JPH0333040Y2 - - Google Patents

Info

Publication number
JPH0333040Y2
JPH0333040Y2 JP1986196340U JP19634086U JPH0333040Y2 JP H0333040 Y2 JPH0333040 Y2 JP H0333040Y2 JP 1986196340 U JP1986196340 U JP 1986196340U JP 19634086 U JP19634086 U JP 19634086U JP H0333040 Y2 JPH0333040 Y2 JP H0333040Y2
Authority
JP
Japan
Prior art keywords
heat generating
filler
tube
generating tube
simulated fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986196340U
Other languages
Japanese (ja)
Other versions
JPS63101897U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986196340U priority Critical patent/JPH0333040Y2/ja
Publication of JPS63101897U publication Critical patent/JPS63101897U/ja
Application granted granted Critical
Publication of JPH0333040Y2 publication Critical patent/JPH0333040Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、電気抵抗による発熱体としてステ
ンレス鋼や高ニツケル合金等の耐蝕性金属パイプ
を用いた模擬燃料棒に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to a simulated fuel rod using a corrosion-resistant metal pipe made of stainless steel, high nickel alloy, etc. as a heating element based on electrical resistance.

〔従来の技術〕[Conventional technology]

原子炉の試験にあたつては、実際の原子燃料棒
を装荷した原子炉による試験に先立ち、電気的な
発熱手段を用いた模擬燃料棒を用い、安全性の確
認等を目的とする模擬炉の試作と試験が行われ
る。こうした目的で用いられる模擬燃料棒は、実
際の原子燃料棒と形状、寸法等ができるだけ近似
し、かつ発熱量や耐熱性等の性能が実際の原子燃
料棒を上回ることが必要とされる。
When testing a nuclear reactor, prior to testing a nuclear reactor loaded with actual nuclear fuel rods, a simulated fuel rod using an electrical heating means is used to test a simulated reactor for the purpose of confirming safety, etc. Prototype production and testing will be conducted. The simulated fuel rods used for these purposes are required to be as similar in shape, size, etc. to actual nuclear fuel rods as possible, and to have performance such as calorific value and heat resistance that exceeds that of actual nuclear fuel rods.

従来、この種の模擬燃料棒として、ステンレス
鋼や高ニツケル合金製のパイプの発熱体を用いた
ものがが多く使用されている。この模擬燃料棒
は、第3図で示すように、発熱管1である上記金
属パイプの両端に電極2,2を嵌め込み、これを
熔接したもので、該電極2,2の間に電流を流
し、上記発熱管1を発熱させる形式のものであ
る。
Conventionally, this type of simulated fuel rod has often used a heating element made of stainless steel or high nickel alloy pipe. As shown in Fig. 3, this simulated fuel rod is made by fitting electrodes 2, 2 into both ends of the above-mentioned metal pipe, which is the heating tube 1, and welding them together.A current is passed between the electrodes 2, 2. , which causes the heating tube 1 to generate heat.

この模擬燃料棒では、必要な電気抵抗を得るた
め、発熱管1として例えば、肉厚1.0mm以下とい
つた極めて薄い金属パイプが使用されており、耐
圧補強手段として、上記発熱管1の中に絶縁性の
充填材3が充填される。この充填材3には、いわ
ゆるセラミツクセメントと呼ばれる硬質の成形体
が使用され、セラミツク粉末を水等の溶剤で溶い
て流動性を持たせたいわゆるセラミツクペースト
を上記発熱管1の中に導入し、これを加熱硬化さ
せて成形する。
In this simulated fuel rod, in order to obtain the necessary electrical resistance, an extremely thin metal pipe with a wall thickness of 1.0 mm or less is used as the heat generating tube 1. An insulating filler 3 is filled. A hard compact called ceramic cement is used as the filler 3, and a so-called ceramic paste made by dissolving ceramic powder with a solvent such as water to give it fluidity is introduced into the heating tube 1. This is heat-cured and molded.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

発熱管1としてステンレス鋼や高ニツケル合金
製のパイプを用いるのは、これらの金属が高温下
での耐蝕性に優れ、700℃以上の高温下での長時
間の使用に耐えることができるという理由によ
る。
The reason why stainless steel or high nickel alloy pipes are used as the heating tube 1 is because these metals have excellent corrosion resistance at high temperatures and can withstand long-term use at high temperatures of 700°C or higher. by.

しかし、実際に上記のような原子模擬燃料棒を
使用していると、発熱管1の内周面側から腐食が
進行し、発熱管1が短期に破損してしまうことが
多々発生する。
However, when the atom simulating fuel rod as described above is actually used, corrosion progresses from the inner peripheral surface of the heat generating tube 1, and the heat generating tube 1 often breaks in a short period of time.

この考案は、従来の模擬燃料棒における上記の
問題点を解決するためなされたもので、発熱管の
内周面から腐食が容易に進行しない模擬燃料棒を
提供することを目的とする。
This invention was made in order to solve the above-mentioned problems with conventional simulated fuel rods, and aims to provide a simulated fuel rod in which corrosion does not easily progress from the inner circumferential surface of the heat generating tube.

〔問題を解決するための手段〕[Means to solve the problem]

すなわち本考案では、上記目的を達成するた
め、ステンレスパイプからなる発熱管11の中に
絶縁性の充填材13を充填し、該発熱管11の両
端に電極12,12を嵌め込んで導電固着すると
共に、同発熱管11の両端を閉塞した模擬燃料棒
において、気孔及びヘアクラツクによる微細な空
気通路を有する充填材13の中心部に、空気が保
有された空隙14を形成してなることを特徴とす
る模擬燃料棒を提供する。
That is, in the present invention, in order to achieve the above object, an insulating filler 13 is filled in a heat generating tube 11 made of a stainless steel pipe, and electrodes 12 are fitted into both ends of the heat generating tube 11 and fixed for conductivity. In addition, in the simulated fuel rod in which both ends of the exothermic tube 11 are closed, a void 14 containing air is formed in the center of a filler 13 having a fine air passage formed by pores and hair cracks. Provides simulated fuel rods.

〔作用〕[Effect]

ステンレス鋼が高温下で耐蝕性を有するのは、
ステンレス鋼の表面に酸化物を主体とするいわゆ
る不動態膜が形成され、これがステンレス鋼内部
の腐食を防止する被膜として機能するからであ
る。
Stainless steel has corrosion resistance at high temperatures because
This is because a so-called passive film mainly composed of oxides is formed on the surface of stainless steel, and this serves as a film that prevents corrosion inside the stainless steel.

しかし、第3図で示すように、発熱管1の内部
に密に充填材3が充填されていると、発熱管1の
内周面への酸素の供給が断たれ、いわゆる隙間腐
食(クレビス腐食)が生じやすくなる。加えて、
充填材3が密に充填されていると、発熱管1の内
部の酸素量が極端に少なくなるため、上記隙間腐
食が一層助長される。即ち、これが上記発熱管1
の内周面側からの腐食の原因となつているものと
考えられる。
However, as shown in FIG. 3, if the inside of the heat generating tube 1 is densely filled with the filler 3, the supply of oxygen to the inner peripheral surface of the heat generating tube 1 is cut off, resulting in so-called crevice corrosion. ) is more likely to occur. In addition,
If the filler 3 is densely packed, the amount of oxygen inside the heat generating tube 1 will be extremely small, which will further promote the crevice corrosion. That is, this is the heat generating tube 1
This is thought to be the cause of corrosion from the inner peripheral surface side.

本件考案者は、概に述べた従来の原子模擬燃料
棒の問題点を解決するため、こうした点に着目
し、この考案をなすに至つたものである。即ち、
この考案による模擬燃料棒では、充填材13の内
部に空隙14が形成されているため、その中に空
気が保有される。また、充填材13は、本来がセ
ラミツク粉末を原料として成形されているため、
20%前後の気孔率を有しているうえ、上記空隙1
4の存在によつて、硬化、収縮時に極めて微細な
ヘアクラツクが発生する。このため、上記中央部
の空隙14に保有した酸素が上記気孔やヘアクラ
ツクを通つて僅かずつ発熱管11の内周面に供給
され、その表面の不動態膜が維持される。
The inventor of this invention focused on these points and came up with this invention in order to solve the problems of conventional atomic simulating fuel rods as outlined above. That is,
In the simulated fuel rod according to this invention, since the void 14 is formed inside the filler 13, air is retained therein. In addition, since the filler 13 is originally formed using ceramic powder as a raw material,
In addition to having a porosity of around 20%, the above voids 1
Due to the presence of 4, extremely fine hair cracks occur during curing and shrinkage. Therefore, the oxygen held in the central void 14 is supplied little by little to the inner circumferential surface of the heating tube 11 through the pores and hair cracks, and the passive film on the surface is maintained.

また、この空隙14は、充填材13の中央部に
形成されているため、発熱管11の外側から加わ
る圧力は充填材13の中に均一に分散される。従
つて、発熱管11の内径に比して、空隙14が極
端に大きいものでない限り、充分な耐圧性が得ら
れる。
Further, since the void 14 is formed in the center of the filler 13, the pressure applied from the outside of the heat generating tube 11 is uniformly dispersed within the filler 13. Therefore, unless the gap 14 is extremely large compared to the inner diameter of the heat generating tube 11, sufficient pressure resistance can be obtained.

〔実施例〕〔Example〕

次に、第1図と第2図を参照しながら、この考
案の実施例について説明する。
Next, an embodiment of this invention will be described with reference to FIGS. 1 and 2.

ステンレス鋼や高ニツケル合金等の金属パイプ
からなる発熱管11の中に、充填材13を充填
し、この中央部に空隙14を形成する。
A heating tube 11 made of a metal pipe such as stainless steel or high nickel alloy is filled with a filler 13, and a gap 14 is formed in the center thereof.

空隙14は、充填材13の中に断続的に形成し
てもよいが、第1図や第2図で示すように、発熱
管11の中心軸に沿つて均一な径の連続した空隙
14を形成するのが最も望ましい。空隙14の径
は、発熱管14の径に比して充分細いものとし、
具体的には、発熱管14の内径の5〜25%の径が
よい。
The voids 14 may be formed intermittently in the filling material 13, but as shown in FIGS. It is most desirable to form. The diameter of the void 14 is sufficiently smaller than the diameter of the heat generating tube 14,
Specifically, the diameter is preferably 5 to 25% of the inner diameter of the exothermic tube 14.

上記充填材14はセラミツクセメントの原料と
なるアルミナやマグネシア等の絶縁性セラミツク
粉末を水で溶いて流動性を持たせた、いわゆるセ
ラミツクペーストを用い、これを発熱管11の中
に導入して加熱、硬化させることにより成形す
る。こうした過程で、上記空隙14を形成する手
段には、次のようなものがある。
The filler 14 is a so-called ceramic paste made by dissolving insulating ceramic powder such as alumina or magnesia, which is a raw material for ceramic cement, in water to give it fluidity.The filler 14 is introduced into the heating tube 11 and heated. , mold by curing. In this process, there are the following means for forming the void 14.

一つは、低温溶融型の固形材、例えばワツクス
等で作られた充填材成形用の中子を用いる手段で
ある。即ち、発熱管11の中に上記セラミツクペ
ーストを導入する際に、該発熱管11の中心軸上
に上記中子を配置し、セラミツクペーストが或る
程度硬化したところで、中子を加熱して流動、除
去し、その後セラミツクペーストを高温で加熱、
硬化させて、第1図で示すような充填材14を成
形する。
One method is to use a filler molding core made of a low-temperature melting solid material, such as wax. That is, when introducing the ceramic paste into the heat generating tube 11, the core is placed on the central axis of the heat generating tube 11, and when the ceramic paste has hardened to a certain extent, the core is heated to cause it to flow. , remove and then heat the ceramic paste at high temperature,
After curing, a filler material 14 as shown in FIG. 1 is formed.

二つは、充填材成形用の中子として、疏水性の
多孔質パイプを使用する手段である。即ち、第2
図で示すように、ガラスフアイバ等からなる疏水
性の多孔質パイプ15を発熱管11の中心軸上に
配置し、これと発熱管11の間にセラミツクペー
ストを導入し、加熱、硬化させる手段である。多
孔質パイプ15は、疏水性であるため、セラミツ
クペーストやその水分等を中心側へ透過させず、
同ペーストが硬化した後は、その中の空隙に保有
する空気を充填材13側へ透過させる。
The second method is to use a hydrophobic porous pipe as a core for molding the filler. That is, the second
As shown in the figure, a hydrophobic porous pipe 15 made of glass fiber or the like is arranged on the central axis of the heat generating tube 11, and a ceramic paste is introduced between the pipe and the heat generating tube 11 and heated and hardened. be. Since the porous pipe 15 is hydrophobic, it does not allow the ceramic paste or its moisture to pass through to the center.
After the paste has hardened, the air held in the voids therein is allowed to permeate to the filler 13 side.

3つは、遠心成形法によるものである。即ち、
発熱管11の中にセラミツクペーストを導入し、
該発熱管11の両端を塞いだ後、これを中心軸の
回りに高速回転させて締め固め、中心軸上に空隙
部14を形成する。これによつて第1図で示すよ
うな充電材15が形成される。その後、上記セラ
ミツクペーストを加熱し、硬化させる。発熱管1
1の径が5〜15mm〓の場合、5000rpm.程度の回
転数で1時間前後遠心成形することにより、適当
な充填材13とその空隙14が形成できる。
Three are by centrifugal molding. That is,
Introducing ceramic paste into the heating tube 11,
After closing both ends of the exothermic tube 11, it is rotated at high speed around the central axis to compact it, thereby forming a gap 14 on the central axis. As a result, a charging material 15 as shown in FIG. 1 is formed. Thereafter, the ceramic paste is heated and hardened. Heat generating tube 1
When the diameter of the filler 13 is 5 to 15 mm, an appropriate filler 13 and its voids 14 can be formed by centrifugal molding at a rotation speed of about 5000 rpm for about 1 hour.

こうして発熱管11の中に充填材13を充填
し、硬化させた後、上記発熱管11の両端に電極
12,12を嵌め込み、これを溶接16,16す
る。これによつて、発熱管11の両端が閉じられ
ると共に、同管11と電極12,12とが電気的
に接続される。さらに、この電極12,12から
両側にリード線17,17を接続し、この考案に
よる模擬燃料棒ができあがる。
After filling the heat generating tube 11 with the filler 13 and curing it, electrodes 12, 12 are fitted to both ends of the heat generating tube 11, and these are welded 16, 16. As a result, both ends of the exothermic tube 11 are closed, and the tube 11 and the electrodes 12, 12 are electrically connected. Further, lead wires 17, 17 are connected to both sides of the electrodes 12, 12, and a simulated fuel rod according to this invention is completed.

第1図と第2図で示した実施例では、何れも一
方の電極12に上記空隙14に通じる細径の空気
導入孔18が形成され、ここから上記空隙14に
空気が補充されるようになつている。但し、通常
の使用において、上記空隙14に保有する空気の
みで発熱管11の内周面の不動態膜を維持するの
に充分な空気量が得られるときは、上記空気導入
孔18を必ずしも必要としない。なお、上記空気
導入孔18を設けるときでも、空隙14に空気の
流れができ、複雑な熱移動が生じないよう、一方
の電極12のみに空気導入孔18を設けるのが望
ましい。
In the embodiments shown in FIGS. 1 and 2, a small diameter air introduction hole 18 communicating with the gap 14 is formed in one of the electrodes 12, and the gap 14 is replenished with air from there. It's summery. However, in normal use, when a sufficient amount of air can be obtained to maintain the passive film on the inner circumferential surface of the heat generating tube 11 with only the air held in the gap 14, the air introduction hole 18 is not necessarily required. I don't. Note that even when the air introduction hole 18 is provided, it is desirable to provide the air introduction hole 18 only in one electrode 12 so that air flows in the gap 14 and complicated heat transfer does not occur.

遠心成形法を用いて充填材14を成形し、実際
に第1図で示すような模擬燃料棒を作り、これを
第3図で示すような従来の同型の模擬燃料棒と共
に寿命試験を行つた結果、前者の発熱管11の耐
蝕性について、後者に比べ約3倍の寿命が得られ
た。また、発熱管11の耐圧試験では、両者共
ほゞ同等の結果が得られた。
The filler 14 was molded using a centrifugal molding method to actually create a simulated fuel rod as shown in Figure 1, and a life test was conducted on this together with a conventional simulated fuel rod of the same type as shown in Figure 3. As a result, the corrosion resistance of the former heating tube 11 was approximately three times longer than that of the latter. In addition, in the pressure test of the heat generating tube 11, substantially the same results were obtained for both tubes.

〔考案の効果〕[Effect of idea]

以上説明した通り、この考案によれば、発熱管
11の耐蝕性に優れた模擬燃料棒を提供すること
ができる。
As explained above, according to this invention, it is possible to provide a simulated fuel rod in which the heat generating tube 11 has excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は、この考案の各実施例を示す
模擬燃料棒の縦断側面図、第3図は、模擬燃料棒
の従来例を示す縦断側面図である。 11……発熱管、12……電極、13……充填
材、14……空隙。
FIGS. 1 and 2 are vertical side views of a simulated fuel rod showing each embodiment of this invention, and FIG. 3 is a vertical side view of a conventional example of a simulated fuel rod. 11...Heating tube, 12...Electrode, 13...Filling material, 14...Gap.

Claims (1)

【実用新案登録請求の範囲】 1 ステンレスパイプからなる発熱管11の中に
絶縁性の充填材13を充填し、該発熱管11の
両端に電極12,12を嵌め込んで導電固着す
ると共に、同発熱管11の両端を閉塞した模擬
燃料棒において、気孔及びヘアクラツクによる
微細な空気通路を有する充填材13の中心部
に、空気が保有された空隙14を形成してなる
ことを特徴とする模擬燃料棒。 2 空隙14が発熱管11の中心軸に沿つて連続
するものからなる実用新案登録請求の範囲第1
項記載の模擬燃料棒。
[Claims for Utility Model Registration] 1. A heating tube 11 made of a stainless steel pipe is filled with an insulating filler 13, and electrodes 12, 12 are fitted into both ends of the heating tube 11 to make it conductive and fixed. A simulated fuel rod in which both ends of a heat generating tube 11 are closed, and a void 14 holding air is formed in the center of a filler 13 having fine air passages formed by pores and hair cracks. rod. 2 Utility model registration claim 1 in which the void 14 is continuous along the central axis of the heat generating tube 11
Simulated fuel rods as described in Section.
JP1986196340U 1986-12-20 1986-12-20 Expired JPH0333040Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986196340U JPH0333040Y2 (en) 1986-12-20 1986-12-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986196340U JPH0333040Y2 (en) 1986-12-20 1986-12-20

Publications (2)

Publication Number Publication Date
JPS63101897U JPS63101897U (en) 1988-07-02
JPH0333040Y2 true JPH0333040Y2 (en) 1991-07-12

Family

ID=31155073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986196340U Expired JPH0333040Y2 (en) 1986-12-20 1986-12-20

Country Status (1)

Country Link
JP (1) JPH0333040Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2975527B1 (en) * 2011-05-18 2013-07-05 Commissariat Energie Atomique DEVICE FOR ELECTRICALLY HEATING A LIQUID, ITS PRODUCTION METHOD AND APPLICATION TO THE ELECTRICAL SIMULATION OF NUCLEAR FUEL PENCILS

Also Published As

Publication number Publication date
JPS63101897U (en) 1988-07-02

Similar Documents

Publication Publication Date Title
KR100253972B1 (en) Method of constructing fully dense metal molds and parts
JPH0231649B2 (en)
JPH0333040Y2 (en)
CN114222383B (en) High-temperature-resistant annular electric heating rod capable of measuring wall surface temperature field
JPS5857266B2 (en) Fukugouyouyuuseidenkiyoku
US3772177A (en) Oxygen sensors
GB528718A (en) Improvements in and relating to a method of manufacturing electric heating elements
US3755126A (en) System for determining amount of an element dissolved in a molten metal
CN105990279A (en) Preparation device and method of metal thermal interface material
JP2904998B2 (en) Solid object made of ceramic high-temperature superconducting material connected to metal conductor and method of manufacturing the same
US2858262A (en) Protectively covered article and method of manufacture
JP3045332U (en) Structure of rod-shaped sheet heater
JPH04143262A (en) Ceramic coated heat resistant member
JPS63271813A (en) Lengthy superconductive material
WO2022253323A1 (en) Aerosol generation device, heater for same, and preparation method
SU1185117A1 (en) Method of producing the thermocouple hot junction
JP7010027B2 (en) Temperature sensor and its manufacturing method
JPH04201303A (en) Manufacture of ceramic hollow pipe
CN206963102U (en) Straight type electrothermal tube with metal electric heating silk
JPH042056A (en) Manufacture of carbon rod for dry cell
JP3117521B2 (en) Manufacturing method of oxide superconducting wire
CN110483026A (en) A kind of ceramic core and preparation method thereof utilizes the heat generating member of the ceramic core
SU1237303A1 (en) Method of determining coefficient of accumulation of heat in mould
JPS5558929A (en) Manufacturing method of electrode material for electrical discharge machining
JPS6033796B2 (en) Electric furnace for crystal growth