JPH0332289B2 - - Google Patents

Info

Publication number
JPH0332289B2
JPH0332289B2 JP57010609A JP1060982A JPH0332289B2 JP H0332289 B2 JPH0332289 B2 JP H0332289B2 JP 57010609 A JP57010609 A JP 57010609A JP 1060982 A JP1060982 A JP 1060982A JP H0332289 B2 JPH0332289 B2 JP H0332289B2
Authority
JP
Japan
Prior art keywords
terminal
current setting
power transmission
control device
setting value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57010609A
Other languages
Japanese (ja)
Other versions
JPS58130727A (en
Inventor
Buichi Sakurai
Akira Mase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP57010609A priority Critical patent/JPS58130727A/en
Publication of JPS58130727A publication Critical patent/JPS58130727A/en
Publication of JPH0332289B2 publication Critical patent/JPH0332289B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 本発明は直流送電線の各区間毎に直流開閉器を
挿入してなる3端子以上の直流多端子送電系統に
おいて、特に直流送電線の分岐点に直流送電区間
の開閉に伴なう各端子の電流指令値の調整等を行
なう中央制御装置を設けて隣接端子に対し負荷配
分協調指令等の必要最小限の情報を高速度で伝送
するようにした直流多端子送電系統の制御方式に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a DC multi-terminal power transmission system with three or more terminals in which a DC switch is inserted in each section of a DC transmission line, in particular, a method for switching and closing DC transmission sections at branch points of the DC transmission line. A DC multi-terminal power transmission system is equipped with a central control device that adjusts the current command value of each terminal, etc., and transmits the minimum necessary information such as load distribution coordination commands to adjacent terminals at high speed. Regarding the control method.

従来、高電圧直流送電としては2端子送電に限
られていたが、最近直流系統の全電圧の下におい
て負荷電流のしや断能力を有する直流開閉器の開
発が進むにつれ、将来はこの直流開閉器により直
流多端子送電が実用化される傾向にある。
Conventionally, high-voltage DC power transmission has been limited to two-terminal power transmission, but as the development of DC switches that have the ability to cut and cut load current under the full voltage of the DC system has progressed, in the future, this type of DC switching DC multi-terminal power transmission is becoming more practical.

ところで、直流開閉器の使用により直流多端子
送電を実用化する場合、送電線故障時、故障区間
のみを選択しや断し、残りの健全回線は極力、送
電継続することが望ましい。また故障に伴う系統
変更時は並列回線がある場合は別として故障極の
各端子の電流設定値Idpの協調を保つために、Idp
の高速変更を要する場合がある。
By the way, when putting DC multi-terminal power transmission into practical use by using a DC switch, it is desirable to selectively disconnect only the faulty section when a power transmission line fails, and continue transmitting power to the remaining healthy lines as much as possible. In addition, when changing the system due to a fault, the I dp
may require rapid changes.

一般に各端子での変換器制御方式としては唯一
の端子が直流系統電圧Edを決定し、残りの全端
子は定電流制御が行なわれる。この場合、電圧決
定端子の電流は定電流端子の電流の総和から決め
られる。即ち、電圧決定端子は電流については
“しわとり”的存在で、実電流Idは電流設定値Idp
に対して電流マージンΔIだけ大きくしてある。
ここで、上記の関係について説明を簡単にするた
め2端子送電の場合を例にして述べる。つまり、
電圧決定端子が受電端(INV)の場合は、第1
図aに示すようにΔI>0であり、また、送電端
(REC)の場合は第1図bに示すようにΔI<0で
ある。したがつて、第1図からも明らかなよう
に、この電流マージンΔIが失なわれると運転平
衡点Aが失なわれ送電不能となるので、常に電流
マージンΔIを保持することが多端子送電におい
ても必須条件となる。この関係を一般式で示すと
次のようになる。ただし、この式ではΔI>0と
している。
In general, the converter control method at each terminal is such that only one terminal determines the DC system voltage Ed , and all remaining terminals are subject to constant current control. In this case, the current at the voltage determining terminal is determined from the sum of the currents at the constant current terminals. In other words, the voltage determining terminal is a "wrinkle absorber" for current, and the actual current I d is the current setting value I dp
The current margin ΔI is increased with respect to the current margin ΔI.
Here, to simplify the explanation of the above relationship, a case of two-terminal power transmission will be described as an example. In other words,
If the voltage determining terminal is the power receiving end (INV), the first
As shown in FIG. 1A, ΔI>0, and in the case of the power transmission end (REC), ΔI<0 as shown in FIG. 1B. Therefore, as is clear from Figure 1, if this current margin ΔI is lost, the operating equilibrium point A will be lost and power transmission will become impossible, so it is important to always maintain the current margin ΔI in multi-terminal power transmission. is also a necessary condition. This relationship can be expressed as a general formula as follows. However, in this formula, ΔI>0.

(ΣIdpREC−(ΣIdpINV=ΔI …(1) そこで、直流多端子送電系統を実用化するにあ
たつては、特に故障に伴う系統変更時において各
端子の電流設定値Idpを変更する場合も常に上記
(1)式を満たすようにIdpに対する協調制御を考え
る必要がある。
(ΣI dp ) REC − (ΣI dp ) INV = ΔI …(1) Therefore, when putting a DC multi-terminal power transmission system into practical use, the current setting value I dp of each terminal must be adjusted, especially when changing the system due to a failure. Always do the above even if you change
It is necessary to consider cooperative control for I dp so as to satisfy equation (1).

現在、直流多端子送電系統の制御方式として考
えられていることは、中央制御装置を設けて各端
子から必要な情報を集収し、ここで上記(1)式を満
たすような各端子の電流設定値Idpを判定してか
ら再び各端子に制御指令を出す中央集中制御方式
がある。しかし、この制御方式は各端子と中央制
御装置との間で情報を送受し合わなければならな
いため、伝送系に対する依存性が高くなるという
欠点がある。
Currently, the control method for DC multi-terminal power transmission systems is to install a central control device, collect the necessary information from each terminal, and then set the current at each terminal to satisfy equation (1) above. There is a centralized control method that issues control commands to each terminal again after determining the value I dp . However, this control method has the disadvantage that it is highly dependent on the transmission system because information must be exchanged between each terminal and the central control device.

ここで、第2図に示すように直流多端子送電系
統において、前述した中央集中制御方式を採用す
る場合について考察する。第2図に示す直流多端
子送電系統において、送電線DLの区間毎に直流
開閉器S1〜S5を挿入して送電線故障時は故障
区間のみを選択しや断し、残りの健全端子は(1)式
の協調をとつて極力運転を継続することが望まし
い。また故障区間については短時間後(例えば1
秒)、直流開閉器を投入し、故障クリアの場合は
事前の運転に戻る。このような直流送電線の高速
再閉路は比較的単純であるが、この場合、高速に
電流設定値の変更を伴う。このような制御を前述
したような中央集中制御方式で行なうと、各端子
と中央制御装置との間を情報が往復し、伝送依存
度の尺度としてΣ(情報量)×(伝送距離)なる量
を考えるとその伝送依存度は高いものとなる。こ
こで、情報としては各端子の電流設定値Idpおよ
び直流しや断器の開、閉信号などが挙げられる。
したがつて、伝送依存度が高くなると、当然シス
テムの信頼性、制御保護の高速性および伝送系コ
ストの点で不利になる。
Here, we will consider the case where the above-mentioned centralized control method is adopted in a DC multi-terminal power transmission system as shown in FIG. 2. In the DC multi-terminal power transmission system shown in Figure 2, DC switches S1 to S5 are inserted in each section of the transmission line DL, and when a transmission line fault occurs, only the faulty section is selected and disconnected, and the remaining healthy terminals are 1) It is desirable to continue operation as much as possible by coordinating equations. Also, regarding the failure section, after a short period of time (for example, 1
seconds), turn on the DC switch, and if the fault is cleared, return to previous operation. Although such high-speed reclosing of a DC transmission line is relatively simple, it involves a rapid change in the current setting. If such control is performed using the centralized control method described above, information will be sent back and forth between each terminal and the central control device, and the amount Σ (amount of information) x (transmission distance) will be used as a measure of transmission dependence. Considering this, the dependence on transmission is high. Here, the information includes a current setting value I dp of each terminal, a direct current, a disconnection open/close signal, and the like.
Therefore, as the dependence on transmission increases, it naturally becomes disadvantageous in terms of system reliability, high speed control and protection, and transmission system cost.

本発明は上記のような事情に鑑みてなされたも
ので、その目的は直流多端子送電系統において、
送電線故障や変換所故障に対して直流開閉器が使
える場合には自端制御保護を中心とし、また直流
送電線の分岐点に直流送電区間の開閉に伴う各端
子の電流設定値の調整等を行なう中央制御機能を
持たせた中央制御装置を設けて電流設定値の協調
をチエツクし、電流設定値の変更が必要な場合に
は隣接端子へそれらの必要最小限の情報を伝送す
るようにすることにより、伝送依存度の低い信頼
性の高い直流多端子送電系統の制御方式を提供し
ようとするものである。
The present invention has been made in view of the above circumstances, and its purpose is to provide a DC multi-terminal power transmission system,
If a DC switch can be used to protect against transmission line failures or converter station failures, it is mainly used for self-end control protection, and at branch points of DC transmission lines, adjustment of the current setting value of each terminal as the DC transmission section opens and closes. A central control device with a central control function is installed to check the coordination of current settings, and when it is necessary to change the current settings, the minimum necessary information is transmitted to adjacent terminals. By doing so, we aim to provide a highly reliable control system for a DC multi-terminal power transmission system with low transmission dependence.

以下本発明の一実施例を図面を参照して説明す
る。第3図は本発明の構成を直流3端子系統を一
例として示すものである。第3図において、1お
よび2は送電端、3は受電端で、これら各端子
1,2,3には変換器11と12,21と22,
31と32が設けられており、変換器11,2
1,31は正極を、変換器12,22,32は負
極をそれぞれ構成し、全体として双極システムと
してある。7は送電端1と受電端3との間および
これらの途中からT分岐して送電端2に至る直流
送電線で、この直流送電線7は各端子の正端変換
器11,21,31間を結ぶ正極送電線71,7
4,77と各端子の負極変換器12,22,32
間を結ぶ負極送電線73,76,79および各端
子の両変換器11と12,21と22,31と3
2の各接続相互間を結ぶ中性線72,75,78
から構成されている。また、13,15は送電端
1側の各線路71,73に挿入された直流開閉
器、23,25は送電端2側の各線路77,79
に挿入された直流開閉器、33,35は受電端3
側の各線路74,76に挿入された直流開閉器、
16,18,26,28,36,38はT分岐点
における各線路71,73,77,79,74,
76にそれぞれ挿入された直流開閉器である。一
方、10,20,30は各端子1,2,3に対応
させて設けられた端子制御装置で、この端子制御
装置10,20,30は正極および負極変換器1
1と12,21と22,31と32に対し、電流
設定値Idpの増、減や点弧角の制御等を行なうも
のである。また、5は第1の中央制御装置で、こ
の第1の中央制御装置5は通常の変換器起動、停
止、定常運転時の各端子の負荷変更、運転系統へ
の端子の並列または解列のような時間的に余裕の
ある操作指令を伝送回線51〜53を介して各端
子の端子制御装置10,20,30に与えるもの
である。さらに、6は直流送電線7のT分岐点に
対応させて設けられた第2の中央制御装置で、こ
の第2の中央制御装置6はその詳細については後
述するが、第1の中央制御装置5からの通常の電
流設定値Idpの指令値とT分岐点の各線路に挿入
されている直流開閉器の開、閉情報を入力して各
端子の電流設定値の協調をチエツクし、何れかの
線路の故障に伴う直流開閉器の開放により電流設
定値の変更が必要な場合には隣接端子の端子制御
装置に電流設定値Idpの変更指令を与えるもので
ある。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 shows the configuration of the present invention using a DC three-terminal system as an example. In FIG. 3, 1 and 2 are the power transmitting end, 3 is the power receiving end, and these terminals 1, 2, and 3 are connected to converters 11 and 12, 21 and 22,
31 and 32 are provided, and the converters 11, 2
1 and 31 constitute positive poles, and converters 12, 22, and 32 constitute negative poles, respectively, forming a bipolar system as a whole. Reference numeral 7 denotes a DC transmission line between the power transmission end 1 and the power reception end 3, and a T-branch from the middle of these to the power transmission end 2. This DC transmission line 7 is connected between the positive end converters 11, 21, and 31 of each terminal Positive power transmission line 71, 7 connecting
4, 77 and negative polarity converters 12, 22, 32 at each terminal
Negative power transmission lines 73, 76, 79 connecting between them and both converters 11 and 12, 21 and 22, 31 and 3 at each terminal
Neutral wires 72, 75, 78 connecting each connection of 2
It consists of Further, 13 and 15 are DC switches inserted into the respective lines 71 and 73 on the power transmission end 1 side, and 23 and 25 are the respective lines 77 and 79 on the power transmission end 2 side.
33 and 35 are the DC switches inserted in the power receiving end 3
A DC switch inserted into each side line 74, 76,
16, 18, 26, 28, 36, 38 are the lines 71, 73, 77, 79, 74 at the T junction,
76, respectively. On the other hand, 10, 20, 30 are terminal control devices provided corresponding to the respective terminals 1, 2, 3, and these terminal control devices 10, 20, 30 are connected to the positive and negative electrode converters 1.
For 1 and 12, 21 and 22, and 31 and 32, the current setting value I dp is increased or decreased and the firing angle is controlled. In addition, 5 is a first central control device, and this first central control device 5 is used for normal converter starting and stopping, changing the load of each terminal during steady operation, and controlling the paralleling or disconnection of terminals to the operating system. Such operation commands with sufficient time are given to the terminal control devices 10, 20, and 30 of each terminal via the transmission lines 51 to 53. Furthermore, 6 is a second central control device provided corresponding to the T-junction of the DC power transmission line 7, and this second central control device 6 is similar to the first central control device, although the details will be described later. Check the coordination of the current setting values of each terminal by inputting the command value of the normal current setting value I dp from 5 and the open/close information of the DC switch inserted in each line at the T branch point. If it is necessary to change the current setting value due to the opening of the DC switch due to a fault in the line, a command to change the current setting value I dp is given to the terminal control device of the adjacent terminal.

なお、直流送電線7の各線路に対する分岐点に
は直流開閉線16,26,36,18,28,3
8が設けられており、またそれに伴つて図示して
いない線路保護用の電流変成器等が設けられるの
で、交流系統の開閉所に相当し、したがつて、T
分岐点に前述したような第2の中央制御装置を配
設することは可能である。
Note that there are DC switching lines 16, 26, 36, 18, 28, 3 at branch points for each line of the DC transmission line 7.
8 is provided, and a current transformer, etc. for line protection (not shown) is also provided, so it corresponds to the switchyard of the AC system, and therefore, T
It is possible to arrange a second central control unit as described above at the branch point.

第4図は直流送電線7のT分岐点に対応させて
設けられる第2の中央制御装置6において、一例
として正極送電線71,74,77に挿入されて
いる直流開閉器16,26,36のうち、直流開
閉器16に対する機能を中心にして示すものであ
り、第3図に対応する各部の構成については該当
する部分に同一記号を付して示してある。第4図
において、91および92は直流開閉器13,1
6側の正極送電線71に流れる実電流Idを入力し
て電流差動方式で故障を検出する電流差動リレ
ー、93および94はこの電流差動リレー91お
よび92に付属する限時回路、95および96は
電流差動リレー91および92よりトリツプ指令
が加えられると直流開閉器13,16を開路し、
また限時回路93,94の動作出力が入力される
と直流開閉器13,16を再閉路する開閉制御回
路である。一方、第2の中央制御装置6は第1の
中央制御装置5からサイクリツクデジタルテレメ
ータ97、伝送回路51、サイクリツクデジタル
テレメータ98を介して伝達される定常時の電流
設定置Idpをチエツクして各端子の端子制御装置
10,20,30にIdp指令を送出する機能、
電流差動リレー92から出力される直流開閉器1
6のトリツプ指令により送電端1および受電端3
の端子制御装置10,30に対し正極および負極
変換器11,12,31,32の電流設定値Idp
変更や逆変換器点弧角制御指令(β進め)を送出
する機能、直流開閉器16の再閉路の成否を判
定する機能、再閉路の成功が確認されると送電
端1および受電端3の端子制御装置10,30に
対し、正端および負極変換器11,12,31,
32の電流設定値Idpや逆変換器の点弧角制御を
事前の状態に戻す指令を送出する機能を有して
おり、また再閉路失敗の場合には永久故障と判定
してその結果を第1の中央制御装置5に送出する
ようにしてある。かかる各種の機能は例えばマイ
クロコンピユータを用いて情報処理を行なうこと
により容易に得られるものである。
FIG. 4 shows, as an example, DC switches 16, 26, 36 inserted into positive transmission lines 71, 74, 77 in the second central control unit 6 provided corresponding to the T-junction of the DC transmission line 7. Among these, the functions for the DC switch 16 are mainly shown, and the configuration of each part corresponding to that in FIG. 3 is shown with the same symbol attached to the corresponding part. In FIG. 4, 91 and 92 are DC switches 13, 1
93 and 94 are time-limiting circuits attached to these current differential relays 91 and 92; and 96 open the DC switches 13 and 16 when a trip command is applied from the current differential relays 91 and 92;
It is also an opening/closing control circuit that recloses the DC switches 13 and 16 when the operation outputs of the time limit circuits 93 and 94 are input. On the other hand, the second central controller 6 checks the steady state current setting I dp transmitted from the first central controller 5 via the cyclic digital telemeter 97, the transmission circuit 51, and the cyclic digital telemeter 98. function to send an I dp command to the terminal control device 10, 20, 30 of each terminal,
DC switch 1 output from current differential relay 92
Due to the trip command of 6, the power transmitting end 1 and the power receiving end 3
The current setting value I dp of the positive electrode and negative electrode converters 11, 12, 31, 32 for the terminal control devices 10, 30 of
A function to send changes and reverse converter firing angle control commands (β advance), a function to judge the success or failure of reclosing of the DC switch 16, and a function to determine the success or failure of reclosing of the DC switch 16. For the terminal control devices 10 and 30, positive and negative terminal converters 11, 12, 31,
It has a function to send a command to return the current setting value I dp of 32 and the firing angle control of the inverter to the previous state, and in the case of failure to reclose, it is determined to be a permanent failure and the result is displayed. The data is sent to the first central control unit 5. Such various functions can be easily obtained by processing information using, for example, a microcomputer.

なお、図中99〜102は第2の中央制御装置
6から送電端1および受電端3へ指令を伝送する
ためのサイクリツクデジタルテレメータである。
In the figure, 99 to 102 are cyclic digital telemeters for transmitting commands from the second central controller 6 to the power transmitting end 1 and the power receiving end 3.

以上述べた第2の中央制御装置6の機能は直流
開閉器16に対応する場合であるが、他の直流開
閉器26,36,18,28,38に対応する場
合にも各端子への指令内容が異なるだけで前述と
全く同様の機能を有しているものである。
The functions of the second central control device 6 described above are for the case where it corresponds to the DC switch 16, but also when it corresponds to other DC switches 26, 36, 18, 28, 38, commands to each terminal are provided. It has exactly the same functions as the above, only the content is different.

また、第4図において、端子2への主回路およ
び指令系統を省略して示しているのは、端子2が
送電端で、しかも送電線71の故障の場合には
Idp指令の変更なしに送電を継続できるためであ
る。
In addition, in FIG. 4, the main circuit and command system to terminal 2 are omitted because terminal 2 is the power transmission end, and in the case of a failure of power transmission line 71,
This is because power transmission can be continued without changing the I dp directive.

次に作用について述べるに、まず第3図におい
て、例えば正極送電線71に地絡事故が発生した
場合を第4図に基いて説明する。今、直流送電線
7に故障がなければ第2の中央制御装置6は第1
の中央制御装置5から伝送されてくる通常のIdp
指令値に基いて送電端1および2の正,負両極変
換器11と12,21と22を電流設定値Idp10
よびIdp20で運転制御すべき指令を両端の端子制御
装置10,20に伝送回線を介して与え、また受
電端3の正、負両極変換器31と32を電流設定
値Idp30で運転制御すべき指令を端子制御装置30
に伝送回線を介して与えている。このような状態
にあるとき、正極送電線71に地絡故障が発生す
ると、電流差動リレー91,92はトリツプ指令
を出力し、開閉制御装置95,96により直流開
閉器13,16が開放され、これと同時に限時回
路93,94を付勢して再閉路を準備する。また
T分岐点における電流差動リレー92のトリツプ
指令は直流開閉器16の開予告信号として第2の
中央制御装置6に入力され。そして、点線枠内に
表示した機能により、送電端1の正極変換器P
111に対しては電流最小値Idnio,負極変換器P
212に対してはIdp10×K(例,K=1.5)なる電
流設定値をサイクリツクデジタルテレメータ10
1,102および伝送回線61を介して端子制御
装置10に伝送し、また受電極3の正極変換器P
131に対してはIdp30−Idp10なる電流設定値、負
極変換器P232に対してはその点弧角β進め指
令をサイクリツクデジタルテレメータ99,10
0および伝送回線63を介して端子制御装置30
に伝送する。したがつて、正極送電線71が系統
より分離されて送電端1の送電分が失なわれても
第2の中央制御装置6から直接端子制御装置1
0,30に指令を与え、受電端3に対してはその
正極変換器31の電流設定値Idpを減少させて前
述した(1)式の関係を保ち得るので、正極送電線7
1の区間を除く健全側で送電継続ができる。この
場合、正極送電線の故障に対して負極側は何ら影
響を受けることなく送電継続できることは勿論で
あるが、短時間過負荷運転することも考えられる
ため、本例ではその場合について示してある。即
ち、前述した故障において送電端1の正極の送電
分を負極側に移すために負極変換器12の電流設
定値Idpを一時的に1.5倍に増し、また受電端3の
負極変換器32に対しては点弧角β進め制御を同
時に行なうようにしている。このような短時間
(例えば1〜2秒)の過負荷制御は変換器として
は可能であり、片極故障時の電力減少を小さくで
きる。
Next, to describe the operation, first, referring to FIG. 3, a case where, for example, a ground fault occurs in the positive power transmission line 71 will be explained based on FIG. 4. Now, if there is no failure in the DC power transmission line 7, the second central control device 6
The normal I dp transmitted from the central controller 5 of
Based on the command value, a command to control the operation of the positive and negative bipolar converters 11 and 12, 21 and 22 at the power transmission ends 1 and 2 at current setting values I dp10 and I dp20 is transmitted to the terminal control devices 10 and 20 at both ends. The terminal control device 30 sends a command to control the operation of the positive and negative bipolar converters 31 and 32 at the power receiving end 3 at a current setting value I dp30 .
is given through the transmission line. In such a state, if a ground fault occurs in the positive power transmission line 71, the current differential relays 91 and 92 output a trip command, and the switching control devices 95 and 96 open the DC switches 13 and 16. , At the same time, the time limit circuits 93 and 94 are energized to prepare for re-closing. Further, the trip command for the current differential relay 92 at the T-junction is inputted to the second central control unit 6 as a warning signal for opening the DC switch 16. Then, according to the function displayed within the dotted line frame, the positive polarity converter P of the power transmission end 1 is
For 111, the current minimum value I dnio and the negative polarity converter P
For 212, set the current setting value I dp10 × K (for example, K = 1.5) to the cyclic digital telemeter 10.
1, 102 and the transmission line 61 to the terminal control device 10, and the positive polarity converter P of the receiving electrode 3.
131, the current setting value I dp30 - I dp10 , and the negative polarity converter P232, the firing angle β advance command is sent to the cyclic digital telemeters 99, 10.
0 and the terminal control device 30 via the transmission line 63
to be transmitted. Therefore, even if the positive power transmission line 71 is separated from the grid and the power transmitted at the power transmission end 1 is lost, the terminal control device 1 is directly connected to the second central control device 6.
0, 30, and decrease the current setting value I dp of the positive converter 31 for the power receiving end 3 to maintain the relationship of equation (1).
Power transmission can continue on the healthy side except for section 1. In this case, it goes without saying that the negative side can continue power transmission without being affected by a failure in the positive power transmission line, but it is also possible that the power will be overloaded for a short period of time, so this example shows such a case. . That is, in order to transfer the power transmitted from the positive pole of the power transmitting end 1 to the negative pole side in the above-mentioned failure, the current setting value I dp of the negative pole converter 12 is temporarily increased by 1.5 times, and the current setting value I dp of the negative pole converter 32 of the power receiving end 3 is For this purpose, firing angle β advance control is simultaneously performed. Such short-term (for example, 1 to 2 seconds) overload control is possible for the converter, and the power reduction in the event of a single-pole failure can be reduced.

このようにして第2の中央制御装置からの指令
により電流設定値Idpの変更や点弧角β進め制御
が行なわれてから一定時間(例えば1秒)経過す
ると、限時回路93,94の動作により開閉制御
回路95,96は直流開閉器13,16を再閉路
する。この時第2の中央制御装置6は電流差動リ
レー92のトリツプ指令の有無により再閉路が成
功したか否かを判定し、成功したと判定されれば
点線枠内に表示した機能により事前の送電に戻
す。つまり、送電端1の正,負両極変換器11,
12に対しては電流設定値Idp10に、また受電端3
の正極変換器31に対しては電流設定値Idp30およ
び負極変換器32に対しては点弧角β進めをリセ
ツトする如き指令を各端の端子制御装置10,3
0に与える。また直流開閉器13,16が電流差
動リレー91,92の動作により永久故障として
再び開放され、再閉路が失敗すると、その結果を
サイクリツクデジタルテレメータ98、伝送回線
51、サイクリツクデジタルテレメータ97を介
して第1の中央制御装置5に伝送される。
When a certain period of time (for example, 1 second) has elapsed since the current setting value I dp was changed or the firing angle β was advanced in accordance with a command from the second central controller, the time limit circuits 93 and 94 are activated. As a result, the switching control circuits 95 and 96 reclose the DC switches 13 and 16. At this time, the second central controller 6 determines whether the re-closing has been successful based on the presence or absence of a trip command for the current differential relay 92, and if it is determined that the re-closing has been successful, the function displayed within the dotted line frame is used to Return to power transmission. In other words, the positive and negative bipolar converter 11 at the power transmission end 1,
12, the current setting value I dp10 and the receiving end 3
The terminal control devices 10 and 3 at each end issue commands such as resetting the current setting value I dp30 for the positive polarity converter 31 and resetting the firing angle β advancement for the negative polarity converter 32.
Give to 0. Furthermore, when the DC switches 13 and 16 are opened again due to a permanent failure due to the operation of the current differential relays 91 and 92, and the re-closing fails, the result is transmitted to the cyclic digital telemeter 98, transmission line 51, and cyclic digital telemeter 97. via the first central control unit 5.

なお、端子2が送電端で、しかも正極送電線7
1の故障の場合には、Idp指令の変更なしに送電
を継続できるので、本例の場合には特に送電端2
に対する指令を必要としない。
Note that the terminal 2 is the power transmission end, and the positive power transmission line 7
In the case of 1 failure, power transmission can be continued without changing the I dp command, so in this example, especially at the power transmission end 2
No instructions are required.

以上の説明は正極送電線71に地絡故障が発生
した場合の各端子に対する電流設定値Idpの変更
であるが、正極送電線74に地絡故障が発生した
場合には直流開閉器33,36の開放により送電
端1,2の正極変換器11,21は共に無負荷に
なり、このままでは受電端3の正極電力が零とな
り、端子としての電力は負極電力のみとなるので
半減する。したがつてこのような場合には第2の
中央制御装置6より健全極である負極変換器1
2,22の電流設定値Idpを増加すべき指令を伝
送する。また直流開閉器36の再閉路により故障
回復を確認後正極変換器11,21の電流設定値
Idpを最小値より事前の値に戻し、同時に過負荷
運転中の負極変換器12,22の電流設定値Idp
を元に戻すべく指令を伝送する。さらに正極送電
線77の地絡故障の場合にもT分岐点における直
流開閉器26の開、閉情報を第2の中央制御装置
6に入力することで、各端子に対して電流設定値
Idpの変更指令を伝送することが可能である。こ
の場合第2の中央制御装置6の機能としては前述
と全く同様であるが、ただ点線枠内の表示部分が
異なるだけである。
The above explanation is about changing the current setting value I dp for each terminal when a ground fault occurs in the positive power transmission line 71. However, when a ground fault occurs in the positive power transmission line 74, the DC switch 33, By opening 36, both the positive electrode converters 11 and 21 of the power transmitting ends 1 and 2 become unloaded, and if this continues, the positive electrode power of the power receiving end 3 becomes zero, and the power as a terminal becomes only the negative electrode power, so that it is halved. Therefore, in such a case, the second central controller 6 selects the negative polarity converter 1 which is a healthy polarity.
A command to increase the current setting value I dp of 2 and 22 is transmitted. In addition, after confirming failure recovery by re-closing the DC switch 36, the current setting value of the positive polarity converters 11 and 21 is set.
Return I dp from the minimum value to the previous value, and at the same time set the current setting value I dp of negative polarity converters 12 and 22 during overload operation.
A command is transmitted to restore the original state. Furthermore, even in the event of a ground fault in the positive power transmission line 77, by inputting the open/close information of the DC switch 26 at the T-junction to the second central controller 6, the current setting value for each terminal can be set.
It is possible to transmit an I dp change command. In this case, the functions of the second central control device 6 are exactly the same as those described above, but the only difference is the display portion within the dotted line frame.

上記した説明は何れも正極送電線71,74,
77の何れかに故障が発生した場合であるが、負
極送電線73,76,79の何れかに地絡故障が
発生した場合についても直流開閉器18,28,
38の間、閉情報に応じて第2の中央制御装置6
より前述した(1)式の関係を保つに必要な電流設定
値Idpの変更指令を該当端子に対して伝送回線を
介して伝送すればよい。例えば負極送電線73に
地絡故障が発生した場合には第4図に示す第2の
中央制御装置6において点線枠内の機能表示とし
てP1→P2,P2→P1に入れかわるだけで、
前述と同様に電流設定値Idpの変更を要する端子
に対してその指令を伝送することができる。
The above explanations are based on the positive electrode transmission lines 71, 74,
77, but also when a ground fault occurs in any of the negative transmission lines 73, 76, 79, the DC switches 18, 28,
38, the second central controller 6 depending on the closing information
A command to change the current setting value I dp necessary to maintain the relationship of equation (1) described above may be transmitted to the corresponding terminal via the transmission line. For example, when a ground fault occurs in the negative power transmission line 73, the function display within the dotted line frame in the second central control unit 6 shown in FIG.
Similar to the above, a command can be transmitted to a terminal that requires a change in the current setting value I dp .

このように本方式では、直流多端子送電系統に
おいて、送電線故障や変換所故障に対して直流開
閉器が使える場合には自端制御保護を中心とし、
また直流送電線の分岐点には直流送電区間の開閉
に伴う各端子の電流設定値の調整等を行なう中央
制御機能を持たせた第2の中央制御装置6を設け
て電流設定値の協調をチエツクし、電流設定値の
変更が必要な場合には隣接端子へそれらの必要最
小限の情報を伝送するようにしたので、中央集中
制御方式のように各端子から必要な情報を一度一
箇所に集めて判定し、再び各端子に指令を出す場
合に比べて伝送依存度を比較的低くでき、システ
ムの信頼性、制御保護の高速性および伝送系コス
トの点で優れたものとなる。このことにより、直
流多端子送電の技術動向にもマツチしており、将
来多端子直流送電の実用化においてかなりの効果
を発揮させ得る方式として期待できる。
In this way, this method focuses on self-end control protection when DC switches can be used to protect against transmission line failures and converter station failures in DC multi-terminal power transmission systems.
In addition, a second central controller 6 with a central control function that adjusts the current setting value of each terminal as the DC transmission section opens and closes is installed at the branch point of the DC transmission line to coordinate the current setting value. If it is necessary to change the current setting value, the minimum necessary information is transmitted to the adjacent terminal, so the necessary information from each terminal can be stored in one place, unlike the centralized control method. Compared to the case where the commands are collected and determined and commands are sent to each terminal again, the dependence on transmission can be relatively lowered, and the system is superior in terms of reliability, high speed control and protection, and transmission system cost. This makes it compatible with technological trends in DC multi-terminal power transmission, and can be expected to be a method that will be highly effective in the practical application of multi-terminal DC power transmission in the future.

以上は本発明方式を説明するための直流多端子
送電系統の一例について示したが、次のような系
統構成の場合にも前述同様に適用実施できるもの
である。
Although an example of a DC multi-terminal power transmission system has been described above to explain the system of the present invention, the system can also be applied to the following system configuration in the same manner as described above.

(1) 第3図に示す系統構成は双極1回線の場合で
あるが、双極2回線の場合についても前述同様
に適用実施できるものである。即ち、双極2回
線の場合は直流主回路として第3図と全く同じ
双極構成が2つ存し、常時は互いに独立して運
転し、故障時のみ故障区間を開いて他の双極の
健全回線に並列する方式となる。したがつて、
このような双極2回線の場合には故障極の各端
子の電流設定値Idpを変更せずに送電継続が可
能になるが、かかる系統構成に対してもT分岐
点に第2の中央制御装置6を設置することによ
り、並列用開閉器の開閉に対して各端子に直接
指令が出せるので、高速性の点で優れたものと
なる。
(1) Although the system configuration shown in Figure 3 is for one bipolar line, it can also be applied to two bipolar lines in the same manner as described above. In other words, in the case of a bipolar two-line circuit, there are two bipolar configurations as the DC main circuit, which are exactly the same as shown in Figure 3, and they operate independently of each other at all times, and only in the event of a failure open the faulty section and connect it to the other bipolar healthy line. This is a parallel method. Therefore,
In the case of such a bipolar two-line circuit, it is possible to continue power transmission without changing the current setting value I dp of each terminal of the failed pole, but even for such a system configuration, a second central control at the T-junction By installing the device 6, commands can be issued directly to each terminal for opening and closing the parallel switch, resulting in an excellent high-speed operation.

(2) 第5図は双極2回線について常時並列方式を
3端子の例について示すものである。すなわ
ち、第5図は交流送電線2回線運用と同じよう
な考え方で、故障時1回線しや断すれば健全回
線に電力を移すため、電流設定値Idpの変更を
要しない。したがつて、直流開閉器のしや断容
量に問題がなければ並列開閉器も必要ないので
システムは簡単になる。このような場合にも送
電端1と受電端3とを結ぶ直流送電線7の途中
から送電端2に至る分岐点Tに第4図に示した
のと同様の第2の中央制御装置6を設ければ高
速制御上有利なものとなる。特にこのようなT
分岐の3端子系統では各端子への送電線が分岐
点に集中しているので故障時の送電線の開閉が
直接わかり、各送電線の負荷状態がすべて自端
でわかる。したがつて各端子の電流設定値Idp
の調整や健全極の過負荷制御が必要な場合も、
各端子に高速に指令することが比較的容易であ
る。
(2) Figure 5 shows an example of a three-terminal always-parallel method for two bipolar lines. That is, FIG. 5 uses the same concept as the two-line AC power transmission line operation, and in the event of a failure, if one line is disconnected, power is transferred to the healthy line, so there is no need to change the current setting value I dp . Therefore, if there is no problem with the switching capacity of the DC switch, there is no need for a parallel switch, which simplifies the system. In such a case, a second central controller 6 similar to that shown in FIG. If provided, it will be advantageous for high-speed control. Especially T like this
In a branched three-terminal system, the transmission lines to each terminal are concentrated at the branch point, so it is possible to directly know when a transmission line is open or closed in the event of a failure, and the load status of each transmission line can be determined at its own end. Therefore, the current setting value I dp of each terminal
Adjustment or overload control of healthy poles is also required.
It is relatively easy to command each terminal at high speed.

(3) 第6図は分岐送電線のない4端子系統に本発
明を適用する場合の一例を示すものである。第
6図において、各端子1〜4はそれぞれ変換器
11,21,31,41からなり、簡単のため
に正極のみを示している。また、端子2と3は
それぞれT分岐点に相当しているので、第2の
中央制御装置6,6′は実際には端子制御装置
20,30とそれぞれ同じ場所に設けられ、そ
の他、第1の中央制御装置5と第2の中央制御
装置6との関係および第1の中央制御装置5と
端子制御装置10,20,30,40との関係
については第3図および第4図の場合と同様で
ある。
(3) Figure 6 shows an example of applying the present invention to a four-terminal system without branch transmission lines. In FIG. 6, each of the terminals 1 to 4 consists of a converter 11, 21, 31, 41, respectively, and only the positive electrode is shown for simplicity. Furthermore, since the terminals 2 and 3 each correspond to a T-junction, the second central control devices 6 and 6' are actually provided at the same location as the terminal control devices 20 and 30, respectively, and the first The relationship between the central control device 5 and the second central control device 6 and the relationship between the first central control device 5 and the terminal control devices 10, 20, 30, and 40 are as shown in FIGS. 3 and 4. The same is true.

したがつて、第6図に示すような直流多端子
送電系統において、送電線71の故障の場合に
は直流開閉器13,16が開放され、送電端1
の電源脱落分を端子2,3,4の電流設定値
Idpの調整によりカバーし、前記した(1)式の関
係を保つことが必要である。そこで第2の中央
制御装置6は受電端2に直結しているので、自
端の電流設定値Idpを減じて電源脱落分の一部
を補償し、残りの調整を端子3,4に指令す
る。したがつて、伝送回線67を介して第2の
中央制御装置6′に電流設定値Idpの未調整分を
指令する。第2の中央制御装置6′は送電端3
に直結しているので、自端の電流設定値Idp
増加または伝送回線63を介して受電端4の電
流設定値Idpの低減を指令し、それに応ずる。
Therefore, in a DC multi-terminal power transmission system as shown in FIG.
The current setting value of terminals 2, 3, and 4 is calculated by the power supply dropout.
It is necessary to cover this by adjusting I dp and maintain the relationship expressed by equation (1) above. Therefore, since the second central controller 6 is directly connected to the power receiving end 2, it reduces the current setting value I dp of its own end to compensate for part of the power supply dropout, and commands the remaining adjustment to the terminals 3 and 4. do. Therefore, the unadjusted portion of the current setting value I dp is commanded to the second central control unit 6' via the transmission line 67. The second central control device 6' is connected to the sending end 3
Since the current setting value I dp of the power receiving end 4 is directly connected to the current setting value I dp of the power receiving end 4 , it commands an increase in the current setting value I dp of the power receiving end 4 or a reduction of the current setting value I dp of the power receiving end 4 via the transmission line 63 and responds to the command.

次に送電線74の故障の場合には直流開閉器
33,36の開放により、2つの2端子系統に
分離されるので、それぞれの組合せで前記した
(1)式の関係が成り立つように必要ならば各端子
の電流設定値Idpの変更を第2の中央制御装置
6,6′より指令する。
Next, in the case of a failure in the transmission line 74, the DC switches 33 and 36 are opened and the system is separated into two two-terminal systems, so each combination is as described above.
If necessary, the second central controller 6, 6' issues a command to change the current setting value I dp of each terminal so that the relationship in equation (1) holds true.

なお、第6図では簡単のために1極送電の場
合を示しているが、双極送電の場合の過負荷制
御は第4図の説明と同様に行ない得るものであ
る。
Although FIG. 6 shows the case of single-pole power transmission for simplicity, overload control in the case of bipolar power transmission can be performed in the same manner as described in FIG. 4.

(4) この他、本発明は上記し且つ図面に示す実施
例に限定されず、その要旨を変更しない範囲内
で種々変形して実施できるものである。
(4) In addition, the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with various modifications without changing the gist thereof.

以上述べたように本発明によれば、直流送電線
の各区間毎に直流開閉器を挿入してなる3端子以
上の直流多端子送電系統において、直流送電線の
分岐点に直流送電区間の開閉に伴なう各端子の電
流設定値の調整等を行なう中央制御装置を設けて
隣接端子に対し電流設定値等の必要最小限の情報
を高速度で伝送するようにしたので、伝送依存度
を比較的低くでき、システムの信頼性、制御保護
の高速性および伝送系コストの点で優れたものと
なし得る直流多端子送電系統の制御方式が提供で
きる。
As described above, according to the present invention, in a DC multi-terminal power transmission system with three or more terminals in which a DC switch is inserted in each section of a DC transmission line, switching of a DC transmission section is performed at a branch point of the DC transmission line. We installed a central control device that adjusts the current setting value of each terminal due to the current setting, and transmitted the minimum necessary information such as current setting value to adjacent terminals at high speed, reducing transmission dependence. It is possible to provide a control method for a DC multi-terminal power transmission system that can be made relatively low in cost and excellent in terms of system reliability, high speed control protection, and transmission system cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは2端子直流送電系統において、
送電端と受電端の電圧−電流特性を示す図、第2
図は直流多端子送電系統において各端子制御を中
央集中制御方式により行なう場合を説明するため
の概略図、第3図は本発明の一実施例を説明する
ための系統構成図、第4図は同実施例において、
第2の中央制御装置の機能を説明するための具体
例を詳細に示す構成図、第5図および第6図は本
発明をそれぞれ異なる直流多端子送電系統に適用
する場合の一例を説明するための系統構成図であ
る。 1〜4…端子、5…第1の中央制御装置、6,
6′…第2の中央制御装置、7…直流送電線、7
1〜79…各区間の直流送電線、10,20,3
0,40…端子制御装置、11,12,21,2
2,31,32,41…変換器、13〜18,2
3〜28,33〜38,43,331…直流開閉
器、51〜53,61〜63,67…伝送回線。
Figure 1 a and b show a two-terminal DC transmission system,
Diagram showing the voltage-current characteristics of the power transmitting end and power receiving end, 2nd
The figure is a schematic diagram for explaining the case where each terminal is controlled by a centralized control method in a DC multi-terminal power transmission system, Figure 3 is a system configuration diagram for explaining an embodiment of the present invention, and Figure 4 is a diagram for explaining the system configuration diagram for explaining an embodiment of the present invention. In the same example,
FIGS. 5 and 6 are block diagrams showing detailed examples of specific examples for explaining the functions of the second central control device, and are for explaining an example in which the present invention is applied to different DC multi-terminal power transmission systems. FIG. 1-4...terminal, 5...first central control device, 6,
6'...Second central control device, 7...DC power transmission line, 7
1 to 79...DC transmission lines in each section, 10, 20, 3
0, 40...Terminal control device, 11, 12, 21, 2
2, 31, 32, 41...Converter, 13-18, 2
3-28, 33-38, 43, 331...DC switch, 51-53, 61-63, 67...Transmission line.

Claims (1)

【特許請求の範囲】[Claims] 1 直流送電線の各区間毎に直流開閉器を挿入し
てなる3端子以上の直流多端子送電系統におい
て、通常の変換器起動、停止、定常運転時の各端
子の負荷変更、運転系統への端子の並列または解
列のような時間的に余裕のある情報を各端子に設
けられた端子制御装置に与える第1の中央制御装
置と、前記直流送電線の分岐点に設けられ前記第
1の中央制御装置から与えられる通常の電流設定
値と各直流送電区間の開、閉情報を入力して各直
流送電区間の開閉に伴なう各端子の電流設定値の
調整等を行なう中央制御機能を持たせた第2の中
央制御装置とを備え、前記直流送電区間の何れか
に故障が発生すると前記第2の中央制御装置によ
り各端子の変換器における電流設定値の協調をチ
エツクすると共に電流設定値の変更が必要な場合
には隣接端子の前記端子制御装置に対して直接電
流設定値を変更すべき指令を与え、また予定時間
内に前記故障が回復するとその電流設定値を元の
値に戻す指令を与えるようにしたことを特徴とす
る直流多端子送電系統の制御方式。
1. In a DC multi-terminal power transmission system with three or more terminals in which a DC switch is inserted in each section of a DC transmission line, normal converter start-up and stop, load changes at each terminal during steady operation, and changes to the operating system. a first central control device that provides timely information such as parallelization or uncoupling of terminals to a terminal control device provided at each terminal; and a first central control device provided at a branch point of the DC transmission line; A central control function that inputs the normal current setting value given from the central control device and the opening/closing information of each DC transmission section and adjusts the current setting value of each terminal as the DC transmission section opens and closes. If a failure occurs in any of the DC power transmission sections, the second central control device checks the coordination of current setting values in the converters of each terminal and adjusts the current settings. If the value needs to be changed, a command to change the current setting value is given directly to the terminal control device of the adjacent terminal, and if the failure is recovered within the scheduled time, the current setting value is returned to the original value. A control method for a DC multi-terminal power transmission system, characterized in that a command to return is given.
JP57010609A 1982-01-26 1982-01-26 Control system for dc multiterminal transmission system Granted JPS58130727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57010609A JPS58130727A (en) 1982-01-26 1982-01-26 Control system for dc multiterminal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57010609A JPS58130727A (en) 1982-01-26 1982-01-26 Control system for dc multiterminal transmission system

Publications (2)

Publication Number Publication Date
JPS58130727A JPS58130727A (en) 1983-08-04
JPH0332289B2 true JPH0332289B2 (en) 1991-05-10

Family

ID=11754978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57010609A Granted JPS58130727A (en) 1982-01-26 1982-01-26 Control system for dc multiterminal transmission system

Country Status (1)

Country Link
JP (1) JPS58130727A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112984A (en) * 2012-12-05 2014-06-19 Hitachi Ltd Dc power transmission control system
FR3055751B1 (en) * 2016-09-02 2018-09-21 Inst Supergrid METHOD FOR CONTROLLING AN INSTALLATION FOR CONTINUOUS CURRENT TRANSPORT INTO A NETWORK WHILE PROTECTING SUCH A NETWORK ABOUT A SHORT CIRCUIT FAULT

Also Published As

Publication number Publication date
JPS58130727A (en) 1983-08-04

Similar Documents

Publication Publication Date Title
US7117105B2 (en) Method and apparatus for ground fault protection
US6465910B2 (en) System for providing assured power to a critical load
CN100416972C (en) System for providing assured power to a critical load
EP0047501B1 (en) Multiterminal dc power transmission system
EP0822635A2 (en) Protection system for power receiving station
EP0129250B2 (en) Converter control system
JPH0332289B2 (en)
RU2692758C1 (en) Method of power supply control for industrial power district with sources of distributed generation at short-circuit on reserved section of substation buses
JP3169976B2 (en) Distribution line ground fault protection system
CN111431181A (en) Control method and device for spare power automatic switching in power system and spare power automatic switching of power system
JPH11289670A (en) Two-pole dc power transmission system
CN216625292U (en) Relay protection circuit for internal bridging transformer substation
JPH01180469A (en) Accident section detecting device for power transmission line
CN114977130A (en) Remote differential protection device of annular power supply and distribution system
JPS5818866B2 (en) Denryokukeito no Jikohakiyuuboshisouchi
SU1094099A2 (en) Method of emergency isolation of ac power transmission line at steady single-phase fault
JPH0746763A (en) Reactive power regulator
CN110752591A (en) Line system for realizing line self-healing
JPS6031172B2 (en) Interconnection line power interruption detection device
CN116031873A (en) Spare power automatic switching system and method for annular power supply of multi-section bus
JPH0247183B2 (en)
JPS6347052B2 (en)
JPH05336667A (en) Reverse charge preventive unit
JPS6355296B2 (en)
JPS6260896B2 (en)