酞アミド化合物を補造する堎合は、ハロゲン眮換
化合物の䜿甚量はアミド化合物に察しお1.0〜30
倍モル奜たしくは2.0〜20倍モルの範囲であり、
匷塩基性物質の䜿甚量はアミド化合物に察しお
1.5〜20倍モル、奜たしくは2.0〜15倍モルの範囲
である。 反応枩床は、䜿甚する氎酞基眮換アミド化合物
およびハロゲン眮換化合物の反応性に䟝存する
が、通垞−20〜100℃、奜たしくは−10〜90℃の
枩床範囲である。この範囲内であれば、必ずしも
反応䞭枩床を䞀定に保぀必芁はなく、反応の進行
を把握し、反応床を適宜蚭定しお効率よく反応を
行わせればよい。 たた、反応時間も反応枩床ず同様に䜿甚するア
ミド化合物及びハロゲン眮換化合物により倉動す
るが、長くずも30時間、通垞20時間以内である。
反応の掚移は反応系の性状の倉化及びガスクロマ
トグラフむヌあるいは高速液䜓クロマトグラフむ
ヌなどにより反応液䞭の原料及び目的生成物の濃
床を知るこずにより把枥できる。 本発明の方法により補造される−眮換アルコ
キシカルボン酞アミド化合物には、䞀般匏(3)に瀺
される−二眮換アルコキシカルボン酞アミ
ド化合物および−䞀眮換アルコキシカルボン酞
アミドの皮類があり、それらの補造の容易さは
䞻に眮換基R2の構造に䟝存するようであるが、
R2がメチル基もしくぱチル基では、䞀般匏(3)
の−二眮換アルコキシカルボン酞アミド化
合物が優勢に、䞀方R2がプロピル基以䞊の炭玠
数の倚いアルキル基もしくはプニルアルキル基
では、−䞀眮換アルコキシカルボン酞アミド化
合物が優勢に生成される。しかしながら、反応条
件を適圓に遞ぶこずにより、いずれの構造の化合
物も補造するこずは可胜である。 次に本発明の方法の実斜の態様に぀いお述べ
る。たず、氎酞基眮換アミド化合物、ハロゲン眮
換化合物及び匷塩基性物質の䞉者を添加する順序
及びその方法はどのように行぀おもよい。䟋え
ば、䞉者を同時に添加しおもよいし、番目の原
料を埐々に添加しおもよい。通垞は、氎酞基眮換
アミド化合物ずハロゲン眮換化合物ずを先に添加
し、匷塩基性物質を埐々に添加する方法が採甚さ
れる。しかしながら、反応性の高いハロゲン眮換
化合物を䜿甚する堎合には、ハロゲン眮換化合物
を最埌に添加した方が奜たしい。たた、反応枩床
も反応䞭䞀定に保぀必芁はなく、反応の進行に察
応しお倉えおもよい。通垞は反応を比范的䜎枩で
開始しお、その埌昇枩しおゆく方法が採られる。 次に目的生成物の分離であるが、所定時間反応
埌副生する金属ハロゲン化物を別しお、その
液より溶媒及び原料を留去すれば、その残分ずし
お目的生成物を埗るこずができる。しかし、䞀般
にはその残分を枛圧蒞留もしくは再結晶等の操䜜
により粟補しお目的生成物を分離する。たた副生
する金属ハロゲン化物が反応液に溶解する堎合、
或は䞍揮発性のアミド化合物の堎合には、溶媒の
留去埌ベンれン−氎クロロホルム−氎の劂き二
局を圢成する溶媒の組合せで残分を掗滌し、金属
ハロゲン化物及び未反応アミド化合物を氎溶液局
に、目的生成物を有機局に溶解させ分離すればよ
い。たた、必芁があれば有機局より分離した目的
物を蒞留もしくは再結晶等の操䜜で粟補を行う。
曎に、反応溶媒ずしおゞメチルスルホキシドの劂
き氎ずの芪和性の倧きい溶媒を䜿甚した堎合に
は、反応液に氎を添加しお目的物を油局ずしお分
離する方法、あるいはベンれントル゚ンクロ
ロホルムの劂き氎ず二局を圢成する溶剀で目的物
を抜出分離する方法なども適甚できる。 本発明の方法においおは、−眮換アルコキシ
カルボン酞アミド化合物補造の原料ずしお、乳酞
アミドサリチルアミドの劂き汎甚性の高くか぀
安䟡な氎酞基眮換アミド化合物を適甚でき、か぀
容易に収率よく−眮換アルコキシカルボン酞ア
ミド化合物の補造を行うこずができるので、工業
的にか぀安䟡に−眮換アルコキシカルボン酞ア
ミド化合物を補造するこずが可胜ずなる。 次に本発明を実斜䟋により曎に説明する。 実斜䟋  −ブトキシ−−ブチルサリチルアミドの補
造 −ゞメチルホルムアミド200mlのサリチ
ルアミド44及び−ブロモブタン96を添加
し、氷济䞭で撹拌しながら氎酞化カリりム59を
埐々に添加し、反応を開始した。その埌、埐々に
昇枩しながら時間反応を行い、最終的には反応
枩床は20℃にな぀た。反応埌䞍溶郚を別し、そ
の液より溶媒及び原料を留去し、その残分をベ
ンれンで再結晶し、融点40−41℃の−ブトキシ
−−ブチルサリチルアミド61収率77を
埗た。 比范䟋  −ブトキシ−−ブチルサリチルアミドの補
造 ゚チルアルコヌル200mlに−ブトキシベンズ
アミド62−ブロモブタン48及びナトリり
ム゚トキシド24を添加し、゚チルアルコヌルの
沞ずう䞋に24時間反応を行぀た。反応埌の凊理を
実斜䟋ず同様に行い、−ブトキシ−−ブチ
ルサリチルアミド25収率31を埗た。 実斜䟋  β−ベンゞロキシ−−ベンゞルプロピオナミ
ドの補造 ゞメチルスルホキシド200mlにβ−ヒドロキシ
プロピオナミド29及びベンゞルブロマむド120
を添加し、氷济䞭で撹拌しながら、氎酞化ナト
リりム42を埐々に添加した。その埌20℃にお
時間反応を行぀た。反応埌の凊理を実斜䟋ず同
様に行い、ベンれンより再結晶しお融点59−60℃
のβ−ベンゞロキシ−−ベンゞルプロピオナミ
ド65収率76を埗た。 実斜䟋  −゚トキシ−−ゞ゚チル ベンズアミ
ドの補造 −ゞメチル−−むミダゟリゞノン200
ml䞭にサリチルアミド44及びブロモ゚タン115
を添加し、氷济䞭で撹拌しながら、氎酞化カリ
りム88を埐々に添加した。その埌20℃にお時
間反応を行぀た。反応埌䞍溶郚を別しお、その
液を蒞留しお113−115℃0.1mmHg留分を採取
し、−゚トキシ−−ゞ゚チルベンズアミ
ド59収率83を埗た。 実斜䟋〜 衚−蚘茉の原料、匷塩基性物質、溶媒の組合
せで、衚−蚘茉の条件で、実斜䟋ず同様に反
応を行぀た。反応埌、実斜䟋ず党く同様の方法
で凊理を行い、衚−蚘茉の結果を埗た。
The present invention relates to a method for producing N-substituted alkoxycarboxylic acid amide compounds. More specifically, the present invention relates to a method for producing an N-substituted alkoxycarboxylic acid amide compound by reacting a hydroxyl-substituted amide compound with a halogen-substituted compound. N-substituted alkoxycarboxylic acid amide compounds are useful substances for applications such as raw materials for pharmaceuticals or agricultural chemicals such as anthelmintics, or various additives. Conventionally, methods for producing N-substituted alkoxycarboxylic acid amide compounds include a reaction between an alkoxy-substituted carboxylic acid chloride and an amine, and a reaction between an alkoxy-substituted carboxylic acid or an alkoxy-substituted carboxylic acid ester and an amine. ing. However, in the former method,
The raw material, alkoxy-substituted carboxylic acid chloride, is expensive and difficult to handle, and in the latter method, the reaction between carboxylic acid or carboxylic acid ester and amines does not necessarily proceed efficiently. The manufacturing method is not yet satisfactory. Also J.Pharm, and
Pharmacol., Vol. 9, pp. 855-863 (published in 1957), discloses a method for producing N-substituted alkoxycarboxylic acid amide compounds by reacting an alkoxy-substituted amide compound with a halogen-substituted compound. However, this method uses alcohol as a reaction solvent, an alkali metal alkoxide as a strong basic substance, and harsh reaction conditions such as 24 hours of reaction under boiling alcohol. However, as shown in Comparative Example 1, satisfactory results were not obtained. As a result of intensive studies by the present inventors to solve the above problems, we found that the general formula (1) HO-R 1 -CONH 2 ...(1) (wherein R 1 is an alkyl group, an alkenylene group,
Indicates a phenylene group, a phenylenealkylene group, or an alicyclic group. ) and a halogen represented by the general formula (2) R 2 -X...(2) (where R 2 is an alkyl group or phenyl alkyl group, and X is a halogen atom). By reacting with a substituted compound in an aprotic polar solvent in the presence of a strong basic substance, the general formula (3) can be obtained. The inventors have discovered that an N-substituted alkoxycarboxylic acid amide compound represented by or R 2 O-R 1 -CONH-R 2 (where R 1 and R 2 are the same as above) can be easily produced, and the present invention has been achieved. The hydroxyl-substituted amide compound applicable to the present invention is represented by the following general formula: HO-R 1 -CONH 2 (wherein R 1 is an alkylene group, an alkenylene group,
Indicates a phenylene group, a phenylenealkylene group, and an alicyclic group. ) Hydroxyl group-substituted saturated fatty acid amides, hydroxyl group-substituted unsaturated fatty acid amides, hydroxyl group-substituted aromatic carboxylic acid amides, hydroxyl group-substituted alicyclic carboxylic acid amides, and these compounds have alkyl groups, aryl groups, nitro groups, Compounds into which halide groups, alkoxy groups, cyano groups, etc. have been introduced are also covered. Moreover, a hydroxyl group may be bonded to those substituents. To illustrate them,
For example, hydroxyacetamide, lactic acid amide, hydroxypropionamide, hydroxybutyramide, hydroxyvaleramide, chlorohydroxyheptanamide, hydroxyacrylamide, hydroxycrotonamide, hydroxycinnamide, salicylamide, hydroxybenzamide, hydroxytoluamide, hydroxymethyl benzamide,
Examples include hydroxynaphthamide, hydroxyanthraquinone carboxamide, methoxysalicylamide, hydroxynitrobenzamide, hydroxyphenylacetamide, hydroxyphenylpropionamide, and hydroxycyclohexane carboxamide. On the other hand, halogen-substituted compounds are represented by the following general formula: R 2 -X (wherein, R 2 represents an alkyl group or phenyl alkyl group, and X represents a halogen atom), halogenated alkanes, and halogenated alkyl Aryl can be given. Halogenated alkanes have the general formula
CnH 2 n +1 X (X is a halogen atom), n
is an integer between 1 and 20. Alkylaryl halide has the general formula ArCnH 2 nX (where Ar represents an aromatic ring,
X represents a halogen atom), and n is an integer from 1 to 20. A benzene ring, a naphthalene ring, an anthracene ring, etc. can be used as the aromatic ring. Also applicable are those in which a substituent such as an alkyl group, alkenyl group, aryl group, nitro group, halide group, alkoxy group, or cyano group is introduced into the aromatic ring. On the other hand, any of chlorine, bromine, and iodine atoms can be used as the halogen atom. In the following examples of halogen-substituted compounds, chlorine-substituted compounds are shown as a representative. Examples of halogenated alkanes include chloromethane, chloroethane, chloropropane, chlorobutane, chloropentane, chlorohexane, chloroheptane, chlorodecane, chlorododecane, chlorotetradecane, and chlorooctadecane. On the other hand, for alkylaryl halides,
For example, benzyl chloride, phenethyl chloride, phenylpropyl chloride, chloromethylnaphthalene, chloromethylanthracene, chloromethyltoluene, chloromethylethylbenzene,
Chloromethylxylene, chloromethylstyrene,
Examples include nitrobenzyl chloride, chloromethylanisole, chloromethylbenzonitrile, and chlorobenzyl chloride. The reaction solvent used in the present invention is not particularly limited as long as it is an aprotic polar solvent, but suitable ones for carrying out the reaction include, for example, acetonitrile, dioxane, pyridine, dimethoxyethane,
Tetrahydrofuran, Tetrahydropyran,
Glymes such as benzonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, N-methylprolidone, hexamethylphosphoramide, sulfolane, oxepane, triglyme, tetraglyme,
Tetramethylurea, Tetraethylurea, 1,3-
Dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6,-tetrahydro-2(H)
- Alkylureas such as pyrimidinone can also be mentioned. Among the above, more preferably used solvents include acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, sulfolane, tetraglyme, 1,3-dimethyl-2
- Examples include imidazolidinone. The amount of solvent used is not particularly limited, but it is 5 to 95% by weight, preferably 10 to 90% by weight based on the total amount of reactants including the solvent.
% by weight. On the other hand, the strong basic substance used in the present invention can be a solid substance, a solution prepared by dissolving it in a polar solvent such as water, or even a liquid substance, but it is possible to use a solid substance or a liquid substance. For this reason, it is preferable to start the reaction while at least a part of the strong basic substance is suspended, so it is preferable to use a solid strong basic substance. The strength of basicity is such that when dissolved or suspended in water, the pH of the aqueous solution is preferably 10 or more.
Anything above 11 can be used. However, ion exchange resins and other ion exchangers are not subject to this condition and will be exemplified later. There are many types of strong basic substances that meet such conditions, and any of them can be applied, but among them, those that are more suitable for carrying out the method of the present invention are, for example, alkali metal hydroxides and alkali metal hydroxides. metal oxides, alkaline earth metal hydroxides, and ion exchange resins. Examples of the above substances include sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, lithium oxide, sodium oxide, potassium oxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, water Strontium oxide, barium hydroxide,
These include OH type strongly basic ion exchange resins and free type weakly basic ion exchange resins. In addition, the relative amounts of the hydroxyl-substituted amide compound, halogen-substituted amide compound, and strong basic substance used as raw materials are determined by the reactivity between the halogen-substituted compound and the hydroxyl-substituted amide compound, or whether the desired product is mixed with the N-monosubstituted amide compound. It differs depending on whether the N,N-disubstituted amide compound is produced or not, and it is difficult to define it unambiguously, but in general, when producing an N-monosubstituted alkoxycarboxylic acid amide compound,
The amount of the halogen-substituted compound to be used is 0.2 to 15 times the mole of the amide compound, preferably 0.3 to 10 times the mole, and the amount of the strong basic substance to be used is 0.7 to 15 times the mole of the amide compound, preferably 1.0 to 15 times the mole. It is in the 10-fold molar range. When producing an N,N-disubstituted alkoxycarboxylic acid amide compound, the amount of halogen-substituted compound used is 1.0 to 30% based on the amide compound.
It is preferably in the range of 2.0 to 20 times the mole,
The amount of strong basic substances used is relative to the amide compound.
It is in the range of 1.5 to 20 times the mole, preferably 2.0 to 15 times the mole. The reaction temperature depends on the reactivity of the hydroxyl-substituted amide compound and halogen-substituted compound used, but is usually in the range of -20 to 100°C, preferably -10 to 90°C. As long as it is within this range, it is not necessarily necessary to keep the temperature constant during the reaction, but it is sufficient to keep track of the progress of the reaction and appropriately set the degree of reaction to carry out the reaction efficiently. Further, the reaction time also varies depending on the amide compound and halogen-substituted compound used as well as the reaction temperature, but it is 30 hours at the longest, and usually within 20 hours.
The progress of the reaction can be monitored by determining changes in the properties of the reaction system and the concentrations of raw materials and target products in the reaction solution using gas chromatography, high performance liquid chromatography, or the like. There are two types of N-substituted alkoxycarboxylic acid amide compounds produced by the method of the present invention: N,N-disubstituted alkoxycarboxylic acid amide compounds and N-monosubstituted alkoxycarboxylic acid amide compounds shown in general formula (3). , and their ease of preparation seems to depend mainly on the structure of the substituent R 2 ,
When R 2 is a methyl group or an ethyl group, the general formula (3)
N,N-disubstituted alkoxycarboxylic acid amide compounds are predominant, whereas when R 2 is an alkyl group with a large number of carbon atoms or more than a propyl group or a phenylalkyl group, N-monosubstituted alkoxycarboxylic acid amide compounds are predominantly formed. be done. However, by appropriately selecting reaction conditions, it is possible to produce compounds with any structure. Next, embodiments of the method of the present invention will be described. First, the order and method of adding the hydroxyl-substituted amide compound, halogen-substituted compound, and strong basic substance may be any method. For example, the three raw materials may be added at the same time, or the third raw material may be added gradually. Usually, a method is adopted in which a hydroxyl-substituted amide compound and a halogen-substituted compound are added first, and then a strong basic substance is gradually added. However, when using a highly reactive halogen-substituted compound, it is preferable to add the halogen-substituted compound last. Further, the reaction temperature does not need to be kept constant during the reaction, and may be changed depending on the progress of the reaction. Usually, a method is adopted in which the reaction is started at a relatively low temperature and then the temperature is raised. Next, the desired product is separated, and by separating the metal halide produced as a by-product after the reaction for a predetermined period of time, and distilling off the solvent and raw materials from the liquid, the desired product can be obtained as a residue. However, in general, the residue is purified by operations such as vacuum distillation or recrystallization to separate the desired product. In addition, when by-product metal halides are dissolved in the reaction solution,
Alternatively, in the case of a non-volatile amide compound, after distilling off the solvent, the residue is washed with a solvent combination that forms two layers, such as benzene-water or chloroform-water, to remove metal halides and unreacted amide compounds. The target product may be dissolved in the organic layer and separated from the aqueous solution layer. Furthermore, if necessary, the target product separated from the organic layer is purified by operations such as distillation or recrystallization.
Furthermore, when using a solvent with high affinity for water such as dimethyl sulfoxide as a reaction solvent, there is a method of adding water to the reaction solution and separating the target product as an oil layer, or a method of adding water to the reaction solution and separating the target product as an oil layer, or using water such as benzene, toluene, or chloroform. A method of extracting and separating the target substance using a solvent that forms two layers can also be applied. In the method of the present invention, highly versatile and inexpensive hydroxyl-substituted amide compounds such as lactic acid amide and salicylamide can be used as raw materials for producing N-substituted alkoxycarboxylic acid amide compounds, and N- Since the substituted alkoxycarboxylic acid amide compound can be manufactured, it becomes possible to manufacture the N-substituted alkoxycarboxylic acid amide compound industrially and at low cost. Next, the present invention will be further explained by examples. Example 1 Preparation of O-butoxy-N-butyl salicylamide: Add 44 g of salicylamide and 96 g of 1-bromobutane to 200 ml of N,N-dimethylformamide, and slowly add 59 g of potassium hydroxide while stirring in an ice bath. and started the reaction. Thereafter, the reaction was carried out for 5 hours while gradually increasing the temperature, and the reaction temperature finally reached 20°C. After the reaction, the insoluble part was separated, the solvent and raw materials were distilled off from the liquid, and the residue was recrystallized with benzene to obtain 61 g of O-butoxy-N-butyl salicylamide with a melting point of 40-41°C (yield 77%). ) was obtained. Comparative Example 1 Production of O-butoxy-N-butylsalicylamide: 62 g of O-butoxybenzamide, 48 g of 1-bromobutane, and 24 g of sodium ethoxide were added to 200 ml of ethyl alcohol, and the reaction was carried out for 24 hours while the ethyl alcohol was boiling. Ivy. The treatment after the reaction was carried out in the same manner as in Example 1, and 25 g (yield: 31%) of O-butoxy-N-butylsalicylamide was obtained. Example 2 Preparation of β-benzyloxy-N-benzylpropionamide: 29 g of β-hydroxypropionamide and 120 g of benzyl bromide in 200 ml of dimethyl sulfoxide.
Then, while stirring in an ice bath, 42 g of sodium hydroxide was gradually added. Then at 20℃ 4
A time reaction was performed. The post-reaction treatment was carried out in the same manner as in Example 1, and recrystallized from benzene to a melting point of 59-60°C.
65 g (yield 76%) of β-benzyloxy-N-benzylpropionamide was obtained. Example 3 Preparation of O-ethoxy-N,N-diethyl benzamide: 1,3-dimethyl-2-imidazolidinone 200
44g salicylamide and 115g bromoethane in ml
88 g of potassium hydroxide were gradually added while stirring in an ice bath. Thereafter, the reaction was carried out at 20°C for 4 hours. After the reaction, the insoluble portion was separated and the liquid was distilled to collect a fraction at 113-115°C/0.1 mmHg to obtain 59 g (yield: 83%) of O-ethoxy-N,N-diethylbenzamide. Examples 4 to 7 Reactions were carried out in the same manner as in Example 3 using the combinations of raw materials, strong basic substances, and solvents listed in Table 1 under the conditions listed in Table 1. After the reaction, treatment was carried out in exactly the same manner as in Example 3, and the results shown in Table 2 were obtained.

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  䞀般匏(1) HO−R1−CONH2 
(1) 䜆し、R1はアルキル基、アルケニレン基、
プニレン基、プニレンアルキレン基たたは脂
環匏基を瀺す。で瀺される氎酞基眮換アミド化
合物ず 䞀般匏(2) R2− 
(2) 䜆し、R2はアルキル基たたはプニルアル
キル基を、たたはハロゲン原子を瀺す。で瀺
されるハロゲン眮換化合物ずを非プロトン性極性
溶媒䞭で匷塩基性物質の存圚䞋に反応させるこず
を特城ずする 䞀般匏(3) 又はR2O−R1−CONH−R2 䜆し、R1及びR2は䞊蚘ず同じで瀺される
−眮換アルコキシカルボン酞アミド化合物の補
造方法。
[Claims] 1 General formula (1) HO−R 1 −CONH 2 
(1) (However, R 1 is an alkyl group, an alkenylene group,
Indicates a phenylene group, a phenylenealkylene group, or an alicyclic group. ) and a halogen represented by the general formula (2) R 2 -X...(2) (where R 2 is an alkyl group or phenyl alkyl group, and X is a halogen atom). General formula (3) characterized by reacting with a substituted compound in an aprotic polar solvent in the presence of a strong basic substance. or R2O - R1 -CONH- R2 (However, R1 and R2 are the same as above) A method for producing an N-substituted alkoxycarboxylic acid amide compound.
JP12678582A 1982-07-22 1982-07-22 Preparation of n-substituted alkoxycarboxylic acid amide compound Granted JPS5920258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12678582A JPS5920258A (en) 1982-07-22 1982-07-22 Preparation of n-substituted alkoxycarboxylic acid amide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12678582A JPS5920258A (en) 1982-07-22 1982-07-22 Preparation of n-substituted alkoxycarboxylic acid amide compound

Publications (2)

Publication Number Publication Date
JPS5920258A JPS5920258A (en) 1984-02-01
JPH0333702B2 true JPH0333702B2 (en) 1991-05-20

Family

ID=14943872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12678582A Granted JPS5920258A (en) 1982-07-22 1982-07-22 Preparation of n-substituted alkoxycarboxylic acid amide compound

Country Status (1)

Country Link
JP (1) JPS5920258A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166649A (en) * 1984-02-07 1985-08-29 Nippon Tokushu Kagaku Kogyo Kk Preparation of n-monoalkylamide
US5251196A (en) * 1987-09-30 1993-10-05 Deutsche Thomson-Brandt Gmbh Optical pick-up selectively reading and writing an optical and magneto-optical recorded medium
US5118846A (en) * 1990-04-27 1992-06-02 The Standard Oil Company Synthesis of N-disubstituted amides by reaction of amides with certain organic hydroxyl compounds
JP5331469B2 (en) 2008-12-10 2013-10-30 出光興産株匏䌚瀟 Process for producing β-alkoxypropionamides
FR2951447B1 (en) * 2009-10-19 2012-10-19 Rhodia Operations ETHER AMIDE COMPOUNDS AND USES THEREOF

Also Published As

Publication number Publication date
JPS5920258A (en) 1984-02-01

Similar Documents

Publication Publication Date Title
JPH0333702B2 (en)
US3979379A (en) Process for producing 1,3,5,7-tetraalkanoyl-1,3,5,7-octahydrotetrazocines
CH616416A5 (en)
US20200377455A1 (en) Process for the preparation of glycopyrrolate tosylate
CA1083581A (en) Thiazolidine derivatives and process for their manufacture
RU2133734C1 (en) Method of synthesis of cycloalkyl- or halogenalkyl-o-amino-phenylketones (variants)
JPH0115497B2 (en)
EP0131472B1 (en) 5-mercapto-1,2,3-thiadiazoles composition and process for preparing the same
JPS5942359A (en) Preparation of sulfone
US4459242A (en) Method of preparing alkaline difluoromethane sulfonates
SU612622A3 (en) Method of obtaining triphenylalkene derivatives or their salts or z- or e-isomers
JP3796280B2 (en) Process for producing 1- (2-chlorophenyl) -5 (4H) -tetrazolinone
KR910004668B1 (en) Process for the preparation of 6-demethyl-6-deoxy-6-methylene-5-oxytetracycline and 11a-chloroderivate thereof
SU978724A3 (en) Method of producing 1-(2,6-dimethylphenoxy)-2-azide-propane
JPH04308538A (en) Halogenation
HU198179B (en) Process for producing n-methyl-1-alkylthio-2-nitroethenamine derivatives
JPH0328413B2 (en)
SU786888A3 (en) Method of preparing polysubstituted 4-alkylaminobenzoic acid esters
JPS6350339B2 (en)
JP3174958B2 (en) Toluenesulfonyl fluoride derivative
JP4183781B2 (en) Method for producing S, S- (6-methylquinoxaline-2,3-diyl) dithiocarbonate
JP2752878B2 (en) Preparation of ether esters of hydroxynaphthoic acids
JP4221782B2 (en) Method for purifying dihalotrifluoroacetone
JPH048419B2 (en)
JPH0768185B2 (en) Process for producing nitro-substituted 4-trifluoromethylbenzoic acid