JPH0333151Y2 - - Google Patents

Info

Publication number
JPH0333151Y2
JPH0333151Y2 JP1984011843U JP1184384U JPH0333151Y2 JP H0333151 Y2 JPH0333151 Y2 JP H0333151Y2 JP 1984011843 U JP1984011843 U JP 1984011843U JP 1184384 U JP1184384 U JP 1184384U JP H0333151 Y2 JPH0333151 Y2 JP H0333151Y2
Authority
JP
Japan
Prior art keywords
insulating spacer
microns
surface roughness
embedded
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984011843U
Other languages
Japanese (ja)
Other versions
JPS60128425U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1184384U priority Critical patent/JPS60128425U/en
Publication of JPS60128425U publication Critical patent/JPS60128425U/en
Application granted granted Critical
Publication of JPH0333151Y2 publication Critical patent/JPH0333151Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Insulators (AREA)
  • Installation Of Bus-Bars (AREA)

Description

【考案の詳細な説明】 〔考案の属する技術分野〕 本考案はガス絶縁密閉開閉装置(GiS)、管路
気中ケーブル(GiB)、高電圧配電盤等の高電圧
電気機器に用いられる埋込金具を備えた絶縁スペ
ーサに関する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention is an embedded metal fitting used in high voltage electrical equipment such as gas insulated sealed switchgear (GiS), conduit aerial cable (GiB), high voltage switchboard, etc. This invention relates to an insulating spacer.

〔従来技術とその問題点〕[Prior art and its problems]

第1図は絶縁スペーサの使用状況を示す側断面
図で、GiSへの適用例を示したものである。図に
おいて、1は内部に絶縁ガス2を包蔵したGiSの
密閉容器、3は筒状または丸棒状のGiSの高電圧
導体、4は絶縁スペーサである。絶縁スペーサ4
は、高電圧導体3に連結部材9によつて連結され
高電圧導体と同電位に保たれた埋込金具5Aと、
接地された密閉容器1内に設けられた支持金具7
にボルト8により連結され大地電位に保たれた埋
込金具5Bと、埋込金具5A、5Bが一体モール
ドされた円柱状の熱硬化性樹脂硬化物からなる絶
縁体6とからなり、絶縁スペーサ4の製作時点に
おいて埋込金具5Aおよび5Bはたとえば注形金
型の所定位置にセツトされ、液状の注形樹脂を金
型に注入し、加熱硬化することにより埋込金具5
A,5Bが絶縁体6中に一体モールドされるもの
である。また、図中の点線は高電圧導体3と密閉
容器1との間に電圧を印加した際、絶縁スペーサ
4および絶縁ガス空間2中の電位分布を示す等電
位線である。図の場合、一対の埋込金具5A,5
Bによつて絶縁体6中の絶縁距離が短縮されてい
るので、両埋込電極間の絶縁体中で等電位線10
が相互に接近し、この部分の電界が高くなつてい
るが、絶縁体6の外周部と絶縁ガス2との境界部
においては、等電位線相互の間隔が広がり、絶縁
体6の沿面の電界が弱まるよう埋込金具5A,5
Bによつて電界が制御されている。このように絶
縁スペーサには、高電圧導体3を所定位置に強固
に支持する役割と、高電圧導体3と密閉容器1と
を絶縁体6によつて絶縁する役割と、絶縁スペー
サ近傍のガス中の電界を制御して絶縁体6の沿面
の耐電圧を保持する役割とが求められている。
FIG. 1 is a side sectional view showing how the insulating spacer is used, and shows an example of its application to GiS. In the figure, 1 is a sealed GiS container containing an insulating gas 2, 3 is a cylindrical or round bar-shaped GiS high voltage conductor, and 4 is an insulating spacer. Insulating spacer 4
is an embedded fitting 5A connected to the high voltage conductor 3 by a connecting member 9 and kept at the same potential as the high voltage conductor;
Supporting metal fittings 7 provided inside the grounded closed container 1
It consists of an embedded metal fitting 5B connected by a bolt 8 to the earth potential and kept at ground potential, and an insulator 6 made of a cylindrical thermosetting resin cured material into which the embedded metal fittings 5A and 5B are integrally molded, and an insulating spacer 4. At the time of manufacture, the embedded metal fittings 5A and 5B are set at a predetermined position in a casting mold, for example, and liquid casting resin is injected into the mold and heated to harden to form the embedded metal fittings 5.
A and 5B are integrally molded into the insulator 6. Further, the dotted lines in the figure are equipotential lines indicating the potential distribution in the insulating spacer 4 and the insulating gas space 2 when a voltage is applied between the high voltage conductor 3 and the sealed container 1. In the case of the figure, a pair of embedded metal fittings 5A, 5
Since the insulation distance in the insulator 6 is shortened by B, the equipotential line 10 is formed in the insulator between both embedded electrodes.
are approaching each other, and the electric field in this area is high. However, at the boundary between the outer periphery of the insulator 6 and the insulating gas 2, the distance between the equipotential lines increases, and the electric field along the creeping surface of the insulator 6 increases. Embedded metal fittings 5A, 5 to weaken
The electric field is controlled by B. In this way, the insulating spacer has the following roles: to firmly support the high voltage conductor 3 in a predetermined position, to insulate the high voltage conductor 3 and the sealed container 1 with the insulator 6, and to protect the gas near the insulating spacer. There is a need for the role of controlling the electric field of the insulator 6 and maintaining the withstand voltage of the creeping surface of the insulator 6.

第2図は円柱状の絶縁スペーサの側断面図であ
る。図において、埋込金具5Aおよび5Bは、絶
縁体6中の電界をなるべく低く保ちかつ絶縁体6
の沿面における電界を制御するためにたとえば図
のように半球棒状に形成されるとともに、埋込金
具の絶縁体6と接する表面にはサンドブラスト加
工、ローレツト加工等の粗面加工を施こすことに
よつて埋込金具と絶縁体との接着強度を高め絶縁
スペーサに加わる導体の荷重や電磁機械力等の機
械的応力や高電圧導体3の温度変化によつて絶縁
スペーサに加わる熱応力により埋込金具と絶縁体
との接着がはがれたり、またそれが原因で絶縁体
が機械的に破損したり絶縁破壊したりしないよう
対策されている。
FIG. 2 is a side sectional view of a cylindrical insulating spacer. In the figure, the embedded fittings 5A and 5B are designed to keep the electric field in the insulator 6 as low as possible and
In order to control the electric field along the creeping surface of the mounting bracket, it is formed into a hemispherical bar shape as shown in the figure, and the surface of the embedded fitting in contact with the insulator 6 is roughened by sandblasting, knurling, etc. This increases the adhesive strength between the embedded metal fitting and the insulator, and reduces the mechanical stress such as the load of the conductor applied to the insulating spacer, electromagnetic mechanical force, etc., and the thermal stress applied to the insulating spacer due to temperature changes of the high voltage conductor 3. Measures are taken to prevent the bond between the insulator and the insulator from peeling off, and to prevent mechanical damage to the insulator or dielectric breakdown due to this.

ところが、上述のように構成された絶縁スペー
サが当初予想された寿命時間よりはるかに短かい
使用時間で間々絶縁破壊するという問題が発生
し、耐電圧寿命特性の改善が求められている。
However, a problem has arisen in that the insulating spacer configured as described above occasionally suffers dielectric breakdown during a much shorter usage time than originally expected, and there is a need for improvement in the withstand voltage life characteristics.

〔考案の目的〕[Purpose of invention]

本考案は前述の状況に鑑みてなされたもので、
機械的性能と耐電圧寿命性能のバランスのとれた
樹脂モールド絶縁スペーサを提供することを目的
とする。
This idea was created in view of the above-mentioned situation.
The purpose of this invention is to provide a resin molded insulating spacer with a good balance of mechanical performance and withstand voltage life performance.

〔考案の要点〕[Key points of the idea]

本考案は、埋込金具の表面粗さが1〜50ミクロ
ンの範囲で異なる数種類のモデル絶縁スペーサ各
数個を作り、100〜1000時間で絶縁破壊する交流
高電界を印加して表面粗さと耐電圧寿命特性との
相関性を解明する本願考案者等の実験的検討の結
果、表面粗さが30ミクロン以上、ことに40ミクロ
ン以上の領域で耐電圧寿命特性が急激に低下する
という事実が解明され、この検討結果と接着強度
の検討結果とから埋込金具の表面粗さの範囲を5
〜40ミクロンに限定し、少なくとも課電される埋
込金具表面の最大電界の50%を超える埋込金具表
面の部分に施すよう構成することにより、上述の
目的を達成したものである。
In this invention, several types of model insulating spacers with different surface roughnesses of embedding metal fittings ranging from 1 to 50 microns were made, and a high AC electric field was applied that caused dielectric breakdown in 100 to 1000 hours to improve the surface roughness and resistance. As a result of experimental studies by the inventors of this application to elucidate the correlation with voltage life characteristics, it was revealed that the withstand voltage life characteristics decrease rapidly in the area where the surface roughness is 30 microns or more, especially 40 microns or more. Based on the results of this study and the results of the study on adhesive strength, the range of surface roughness of the embedded metal fittings was determined by 5.
The above-mentioned objective was achieved by limiting the electric field to ~40 microns and applying the electric field to a portion of the surface of the embedded metal fitting that exceeds at least 50% of the maximum electric field on the surface of the embedded metal fitting to be charged.

〔考案の実施例〕[Example of idea]

以下本考案を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第3図は埋込金具の表面粗さと耐電圧寿命特性
との相関性を調べる実験に使用したモデル絶縁ス
ペーサの側断面図、第4図は表面粗さと引張りせ
ん断接着強度との関係を調べる実験に使用した試
験片の構造図である。第3図において、埋込金具
15Aおよび15Bは寸法形状が第2図の実絶縁
スペーサとほぼ等しく、表面粗さを1〜50ミクロ
ンの範囲で数種類変えたものが用いられており、
絶縁体16は両埋込電極間の最小絶縁距離Dが実
絶縁スペーサの5〜10分の1に短縮され、図のモ
デル絶縁スペーサが形成されている。耐電圧寿命
試験は、表面粗さが異なるスペーサ各20個づつに
ついて行ない、最長1000時間で絶縁破壊するよう
な交流高電圧を連続印加し、各モデルの破壊時間
を求めることによつて行なつたものである。すな
わち高電圧電気機器に用いられる絶縁スペーサ
は、機器の寿命期間をたとえば50年と想定し、寿
命時点における絶縁破壊確率がたとえば1/1000以
下といつた高い信頼度を要求されるものである
が、寿命試験時間を短縮するために電界加速試験
法が用いられ、絶縁距離Dを短縮すると同時に使
用電圧より高い電圧を印加することにより絶縁体
中の最大電界を高め、寿命時間を1000時間以下に
短縮し、モデル絶縁スペーサの耐電圧寿命特性を
求めたものである。
Figure 3 is a side sectional view of a model insulating spacer used in an experiment to investigate the correlation between surface roughness and withstand voltage life characteristics of embedded fittings, and Figure 4 is an experiment to investigate the relationship between surface roughness and tensile shear adhesive strength. FIG. 2 is a structural diagram of a test piece used for In FIG. 3, embedded metal fittings 15A and 15B are used which have almost the same dimensions and shape as the actual insulating spacer shown in FIG. 2, but with several different surface roughnesses in the range of 1 to 50 microns.
The minimum insulation distance D between both embedded electrodes of the insulator 16 is shortened to one-fifth to one-tenth that of the actual insulation spacer, and the model insulation spacer shown in the figure is formed. The withstand voltage life test was conducted on 20 spacers each with different surface roughness, by continuously applying AC high voltage that would cause dielectric breakdown in a maximum of 1000 hours, and determining the breakdown time for each model. It is something. In other words, insulating spacers used in high-voltage electrical equipment are required to have high reliability, with the probability of insulation breakdown at the end of life being, for example, 1/1000 or less, assuming the equipment's lifespan is, for example, 50 years. In order to shorten the life test time, an electric field acceleration test method is used, which shortens the insulation distance D and at the same time increases the maximum electric field in the insulator by applying a voltage higher than the working voltage, reducing the life time to 1000 hours or less. This is to determine the withstand voltage life characteristics of the model insulating spacer.

第5図は第3図のモデル絶縁スペーサの耐電圧
寿命試験結果を示すグラフで、図の横軸には埋込
金具の表面粗さを、縦軸には表面粗さ1ミクロン
のモデルスペーサの50%破壊時間を100とした耐
電圧寿命時間の相対値を表わしたものである。図
の実験結果から、数回の実験の繰り返しによつて
特性に多少の幅があるものの、表面粗さが30〜40
ミクロンあたりから耐電圧寿命時間の相対値が明
らかに低下しはじめ、40ミクロンを超える領域で
は急激に低下することが判明した。この実験結果
は、従来漠然と懸念されていた埋込金具の表面粗
さが耐電圧寿命特性に及ぼすであろうとの想像を
はるかに超える顕著なものであり、たとえば従来
表面粗さ50ミクロンの埋込金具を用いていたと仮
定すれば耐電圧寿命時間は最良状態の1/50に低
下した状態で使用されていたことになる。
Figure 5 is a graph showing the withstand voltage life test results of the model insulating spacer shown in Figure 3. The horizontal axis of the figure shows the surface roughness of the embedded metal fitting, and the vertical axis shows the surface roughness of the model spacer with a surface roughness of 1 micron. It expresses the relative value of withstand voltage life time with 50% breakdown time as 100. From the experimental results shown in the figure, the surface roughness is between 30 and 40, although there is some variation in the characteristics depending on the repetition of the experiment several times.
It was found that the relative value of withstand voltage life time clearly begins to decrease from around microns, and rapidly decreases in the region exceeding 40 microns. This experimental result far exceeds the imagination that the surface roughness of embedded metal fittings would affect the withstand voltage life characteristics, which was a vague concern in the past. Assuming that metal fittings were used, the withstand voltage life time would have been reduced to 1/50 of the best condition.

一方第4図のように2枚の金属板12A,12
Bを第3図のモデルスペーサと同じ熱硬化形樹脂
13で同一の加熱硬化条件により接着したラツプ
ジヨイント形試験片を用いて接着面の表面粗さと
引張りせん断接着強度との関係を調べた結果は、
第6図に示すように、表面粗さ数ミクロンから接
着強度が上昇しはじめ、40ミクロンでは25%、50
ミクロンでは30%上昇し、表面粗さをさらに粗く
すれば接着強度がさらに上昇するものと予想され
る。
On the other hand, as shown in Fig. 4, two metal plates 12A, 12
The relationship between the surface roughness of the bonded surface and the tensile shear adhesive strength was investigated using a lap joint type test piece in which B was bonded with the same thermosetting resin 13 as the model spacer shown in Fig. 3 under the same heat curing conditions.
As shown in Figure 6, the adhesive strength begins to increase when the surface roughness is a few microns, increasing by 25% at 40 microns, and 25% at 50 microns.
It increases by 30% in microns, and it is expected that the bond strength will further increase if the surface roughness is made even rougher.

上述の検討結果から、充分な接着強度が得られ
る埋込金具の表面粗さより細かい表面粗さにおい
てすでに耐電圧寿命特性への影響が顕著に現われ
ることが明らかになり、絶縁スペーサの機械的強
度の向上について配虜する以上に、耐電圧寿命特
性の低下防止について配慮する必要があることが
判明した。
From the above study results, it is clear that surface roughness that is finer than the surface roughness of the embedded metal fittings that provides sufficient adhesive strength has a noticeable effect on the withstand voltage life characteristics, and that the mechanical strength of the insulating spacer is significantly affected. It has become clear that more than focusing on improvements, it is necessary to give consideration to preventing a decline in withstand voltage life characteristics.

本考案の絶縁スペーサは、上述の検討結果に基
づいてなされたもので、第2図に一例を示すよう
な埋込金具を備えた絶縁スペーサにおいて、埋込
金具5Aおよび5Bと絶縁体6とを接着部におけ
る埋込金具の表面粗さの上限値を40ミクロン、下
限値を5ミクロンとする表面粗さの許容範囲を限
定することにより、接着強度と耐電圧寿命特性と
のバランスがとれた絶縁スペーサを提供しようと
するものである。すなわち、表面粗さの上限値を
40ミクロンに限定することにより、耐電圧寿命の
低下を1/3〜1/6程度に抑さえることができ、かつ
接着強度を鏡面仕上げに対してほぼ25%向上でき
るので、耐電圧寿命性能と接着強度とを共にかな
り良好に保つた絶縁スペーサを提供することがで
きる。一方下限値を5ミクロンに限定することに
より、耐電圧寿命性能をほぼ最良な状態に保つこ
とができ、かつ接着強度の改善効果も得ることが
できる。また粗面加工に先立つて行なう下地仕上
げ度をたとえば6−s程度に抑えることにより、
埋込金具の表面加工時間の増大を防止することが
できる。
The insulating spacer of the present invention was developed based on the above study results, and in an insulating spacer equipped with embedded fittings as shown in FIG. By limiting the allowable range of the surface roughness of the embedded metal fittings at the adhesive part to 40 microns and the lower limit to 5 microns, the insulation achieves a good balance between adhesive strength and withstand voltage life characteristics. It is intended to provide a spacer. In other words, the upper limit of surface roughness is
By limiting the diameter to 40 microns, the decrease in voltage withstand life can be suppressed to about 1/3 to 1/6, and the adhesive strength can be improved by approximately 25% compared to mirror finish, resulting in improved voltage withstand life performance. It is possible to provide an insulating spacer that maintains both adhesive strength and adhesive strength fairly well. On the other hand, by limiting the lower limit to 5 microns, it is possible to maintain the withstand voltage life performance at almost the best condition, and also to obtain the effect of improving the adhesive strength. In addition, by limiting the degree of surface finishing performed prior to surface roughening to, for example, about 6-s,
It is possible to prevent an increase in the time required for surface processing of the embedded metal fitting.

なお、埋込金具と絶縁体との接着部の表面粗さ
をすべて5〜40ミクロンの範囲に保つ必要はな
く、埋込金具表面の最大電界のたとえば50%を超
える範囲に5〜40ミクロンの粗面加工を施こし、
50%未満の低電界部分は接着強度の向上効果に重
点をおいた粗い表面仕上げとすることができる。
なお5〜40ミクロンの表面粗さを保つ範囲を、最
大電界値の50%以上とした理由は、その他の部分
の表面粗さを耐電圧寿命が1/100に低下する粗さ
(60ミクロン以上)にしても、この粗面の電界集
中が新たな絶縁の弱点にならないように配虜した
ものである。
It should be noted that it is not necessary to maintain the surface roughness of the adhesive part between the embedded fitting and the insulator within the range of 5 to 40 microns; With rough surface processing,
The low electric field area of less than 50% can have a rough surface finish with emphasis on the effect of improving adhesive strength.
The reason why we set the range in which the surface roughness of 5 to 40 microns is maintained to be 50% or more of the maximum electric field value is because the surface roughness of other parts is limited to a roughness that reduces the withstand voltage life to 1/100 (60 microns or more). ), this was done to prevent the electric field concentration on this rough surface from becoming a new weak point in the insulation.

〔考案の効果〕[Effect of idea]

本考案は前述のように、絶縁スペーサ中に一体
モールドされる埋込金具の表面粗さが30〜40ミク
ロンを超える範囲で耐電圧寿命が急激に低下する
という新たな事実に基づき、埋込金具の表面粗さ
の許容範囲を5〜40ミクロンに限定するよう構成
した。その結果、たとえば表面粗さが50ミクロン
であつた絶縁スペーサを、30〜40ミクロンの表面
粗さに変えることにより、耐電圧寿命をほぼ2桁
高めることができ、かつ接着強度の低下は数%程
度に抑さえることができることになり、また耐電
圧寿命特性に影響を与える埋込金具表面に課電さ
れる最大電界の50%を超える部分にのみ5〜40ミ
クロンの表面加工を施し、他の部分は従来と同様
絶縁体との接着強度の強化を図つた粗面加工とす
ることによつても、機械的性能と耐電圧寿命性能
とのバランスのとれた絶縁スペーサを提供するこ
とができる。また従来未知であるが故に低く抑さ
えられていた絶縁スペーサの使用電界を、実験結
果に基づいて引き上げることができるので、絶縁
スペーサの寸法の縮小、さらには高電圧電気機器
の絶縁寸法を縮小することに貢献できる。さら
に、埋込金具の表面粗さを5〜40ミクロンに限定
することにより、埋込金具の下地仕上げ加工なら
びに粗面加工を簡単化することができ、低コスト
で高い信頼性を有する樹脂モールド絶縁スペーサ
を提供することができる。
As mentioned above, this invention is based on the new fact that the withstand voltage life of embedded metal fittings that are integrally molded into insulating spacers decreases rapidly when the surface roughness of the embedded metal fittings exceeds 30 to 40 microns. The allowable range of surface roughness is limited to 5 to 40 microns. As a result, for example, by changing the surface roughness of an insulating spacer from 50 microns to a surface roughness of 30 to 40 microns, the withstand voltage life can be increased by almost two orders of magnitude, while the adhesive strength decreases by only a few percent. In addition, surface processing of 5 to 40 microns is applied only to the part that exceeds 50% of the maximum electric field applied to the surface of the embedded fitting, which affects the withstand voltage life characteristics, and other By roughening the surface of the part to strengthen the adhesive strength with the insulator as in the conventional case, it is possible to provide an insulating spacer with a well-balanced mechanical performance and withstand voltage life performance. In addition, the electric field used for insulating spacers, which was previously unknown and kept low, can be increased based on experimental results, allowing for reductions in the dimensions of insulating spacers and furthermore in insulation dimensions of high-voltage electrical equipment. I can contribute to that. Furthermore, by limiting the surface roughness of the embedded metal fittings to 5 to 40 microns, the base finishing and roughening of the embedded metal fittings can be simplified, and resin molded insulation has high reliability at low cost. Spacers can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は絶縁スペーサの取付け状態を示すガス
絶縁電器の側断面図、第2図は埋込金具を備えた
柱状絶縁スペーサの断面図、第3図は本発明の実
施例におけるモデル絶縁スペーサの断面図、第4
図は引張りせん断接着強度試験片の構造図、第5
図は本考案におけるモデル絶縁スペーサの表面粗
さ対耐電圧寿命特性試験結果、第6図は接着強度
試験片の表面粗さ対接着強度試験結果である。 1……密閉容器、2……絶縁ガス、3……高電
圧導体、4……絶縁スペーサ、5A,5B,15
A,15B……埋込金具、6,16……絶縁体、
8,9……連結部材。
Fig. 1 is a side sectional view of a gas insulated electrical appliance showing the installation state of the insulating spacer, Fig. 2 is a sectional view of a columnar insulating spacer equipped with an embedded metal fitting, and Fig. 3 is a sectional view of a model insulating spacer according to an embodiment of the present invention. Cross section, 4th
The figure is a structural diagram of the tensile shear adhesive strength test piece, No. 5
The figure shows the surface roughness vs. withstand voltage life characteristic test results of the model insulating spacer according to the present invention, and FIG. 6 shows the surface roughness vs. adhesive strength test results of the adhesive strength test piece. 1... Airtight container, 2... Insulating gas, 3... High voltage conductor, 4... Insulating spacer, 5A, 5B, 15
A, 15B...Embedded metal fitting, 6,16...Insulator,
8, 9...Connection member.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高電圧電気機器の充電部あるいは接地金属部に
連結される埋込金具が熱硬化性樹脂硬化物からな
る絶縁体中に一体モールドされた絶縁スペーサで
あつて前記埋込金具表面の前記絶縁体との界面の
部分に粗面加工されるものにおいて、前記埋込金
具表面に課電される最大電界の50%を超える部分
に表面粗さ5〜40ミクロンの粗面加工を施された
ことを特徴とする樹脂モールド絶縁スペーサ。
An embedded fitting connected to a live part or a grounded metal part of a high-voltage electric device is an insulating spacer integrally molded in an insulator made of a cured thermosetting resin, and the insulating spacer on the surface of the embedded fitting is The surface roughening is applied to the interface part of the embedded fitting, and the part where the maximum electric field applied to the surface of the embedded fitting is more than 50% is roughened to a surface roughness of 5 to 40 microns. Resin molded insulation spacer.
JP1184384U 1984-01-31 1984-01-31 Resin mold insulation spacer Granted JPS60128425U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1184384U JPS60128425U (en) 1984-01-31 1984-01-31 Resin mold insulation spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184384U JPS60128425U (en) 1984-01-31 1984-01-31 Resin mold insulation spacer

Publications (2)

Publication Number Publication Date
JPS60128425U JPS60128425U (en) 1985-08-29
JPH0333151Y2 true JPH0333151Y2 (en) 1991-07-15

Family

ID=30494344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184384U Granted JPS60128425U (en) 1984-01-31 1984-01-31 Resin mold insulation spacer

Country Status (1)

Country Link
JP (1) JPS60128425U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189845A (en) * 2006-01-13 2007-07-26 Toshiba Corp Sealed type switching device, its coating method, and coating capsule used for the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922385U (en) * 1972-06-02 1974-02-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922385U (en) * 1972-06-02 1974-02-25

Also Published As

Publication number Publication date
JPS60128425U (en) 1985-08-29

Similar Documents

Publication Publication Date Title
JPH0333151Y2 (en)
RU2343578C1 (en) Post insulator
KR102241505B1 (en) High power bushing for harsh environments
WO2018212124A1 (en) Insulation spacer and gas-insulated switchgear using same
CN218102475U (en) Glue impregnated paper capacitive type wall bushing with buffer structure
CN215417701U (en) Shockproof rod-shaped suspension type porcelain insulator
JPS645305Y2 (en)
US4529838A (en) Support bracket for electrical insulator
CN107359028A (en) A kind of nano silicon oxide insulator for being used to suppress VFTO
JPS6035984Y2 (en) Lightning arrester
JP3135342B2 (en) Gas insulated switchgear
CN107393662A (en) A kind of conical insulator for suppressing function with VFTO
JPH0345111A (en) Gas-insulated machine
JPH03198613A (en) Molded insulator
JPH0556529A (en) Conductor connector
JPS6118579Y2 (en)
JPS6131454Y2 (en)
JPS6155206B2 (en)
Menemenlis et al. Behavior of air insulating gaps of DC systems under impulse, DC and composite voltages
RU2113741C1 (en) High-voltage insulator
KR960003829B1 (en) Insulator device
JP4130249B2 (en) DC surge arrester
JPS5817310Y2 (en) Insulating rod for high voltage equipment operation
RU2319242C1 (en) Polymeric support insulator characterized in enhanced reliability
JPS6036981Y2 (en) Particle trap for gas insulated equipment