JPH0333114A - Heat-resistant resin composition - Google Patents

Heat-resistant resin composition

Info

Publication number
JPH0333114A
JPH0333114A JP1169302A JP16930289A JPH0333114A JP H0333114 A JPH0333114 A JP H0333114A JP 1169302 A JP1169302 A JP 1169302A JP 16930289 A JP16930289 A JP 16930289A JP H0333114 A JPH0333114 A JP H0333114A
Authority
JP
Japan
Prior art keywords
acrylate
meth
heat
structural formula
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1169302A
Other languages
Japanese (ja)
Inventor
Takahiro Matsuo
隆広 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1169302A priority Critical patent/JPH0333114A/en
Publication of JPH0333114A publication Critical patent/JPH0333114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a heat-resistant resin composition which can give a heat- resistant optical disc base by mixing a hexa-functional (meth)acrylate with a tetrafunctional (meth)-acrylate and a trifunctional (meth)acrylate, a bifunctional acrylate and a radical polymerization initiator. CONSTITUTION:At most 30wt.% hexafunctinal (meth)acrylate of formula I (where R1-6 are each formula II, and R7 is formula III) is mixed with 20-50wt.% trifunctional (meth)acrylate of formula IV (wherein R8-10 are each formula V, and R11 is formula III), at most 20wt.% tetrafunctional (meth)acrylate of formula VI (wherein R12-15 are each formula III), at most 40wt.% bifunctional acrylate of formula VII (wherein m+n=4) and at least one radical polymerization initiator in an amount which is at most 1.5% of the total weight of the resin for each kind and is 0.01-3wt./% in terms of the total amount of the initiator.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光で記録、再生、消去を行う光デイスク基板と
して主に用いられる耐熱性樹脂組成物に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat-resistant resin composition mainly used as an optical disk substrate for recording, reproducing, and erasing using light.

従来の技術 近年コンピュータ用メモリー素子として光ディスクが注
目を浴びその実用化が強く望まれている。
2. Description of the Related Art In recent years, optical disks have attracted attention as memory devices for computers, and their practical use is strongly desired.

その中で、ディスク基板の成形方法についてみると、ポ
リカーボネイトやPMMAに代表される熱可塑性樹脂に
よる射出成形や、ガラスやエポキシ基板上にフォトポリ
マー法〈以下2P法と略す〉により記録溝を形成する方
法などが主流を占めている。
Among these methods, recording grooves are formed by injection molding using thermoplastic resin such as polycarbonate or PMMA, or by photopolymer method (hereinafter abbreviated as 2P method) on a glass or epoxy substrate. methods are predominant.

更に、ディスク構成についてみると、従来の基板用材料
ではその耐熱性が不十分であり、書込み消去時の強力な
レーザ光により瞬時にして記録膜が数百℃まで上昇し、
伝熱によりその熱が基板に伝えられ、基板そのものの劣
化や軟化、熱分解によるガス発生などが起こり、記録膜
に穴が開いたりしていた。それを防ぐため、基板と記録
膜との間に断熱層を形成して基板への熱応力を低減させ
ているが、この場合ディスク構造がたいへん複雑となっ
ていた。
Furthermore, regarding the disk structure, the heat resistance of conventional substrate materials is insufficient, and the recording film can instantly heat up to hundreds of degrees Celsius due to the powerful laser beam during writing and erasing.
The heat was transferred to the substrate, causing deterioration and softening of the substrate itself, gas generation due to thermal decomposition, and holes in the recording film. In order to prevent this, a heat insulating layer is formed between the substrate and the recording film to reduce thermal stress on the substrate, but in this case the disk structure has become very complicated.

発明が解決しようとする課題 しかしながら射出成形においては成形時樹脂に高圧をか
けるため、溝を転写するスタンパ−の寿命が短くなる。
Problems to be Solved by the Invention However, in injection molding, high pressure is applied to the resin during molding, which shortens the life of the stamper that transfers the grooves.

また、金型内での樹脂の流れにより分子傾向が生じ複屈
折が大きくなったり、分布を持ったりしていた。更には
、材料中に混入した異物を除去することが困難であるこ
となどが問題となっていた。
In addition, the flow of the resin within the mold causes molecular trends, resulting in increased birefringence and distribution. Furthermore, there has been a problem that it is difficult to remove foreign substances mixed into the material.

一方、2P法においては、確かにガラス基板やエポキシ
基板を用い、その上に2P材料を注入、硬化させるため
2P材材料体は反応性材料であり、成形直前に洗浄や濾
過などにより材料中の異物は除去できるが、ガラス基板
においては基板の生産タクト、コストが高くなり、エポ
キシ基板においてはエポキシ樹脂の硬化時間が長いこと
(数時間〜数十時間)や離型性が悪いことなどが問題と
なっている。
On the other hand, in the 2P method, it is true that a glass substrate or epoxy substrate is used, and the 2P material is injected onto it and cured, so the 2P material body is a reactive material, and the material is washed or filtered immediately before molding. Foreign matter can be removed, but with glass substrates, the production takt time and cost are high, and with epoxy substrates, there are problems such as the long curing time of the epoxy resin (several hours to several tens of hours) and poor mold releasability. It becomes.

更に、ディスク構成からみると、熱可塑性樹脂や2P材
料はその耐熱性が不十分であり、基板又は2P上に必ず
断熱層を形成し、その上に記録膜を形成して基板を保護
する必要がある。その断熱層はスパッタなどにより真空
成膜するため、形成するのに多くの問題がかかり、量産
に適したディスク構造とはなっていなかった。
Furthermore, from the perspective of the disk structure, thermoplastic resins and 2P materials have insufficient heat resistance, so it is necessary to form a heat insulating layer on the substrate or 2P, and to protect the substrate by forming a recording film on top of it. There is. Since the heat insulating layer is formed in a vacuum using sputtering or the like, there are many problems involved in forming the layer, and the disk structure is not suitable for mass production.

そこで本発明は上記問題点を解決することを目的とし、
6官能〈メタ〉アクリレートと、4官能(メタ)アクリ
レートと、3官能(メタ〉アクリレートと、2官能アク
リレートと、11以上のラジカル重合開始剤より成る耐
熱性樹脂組成物を提供するものである。ここで〈メタ〉
アクリレートとはアクリレートとメタアクリレートを意
味する。
Therefore, the present invention aims to solve the above problems,
The present invention provides a heat-resistant resin composition comprising a hexafunctional (meth)acrylate, a tetrafunctional (meth)acrylate, a trifunctional (meth)acrylate, a bifunctional acrylate, and 11 or more radical polymerization initiators. Here <meta>
Acrylate means acrylate and methacrylate.

課題を解決するための手段 上記課題を解決するために本発明の耐熱性樹脂組成物は
、構造式(1) で示される6官能〈メタ)アクリレートと、構造式(n
) 〜 で示される3官能(メタ〉 アク Jレートと、 構造式(III) で示される4官能(メタ)アクリレートと、構造式(I
V) 曙十〇−4 で示される2官能アクリレートと、 1種以上のう ジカル重合開始剤とから構成されているものである。
Means for Solving the Problems In order to solve the above problems, the heat-resistant resin composition of the present invention comprises a hexafunctional <meth)acrylate represented by the structural formula (1) and a structural formula (n
) ~ A trifunctional (meth)acrylate represented by ~, a tetrafunctional (meth)acrylate represented by the structural formula (III), and a structural formula (I
V) It is composed of a bifunctional acrylate shown by Akebono 10-4 and one or more kinds of dical polymerization initiators.

更に、構造式(1)の配合量としては、反応性。Furthermore, the amount of structural formula (1) to be blended depends on the reactivity.

硬化収縮等を考慮すると全樹脂量の30wt%以下が好
ましく、より好ましくは全樹脂量の10〜20wt%の
範囲にある方が良い。また、構造式(n)の配合量とし
ては、全樹脂量の20〜50wt%が好ましく、より好
ましくは30〜50wt%の範囲にある方が良い。構造
式(III)の配合量としては、全樹脂量の20wt%
以下が好ましく、より好ましくは5〜15wt%の範囲
にある方が良い。構造式(IV)の配合量としては、フ
ェニル基に由来する複屈折を考慮すると全樹脂量の40
wt%以下が好ましく、より好ましくは10〜30wt
%の範囲にある方が良い。
Considering curing shrinkage and the like, the amount is preferably 30 wt% or less of the total resin amount, and more preferably 10 to 20 wt% of the total resin amount. The amount of structural formula (n) is preferably 20 to 50 wt% of the total resin amount, more preferably 30 to 50 wt%. The amount of structural formula (III) is 20 wt% of the total resin amount.
The content is preferably below, more preferably in the range of 5 to 15 wt%. Considering the birefringence derived from the phenyl group, the amount of Structural Formula (IV) should be 40% of the total resin amount.
Preferably less than wt%, more preferably 10 to 30 wt
It is better to be in the % range.

更に、必要に応じ粘度調整用(メタ)アクリレートを2
0 w t%の範囲で使用可能であり、その粘度調整用
(メタ)アクリレートとして、2゜2゛−ビス(4−(
B−(メタ)アクリロイルオキシ)シクロヘキシル〕プ
ロパン、2−2゛−ビス(4−(B (メタ)アクリロ
イルオキシジェトキシ)シクロヘキシル】プロパン、1
.4−ビス((メタ)アクリロイルオキシメチル)シク
ロヘキサン、トリメチロールプロパントリ(メタ)アク
リレート、ネオペンチルグリコールジ(メタ)アクリレ
ート、1.6−ヘキサンシオールジ(メタ)アクリレー
ト、ジエチレングリコールジ(メタ)アクリレート等の
多官能(メタ)アクリレートや、シクロヘキシル(メタ
)アクリレート、ジシクロペンテニル(メタ)アクリレ
ート、ジシクロペンテニルオキシエチル(メタ)アクリ
レート、トリシクロ(5,2,1,0)デカン(メタ)
アクリレート等の半盲 能(メタ)アクリレートの単体
又はそれらの混合物であることが良い。
Furthermore, if necessary, add (meth)acrylate for viscosity adjustment.
It can be used in the range of 0 wt%, and 2゜2゛-bis(4-(
B-(meth)acryloyloxy)cyclohexyl]propane, 2-2゛-bis(4-(B(meth)acryloyloxyjethoxy)cyclohexyl]propane, 1
.. 4-bis((meth)acryloyloxymethyl)cyclohexane, trimethylolpropane tri(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,6-hexanethiol di(meth)acrylate, diethylene glycol di(meth)acrylate, etc. polyfunctional (meth)acrylates, cyclohexyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, tricyclo(5,2,1,0)decane (meth)
It is preferable to use a single hemianopic (meth)acrylate such as acrylate or a mixture thereof.

重合方法としては、熱重合、光重合(紫外線(UV))
 、光、熱の併用した重合等全て使用可能であり、特に
限定されない。また、重合開始剤もラジカル重合開始剤
であれば特に限定されず、一例をあげるならば、過酸化
ベンゾイル、ジイソプロピルパーオキシカーボネート、
ラウロイルパーオキサイド、デイクミルパーオキサイド
Polymerization methods include thermal polymerization, photopolymerization (ultraviolet (UV))
, polymerization using light, heat, etc. can all be used, and there are no particular limitations. In addition, the polymerization initiator is not particularly limited as long as it is a radical polymerization initiator, and examples include benzoyl peroxide, diisopropyl peroxycarbonate,
Lauroyl peroxide, Deikmil peroxide.

ターシャリ−ブチルパーオキシビバレート等の過酸化物
、アゾビスイソブチロニトリル等のアゾ化合物、ベンゾ
フェノン、ベンゾインエチルエーテル、ベンジル、アセ
トフェノン、アントラキノイン等の光増感剤、チオキサ
ントン等の硫黄化合物等公知のラジカル開始剤は使用可
能であり、単独又は2種以上併用することも可能である
Peroxides such as tert-butyl peroxyvivalate, azo compounds such as azobisisobutyronitrile, photosensitizers such as benzophenone, benzoin ethyl ether, benzyl, acetophenone, anthraquinoin, sulfur compounds such as thioxanthone, etc. Known radical initiators can be used, and can be used alone or in combination of two or more.

開始剤量としては、1種当り全樹脂量の1.5wt%以
下であり、その全開始剤量としては、全樹脂量に大志0
.O1〜3 w t%の範囲内で用い、より好ましくは
、光増感剤としては1種当たり0.1〜Q、5wt%、
過酸化物としては1種当り0.5〜1.2wt%である
。また9重合温度(UV硬化も含む)は0〜300℃で
より好ましくは20〜200℃である。
The amount of initiator is 1.5 wt% or less of the total resin amount per type, and the total amount of initiator is 0.
.. Used within the range of O1 to 3 wt%, more preferably 0.1 to Q per type as a photosensitizer, 5 wt%,
The amount of peroxide is 0.5 to 1.2 wt% per type. Further, the polymerization temperature (including UV curing) is 0 to 300°C, more preferably 20 to 200°C.

重合雰囲気としては、空気中、不活性ガス中、真空中い
ずれも行うことができるが、硬化物の熱分解、酸化9重
合禁止などを考慮すると不活性ガス中、真空中又は、そ
の併用が好ましい。
The polymerization atmosphere can be carried out in air, inert gas, or vacuum, but in consideration of thermal decomposition of the cured product and inhibition of oxidation 9 polymerization, inert gas, vacuum, or a combination thereof is preferable. .

作   用 本発明は上記した構成によって反応性液状材料となるた
め、材料中に混入している異物は濾過により除去される
と共に、単官能および多官能(メタ)アクリレート上り
構成されているため、エポキシ樹脂に比較し著しく硬化
時間が短縮(数時間→数秒〜数十分)でき、かつ、離型
性も向上するため生産タクトの向上が図れるとともに、
射出成形のように成形時に実大な圧力をかけて樹脂を溝
転写用スタンパ−上に流す必要がな(、大気圧〜微小加
圧(1kg/cj以下)ですむため、ガラス型などの簡
易型や成形装置の小型化が可能となりクリーンルーム内
での作業性に適し、更にスタンパ−寿命も大幅に伸ばす
ことが可能となった。更に、ディスクの構造についてみ
ると、本発明の耐熱性樹脂組成物によるディスク基板は
その耐熱性が従来のディスク基板用材料に比較し著しく
高いため、基板保護のためにディスク基板上に断熱層を
形成する必要がなくなり、ディスク構造の単純化とそれ
に伴う生産性向上、コストダウン更には信頼性の向上を
図ることができた。
Effect Since the present invention becomes a reactive liquid material with the above-described structure, foreign substances mixed in the material are removed by filtration, and since it is composed of monofunctional and polyfunctional (meth)acrylates, epoxy Compared to resins, curing time can be significantly shortened (from several hours to several seconds to several tens of minutes), and the mold releasability is also improved, so production tact can be improved.
Unlike injection molding, there is no need to apply enormous pressure during molding to flow the resin onto the stamper for groove transfer. It has become possible to downsize the mold and molding equipment, making it suitable for workability in clean rooms, and it has also become possible to significantly extend the life of the stamper.Furthermore, regarding the structure of the disk, the heat-resistant resin composition of the present invention Since the heat resistance of the disk substrate made of solid material is significantly higher than that of conventional disk substrate materials, there is no need to form a heat insulating layer on the disk substrate to protect the substrate, which simplifies the disk structure and increases productivity. We were able to improve the performance, reduce costs, and improve reliability.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

本実施例に用いた構造式(1)に用いた化合物として、
新中村化学工業(株の商品名ニスラミンN−6A(以下
N−6Aと略す)を、構造式(n)に用いた化合物とし
て、同ニスラミンN−3M (以下N−3Mと略す)を
、構造式(III)に用いた化合物として、テトラメチ
ロールメタンテトラアクリレート(新中村化学工業(掬
の商品名、NKエステルA−TMMT以下A−TMMT
と略す)を、構造式(IV)に用いた化合物として、共
栄社油脂化学工業■製の商品名BP4EAを、光重合開
始剤としてチバガイギー社製の商品名1 rgacur
e 184を、熱重合開始剤としてデイクミルパーオキ
サイド(DCP○と略す〉。日本油脂(掬製の商品名パ
ークミルDを用いた。
As a compound used in structural formula (1) used in this example,
Nislamin N-6A (hereinafter abbreviated as N-6A) manufactured by Shin Nakamura Chemical Industry Co., Ltd. is used as a compound with the structural formula (n), and Nislamin N-3M (hereinafter abbreviated as N-3M) is used as a compound with the structure The compound used in formula (III) was tetramethylolmethanetetraacrylate (trade name of Shin Nakamura Chemical Co., Ltd.
), the compound used in structural formula (IV) was BP4EA (trade name, manufactured by Kyoeisha Yushi Kagaku Kogyo ■), and the photopolymerization initiator was 1 rgacur (trade name, manufactured by Ciba Geigy).
e 184 and Deicmil peroxide (abbreviated as DCP○) as a thermal polymerization initiator. Percmill D (trade name, manufactured by Nippon Oil & Fats Co., Ltd.) was used.

全樹脂量を100重量部とした時、構造式(1)および
(It)の占める組織割合は各々30重量部以下、50
重量部以下が好ましくそれ以上増加すると硬化物にクラ
ックが入ったりして基板成形がむつかしくなる。また、
構造式(III)は室温でワックス状態となるため、2
0重量部以上配合すると偏析することがある。構造式(
IV)は、40!量部以上入れると複屈折が大きくなる
ため、40重量部以下にする必要がある。
When the total resin amount is 100 parts by weight, the structural formulas (1) and (It) occupy 30 parts by weight or less and 50 parts by weight, respectively.
The amount is preferably less than 1 part by weight, and if it increases more than that, cracks may appear in the cured product, making it difficult to mold the substrate. Also,
Structural formula (III) is in a wax state at room temperature, so 2
If 0 parts by weight or more is added, segregation may occur. Structural formula(
IV) is 40! If more than 40 parts by weight is added, birefringence will increase, so it is necessary to use 40 parts by weight or less.

評価としては、第1図に示したように、各組成比の基板
2〈厚み1.2m)を作成しTe、Ge。
For evaluation, as shown in FIG. 1, substrates 2 (thickness: 1.2 m) with various composition ratios were prepared, including Te and Ge.

sb系の記録膜3と反射層4を所定膜厚真空成膜し、基
板側上りレーザービーム1を照射し、記録パワー8 m
 W 、消去ワワー8mWと2 m Wの2回照射を行
い記t!/消去を行い、これを1サイクルとして記録時
の反射率と消去時の反射率の差がOになった時をライフ
エンドとして、そのサイクル数を比較し、サイクル数1
05回以上を合格とした。
An sb-based recording film 3 and a reflective layer 4 are deposited in a vacuum to a predetermined thickness, and the substrate side is irradiated with an upward laser beam 1 at a recording power of 8 m.
W, erase power was irradiated twice with 8 mW and 2 mW. / Erasing is performed, and this is regarded as one cycle.When the difference between the reflectance at the time of recording and the reflectance at the time of erasure becomes O is the life end, the number of cycles is compared, and the number of cycles is 1.
05 times or more was considered a pass.

基板成形としては、紫外線を3000 m J / c
ut照射後、型上り脱型して、熱硬化(200℃2時間
、N2雰囲気中)を行い基板を完全硬化させた。
For substrate molding, ultraviolet rays are used at 3000 mJ/c.
After the UT irradiation, the mold was removed and thermally cured (200° C. for 2 hours in a N2 atmosphere) to completely cure the substrate.

結果を第1表に示した。The results are shown in Table 1.

1ノ・7Z、F 会合) 発明の効果 以上のように本発明は、構造式(1)、(n)。1no.7Z, F meeting) Effect of the invention As described above, the present invention relates to structural formulas (1) and (n).

(III)、 (IV)で示される多官能(メタ)アク
リレートをラジカル重合開始剤により共重合させること
により、耐熱性を著しく向上させ、従来必要とされてい
た基板保護用の断熱層が不要となり、基板に直接記録膜
を成膜できることが可能となり、真空成膜装置の台数の
削減やクリアルーム。内での設備スペースの削減が可能
となり大幅なコストダウンが図られた。また、この材料
を用いたディスク基板成形プロセスは、クリーンルーム
内での作業に適した小型、小スペースのディスク基板成
形システムにすることが可能になった。更に、反応性液
状材料の特徴を生かし、クリーン度を保つことにより、
ディスク基板中の異物混入量がポリカーボネート基板に
比較し1/10以下となり、ピットエラーレートも1オ
一ダ以上低減できた。また、多官能(メタ)アクリレー
トが主成分であるため遊離モノマー(未反応モノマー)
が極めて少なく、記録膜の腐食もなく信頼性の高いディ
スク基板ができた。
By copolymerizing the polyfunctional (meth)acrylates represented by (III) and (IV) with a radical polymerization initiator, heat resistance is significantly improved, and the conventionally required heat insulating layer for protecting the substrate is no longer required. , it becomes possible to deposit a recording film directly on the substrate, reducing the number of vacuum deposition equipment and clear room. This made it possible to reduce the equipment space within the company, resulting in significant cost reductions. In addition, the disk substrate molding process using this material has made it possible to create a compact, small-space disk substrate molding system suitable for work in a clean room. Furthermore, by taking advantage of the characteristics of reactive liquid materials and maintaining cleanliness,
The amount of foreign matter mixed into the disk substrate was reduced to 1/10 or less compared to a polycarbonate substrate, and the pit error rate was also reduced by more than one order of magnitude. In addition, since polyfunctional (meth)acrylate is the main component, free monomers (unreacted monomers)
A highly reliable disk substrate with very little corrosion and no corrosion of the recording film was created.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例における記録装置の構成図である
。 1・・・・・・レーザービーム、2・・・・・・基板、
3・・・・・・記録膜、4・・・・・・反射膜。
The figure is a configuration diagram of a recording apparatus in an embodiment of the present invention. 1... Laser beam, 2... Substrate,
3...Recording film, 4...Reflection film.

Claims (6)

【特許請求の範囲】[Claims] (1)構造式( I ) ▲数式、化学式、表等があります▼ で示される6官能(メタ)アクリレートと、構造式(I
I) ▲数式、化学式、表等があります▼ R_8、R_9、R_1_0は▲数式、化学式、表等が
あります▼ ▲数式、化学式、表等があります▼ で示される3官能(メタ)アクリレートと 構造式(III) ▲数式、化学式、表等があります▼ R_1_2、R_1_3、R_1_4、R_1_5は▲
数式、化学式、表等があります▼で示される4官能(メ
タ)アクリレートと 構造式(IV) ▲数式、化学式、表等があります▼ で示される2官能アクリレートと、ラジカル重合開始剤
とより成る耐熱性樹脂組成物。
(1) Structural formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ A hexafunctional (meth)acrylate shown by the structural formula (I)
I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ R_8, R_9, R_1_0 are ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ▲There are mathematical formulas, chemical formulas, tables, etc.▼ The trifunctional (meth)acrylate and structural formula shown by (III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ R_1_2, R_1_3, R_1_4, R_1_5 are ▲
There are mathematical formulas, chemical formulas, tables, etc. ▼A heat-resistant product consisting of a tetrafunctional (meth)acrylate shown by ▼, a structural formula (IV) ▲A mathematical formula, chemical formula, tables, etc. shown▼ and a difunctional acrylate shown by ▼ and a radical polymerization initiator resin composition.
(2)構造式( I )で示される(メタ)アクリレート
が全樹脂量の30wt%以下である請求項1記載の耐熱
性樹脂組成物。
(2) The heat-resistant resin composition according to claim 1, wherein the (meth)acrylate represented by structural formula (I) is 30 wt% or less of the total resin amount.
(3)構造式(II)で示される(メタ)アクリレートが
全樹脂量の20wt%以上50wt%以下である請求項
1記載の耐熱性樹脂組成物。
(3) The heat-resistant resin composition according to claim 1, wherein the (meth)acrylate represented by structural formula (II) is 20 wt% or more and 50 wt% or less of the total resin amount.
(4)構造式(III)で示される(メタ)アクリレート
が全樹脂量の20wt%以下である請求項1記載の耐熱
性樹脂組成物。
(4) The heat-resistant resin composition according to claim 1, wherein the (meth)acrylate represented by structural formula (III) is 20 wt% or less of the total resin amount.
(5)構造式(IV)で示されるアクリレートが全樹脂量
の40wt%以下である請求項1記載の耐熱性樹脂組成
物。
(5) The heat-resistant resin composition according to claim 1, wherein the acrylate represented by structural formula (IV) is 40 wt% or less of the total resin amount.
(6)少なくとも1種以上のラジカル重合開始剤を含有
し、ラジカル重合開始剤1種当たり、全樹脂量の1.5
wt%以下である請求項1記載の耐熱性樹脂組成物。
(6) Contains at least one type of radical polymerization initiator, and 1.5 of the total resin amount per type of radical polymerization initiator
The heat-resistant resin composition according to claim 1, which has a content of % by weight or less.
JP1169302A 1989-06-29 1989-06-29 Heat-resistant resin composition Pending JPH0333114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1169302A JPH0333114A (en) 1989-06-29 1989-06-29 Heat-resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1169302A JPH0333114A (en) 1989-06-29 1989-06-29 Heat-resistant resin composition

Publications (1)

Publication Number Publication Date
JPH0333114A true JPH0333114A (en) 1991-02-13

Family

ID=15884011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1169302A Pending JPH0333114A (en) 1989-06-29 1989-06-29 Heat-resistant resin composition

Country Status (1)

Country Link
JP (1) JPH0333114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336266B1 (en) 1999-03-17 2002-01-08 Tdk Corporation Electronic parts insertion head and electronic parts insertion device
EP2128144A1 (en) * 2008-05-30 2009-12-02 Basf Se Amphiphilic molecules with a triazine core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336266B1 (en) 1999-03-17 2002-01-08 Tdk Corporation Electronic parts insertion head and electronic parts insertion device
EP2128144A1 (en) * 2008-05-30 2009-12-02 Basf Se Amphiphilic molecules with a triazine core

Similar Documents

Publication Publication Date Title
JP3911728B2 (en) Resin composition for protective coating and adhesion of digital video disk
US4835027A (en) Optical disc
EP0402334B1 (en) Ultraviolet light curable composition and an optical disk base plate incorporating the composition
JPH0333114A (en) Heat-resistant resin composition
EP0240752B1 (en) Erasable optical disk having an improved optically transparent substrate
JPS63167301A (en) Transmission type screen
JPS6323238A (en) Optical disk
JPH01282206A (en) Heat-resistant resin composition
JPS61266402A (en) Heat-resistant resin composition
JPS61208646A (en) Disk type magnetic medium
JP3370564B2 (en) optical disk
JPH01189041A (en) Optical information recording medium
JPS6288156A (en) Optical disk substrate
JP3050394B2 (en) Optical information recording medium
JPS62283112A (en) Heat-resistant resin composition
JP3367961B2 (en) optical disk
JPS63270712A (en) Heat-resistant resin composition
JP3344696B2 (en) optical disk
JPS62180782A (en) Optical disk substrate
JPS62232415A (en) Heat-resistant resin composition
JPH01275189A (en) Resin composition for optical disk substrate and optical disk substrate
JPH0373056B2 (en)
JPS62169643A (en) Optical information record medium
JPH0512714A (en) Optical information recording medium and production thereof
Rot et al. Protection coating for optical discs, aspherical lenses, and optical waveguides