JPH0331831B2 - - Google Patents

Info

Publication number
JPH0331831B2
JPH0331831B2 JP62025460A JP2546087A JPH0331831B2 JP H0331831 B2 JPH0331831 B2 JP H0331831B2 JP 62025460 A JP62025460 A JP 62025460A JP 2546087 A JP2546087 A JP 2546087A JP H0331831 B2 JPH0331831 B2 JP H0331831B2
Authority
JP
Japan
Prior art keywords
pitch
twisting
opgw
wire
irregularly shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62025460A
Other languages
Japanese (ja)
Other versions
JPS63196787A (en
Inventor
Hitoshi Kishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62025460A priority Critical patent/JPS63196787A/en
Publication of JPS63196787A publication Critical patent/JPS63196787A/en
Publication of JPH0331831B2 publication Critical patent/JPH0331831B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ropes Or Cables (AREA)
  • Wire Processing (AREA)
  • Communication Cables (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、光フアイバ複合架空地線(以下
OPGWという)等の撚線方法に関するものであ
る。 〔従来の技術〕 OPGWは、複数の光フアイバを備えた光フア
イバユニツト(OPユニツトともいう)のまわり
にアルミ覆鋼線等の素線を円筒状に撚り合わせて
構成されている。この際素線の撚り合わせによつ
て、内部の光フアイバユニツトを圧迫しないよう
に、断面を扇形にしたような異形素線が用いられ
る場合が多い。 しかしながら、このような異形素線を単に撚り
合わせると、素線の内部に鋼が入つているため大
きな応力を残留させたまま撚り合わせることにな
る。このため、撚り合わせた後に両端の張力を緩
めると、撚りが戻りばらけてしまうという問題を
生じる。 そこで、プレフオーム工程によつて異形素線に
予め螺旋状のねじりを付与し、撚り合わせの際応
力が残留するのを防止する方法が従来より採用さ
れている。この方法は、たとえば特開昭60−
154828〜154832号公報などに詳細に開示されてい
る。これらの方法のプレフオーム工程では、ねじ
りによる内部応力を除去するため、異形素線をボ
ビンに巻付けた状態で焼鈍等の歪除去処理を施し
ている。そして、このようにして内部応力を除去
した異形素線をプレフオームの際に形付けしたピ
ツチで撚り合わせOPGWを製造している。 〔発明が解決しようとする問題点〕 しかしながら、このような従来の方法でも、完
全に応力を除去して撚り合わせることは不可能で
あつた。これは、焼鈍等によつて完全に歪を除去
しようとすると、プレフオーム工程による螺旋状
のねじりの形状も失われてしまうからである。し
たがつて、従来の方法では、異形素線に幾分か応
力が残留しており、これを撚り合わせてOPGW
としたものは、架線中にその残留応力のため、
OPGWが回転し、内部に備えられた光フアイバ
の撚りが解かれたり、あるいはさらに撚りがかけ
られたりした。このため、光フアイバに圧縮や引
張等の力が加わり、光の伝送損失を大幅に低下し
たり、光フアイバが断線するという問題を生じ
た。 この発明の目的は、かかる問題の原因となる残
留応力をより少なくして撚り合わせることのでき
る異形素線の撚線方法を提供することにある。 〔問題点を解決するための手段〕 この発明の異形素線の撚線方法では、光フアイ
バユニツトのまわりに異形素線を撚り合わせる際
の撚り合わせピツチを、プレフオーム工程後異形
素線の両端を解放してほぼ歪のない状態とした際
に実現されるねじりのピツチとすることを特徴と
している。 〔作用〕 上述したように、焼鈍等の歪除去処理を施した
異形素線であつても幾分かの残留応力が存在して
いる。したがつて、プレフオーム工程後の異形素
線を一定の長さ取出し、両端を解放した状態にす
ると、残留応力の緩和のため、撚りが若干戻つた
状態となる。この状態において実現されるねじり
のピツチは、プレフオーム工程において形付けし
たピツチよりも、たとえば10〜20%程度大きなも
のとなる。したがつて、従来のようにプレフオー
ム工程で形付けしたピツチで、撚り合わせる場合
には、歪を残したままの状態で撚り合わせること
になる。これに対して、この発明では異形素線の
両端を解放してほぼ歪のない状態としたときのね
じりのピツチで撚り合わせるため、ほぼ残留歪の
ない状態で撚り合わせることができる。 〔実施例〕 実施例 1 第1図に示すような断面を有する引替型
OPGWを製造した。第1図において、1はOPケ
ーブル、2はアルミパイプ、3は異形素線として
の異形アルミ覆鋼線、6は光フアイバユニツトを
示す。OPGWの総断面積は55mm2であり、外径は
9.6mmであつた。またアルミパイプの径は5.0mmで
あり、異形アルミ覆鋼線は等価丸線径が3.23mmの
ものを6本用いていた。 撚り合わせ工程について説明すると、まず異形
アルミ覆鋼線を、特開昭60−154832号公報に開示
されたプレフオーム工程の方法で、形付けした。
この際、プレフオーム工程で形付けしたねじれの
ピツチ(以下プレフオームピツチという)を測定
し、次いで異形素線を切断して部分的に取出し、
その両端を解放してほぼ歪のない状態に保ち、そ
のときに実現されるねじりのピツチ(以下フリー
ピツチという)を測定した。プレフオームピツチ
は136mmであり、フリーピツチは157mmであつた。 次に上記公報に開示された撚線方法で、光フア
イバユニツトのまわりに、撚り合わせのピツチが
フリーピツチと同じ157mmとなるようにして撚線
した。このようにして得られたOPGWを架線し、
架線後に生じる応力緩和のための撚線回転を測定
した。撚線回転は、1回の回転がOPGWのどれ
だけの長さにわたつているかを測定し評価した。
結果を第1表に示す。 実施例 2 実施例1と同様に第1図に示す引替型OPGW
を製造した。OPGWの総断面積は70mm2であり、
その外径は10.6mmであつた。アルミパイプとして
は直径が5.0mmのものを用い、異形アルミ覆鋼線
は等価丸線径が3.64mmのものを6本用いた。 実施例1と同様にしてプレフオームピツチおよ
びフリーピツチを測定した。プレフオームピツチ
は136mmであり、フリーピツチは157mmであつた。
次に撚り合わせのピツチがフリーピツチと同じ
157mmとなるようにして撚り合わせOPGWを製造
した。このOPGWを架線し、架線後の撚線回転
を測定して、その結果を第1表に示した。 実施例 3 第2図に示すような難着雪型OPGWを製造し
た。第2図において、4はスペーサ、5は光フア
イバ、6は光フアイバユニツト、7はアルミパイ
プ、8は異形アルミ覆鋼線を示す。OPGWの総
断面積は90mm2であり、その外径は12.7mmであつ
た。アルミパイプはその直径が6.5mmのものを用
い、異形アルミ覆鋼線は、等価丸線径が3.57mmの
ものを8本と等価丸線径が3.95mmのものを1本用
いた。 実施例1と同様にしてプレフオームし、プレフ
オームピツチおよびフリーピツチを測定した。プ
レフオームピツチは175mmであり、フリーピツチ
は195mmであつた。 実施例1と同様に、撚り合わせのピツチをフリ
ーピツチと同じ195mmとなるようにして撚り合わ
せOPGWを製造した。このOPGWを架線し、架
線後の撚線回転を測定して、第1表に合わせて示
した。 比較例 1 実施例1において撚り合わせピツチをプレフオ
ームピツチと同じ136mmとして撚り合わせ、それ
以外は実施例1と同様にしてOPGWを製造した。
得られたOPGWについて撚線回転を測定し、第
1表に併せて示した。 比較例 2 実施例2において撚り合わせのピツチをプレフ
オームピツチと同じ136mmとして撚り合わせ
OPGWを製造した。得られたOPGWについて、
撚線回転を測定し、第1表に合わせて示した。 比較例 3 実施例3において撚り合わせのピツチをプレフ
オームピツチと同じ175mmとして撚り合わせ、
OPGWを製造した。得られたOPGWについて撚
線回転を測定し、第1表に合わせて示した。
[Industrial Application Field] This invention is directed to optical fiber composite overhead ground wires (hereinafter referred to as
This relates to the twisted wire method such as OPGW). [Prior Art] An OPGW is constructed by twisting wires such as aluminum-covered steel wires into a cylindrical shape around an optical fiber unit (also referred to as an OP unit) that includes a plurality of optical fibers. At this time, irregularly shaped wires with fan-shaped cross sections are often used so as not to put pressure on the internal optical fiber unit by twisting the wires together. However, if such irregularly shaped strands are simply twisted together, since steel is contained inside the strands, the strands will be twisted together with a large residual stress. For this reason, if the tension at both ends is loosened after twisting, a problem arises in that the twist returns and unravels. Therefore, a method has conventionally been adopted in which the irregularly shaped wires are given a helical twist in advance through a preform process to prevent stress from remaining during twisting. This method is used, for example, in JP-A-60-
It is disclosed in detail in publications such as Nos. 154828 to 154832. In the preform process of these methods, in order to remove internal stress due to twisting, the deformed wire is wound around a bobbin and subjected to strain removal treatment such as annealing. Then, the irregularly shaped wires with internal stress removed in this way are twisted together at the pitches shaped during preforming to manufacture OPGW. [Problems to be Solved by the Invention] However, even with such conventional methods, it has been impossible to completely remove stress and twist. This is because if an attempt is made to completely remove the strain by annealing or the like, the spirally twisted shape created by the preform process will also be lost. Therefore, in the conventional method, some stress remains in the irregularly shaped wires, which are twisted together to form OPGW.
Due to the residual stress in the overhead wire,
As the OPGW rotated, the optical fibers inside were untwisted or further twisted. For this reason, forces such as compression and tension are applied to the optical fiber, resulting in problems such as a significant reduction in optical transmission loss and breakage of the optical fiber. An object of the present invention is to provide a method for twisting irregularly shaped strands that can be twisted while minimizing the residual stress that causes such problems. [Means for Solving the Problems] In the method for twisting irregularly shaped wires of the present invention, the twisting pitch when twisting irregularly shaped wires around an optical fiber unit is changed so that both ends of the irregularly shaped wires are adjusted after the preform process. It is characterized by the pitch of the twist that is achieved when it is released into a state with almost no distortion. [Function] As described above, even a deformed wire that has been subjected to strain removal treatment such as annealing still has some residual stress. Therefore, when a certain length of the deformed wire is taken out after the preform process and both ends are left open, the twist will be slightly untwisted due to the relaxation of the residual stress. The twist pitch achieved in this state is, for example, about 10 to 20% larger than the pitch formed in the preform process. Therefore, when twisting together the pitches formed in the preform process as in the past, the twisting is done with the distortion remaining. On the other hand, in the present invention, since both ends of the deformed wires are released and twisted at the twist pitch that would be in a state with almost no strain, the wires can be twisted with almost no residual strain. [Example] Example 1 Replaceable mold having a cross section as shown in Fig. 1
Manufactured OPGW. In FIG. 1, 1 is an OP cable, 2 is an aluminum pipe, 3 is a deformed aluminum-covered steel wire as a deformed wire, and 6 is an optical fiber unit. The total cross-sectional area of OPGW is 55mm2 , and the outer diameter is
It was 9.6mm. The diameter of the aluminum pipe was 5.0 mm, and six deformed aluminum covered steel wires with an equivalent round wire diameter of 3.23 mm were used. To explain the twisting process, first, deformed aluminum-covered steel wires were shaped using the preform process method disclosed in JP-A-60-154832.
At this time, the pitch of the twist shaped in the preform process (hereinafter referred to as preform pitch) is measured, and then the irregularly shaped wire is cut and partially taken out.
Both ends were kept open to maintain an almost distortion-free state, and the pitch of twist achieved at that time (hereinafter referred to as free pitch) was measured. The preform pitch was 136mm and the free pitch was 157mm. Next, using the twisting method disclosed in the above publication, the wires were twisted around the optical fiber unit so that the twisting pitch was 157 mm, the same as the free pitch. The OPGW obtained in this way is wired,
The rotation of the stranded wire was measured to relieve the stress that occurs after the overhead wire is installed. The twisted wire rotation was evaluated by measuring the length of the OPGW covered by one rotation.
The results are shown in Table 1. Example 2 Same as Example 1, exchange type OPGW shown in FIG.
was manufactured. The total cross-sectional area of OPGW is 70mm2 ,
Its outer diameter was 10.6 mm. The aluminum pipe used was one with a diameter of 5.0 mm, and the six irregular-shaped aluminum covered steel wires with an equivalent round wire diameter of 3.64 mm were used. Preform pitch and free pitch were measured in the same manner as in Example 1. The preform pitch was 136mm and the free pitch was 157mm.
Next, the twisting pitch is the same as the free pitch.
A twisted OPGW was produced with a length of 157 mm. This OPGW was connected to an overhead wire, and the rotation of the stranded wire after the overhead wiring was measured, and the results are shown in Table 1. Example 3 A snow-resistant OPGW as shown in FIG. 2 was manufactured. In FIG. 2, 4 is a spacer, 5 is an optical fiber, 6 is an optical fiber unit, 7 is an aluminum pipe, and 8 is a deformed aluminum-covered steel wire. The total cross-sectional area of the OPGW was 90 mm 2 and its outer diameter was 12.7 mm. The aluminum pipes used had a diameter of 6.5 mm, and the deformed aluminum clad steel wires used were eight pieces with an equivalent round wire diameter of 3.57 mm and one piece with an equivalent round wire diameter of 3.95 mm. It was preformed in the same manner as in Example 1, and the preform pitch and free pitch were measured. The preform pitch was 175mm and the free pitch was 195mm. In the same manner as in Example 1, a twisted OPGW was produced by setting the twisted pitch to 195 mm, which is the same as the free pitch. This OPGW was connected to an overhead wire, and the rotation of the stranded wire after the overhead wiring was measured, and the results are shown in Table 1. Comparative Example 1 OPGW was produced in the same manner as in Example 1, except that the twisting pitch in Example 1 was 136 mm, which is the same as the preform pitch.
The twisted wire rotation of the obtained OPGW was measured and is also shown in Table 1. Comparative Example 2 In Example 2, the twisting pitch was set to 136mm, the same as the preform pitch.
Manufactured OPGW. Regarding the obtained OPGW,
The twisted wire rotation was measured and shown in Table 1. Comparative Example 3 In Example 3, the twisting pitch was set to 175 mm, the same as the preform pitch, and
Manufactured OPGW. The twisted wire rotation of the obtained OPGW was measured and shown in Table 1.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の撚線方法によ
れば、内部応力を極力少なくして異形素線を光フ
アイバユニツトのまわりに撚り合わせることがで
きる。したがつて、架線後の撚線の回転を従来よ
りも著しく少なくすることができ、また撚りの戻
り等による従来からの架線の際の問題を解消する
ことができる。
As explained above, according to the wire twisting method of the present invention, irregularly shaped strands can be twisted around an optical fiber unit while minimizing internal stress. Therefore, the rotation of the stranded wire after the overhead wire has been completed can be significantly reduced compared to the conventional method, and the conventional problems caused by untwisting of the overhead wire can be solved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例において製造した引替型の
OPGWを示す断面図である。第2図は、実施例
において製造した難着雪型OPGWを示す断面図
である。 図において、1はOPケーブル、2はアルミパ
イプ、3は異形アルミ覆鋼線、4はスペーサ、5
は光フアイバ、6は光フアイバユニツト、7はア
ルミパイプ、8は異形アルミ覆鋼線を示す。
Figure 1 shows the exchange type manufactured in the example.
FIG. 3 is a cross-sectional view showing the OPGW. FIG. 2 is a sectional view showing the anti-snow accretion type OPGW manufactured in the example. In the figure, 1 is OP cable, 2 is aluminum pipe, 3 is deformed aluminum covered steel wire, 4 is spacer, 5 is
6 is an optical fiber, 6 is an optical fiber unit, 7 is an aluminum pipe, and 8 is a deformed aluminum-covered steel wire.

Claims (1)

【特許請求の範囲】 1 プレフオーム工程によつて予め螺旋状のねじ
りが付与された複数本の異形素線を所定のピツチ
で光フアイバユニツトのまわりに撚り合わせる異
形素線の撚線方法において、 前記撚り合わせのピツチを、プレフオーム工程
後異形素線の両端を解放してほぼ歪のない状態と
した際に実現されるねじりのピツチとすることを
特徴とする、異形素線の撚線方法。
[Scope of Claims] 1. A method for twisting irregularly shaped wires, which comprises twisting a plurality of irregularly shaped wires, which have been given a spiral twist in advance through a preform process, around an optical fiber unit at a predetermined pitch, comprising: A method for twisting irregularly shaped strands, characterized in that the twisting pitch is set to the twist pitch achieved when both ends of the irregularly shaped strands are released after the preforming process to create a state with almost no distortion.
JP62025460A 1987-02-05 1987-02-05 Method for twisting profile base wire Granted JPS63196787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62025460A JPS63196787A (en) 1987-02-05 1987-02-05 Method for twisting profile base wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62025460A JPS63196787A (en) 1987-02-05 1987-02-05 Method for twisting profile base wire

Publications (2)

Publication Number Publication Date
JPS63196787A JPS63196787A (en) 1988-08-15
JPH0331831B2 true JPH0331831B2 (en) 1991-05-08

Family

ID=12166642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62025460A Granted JPS63196787A (en) 1987-02-05 1987-02-05 Method for twisting profile base wire

Country Status (1)

Country Link
JP (1) JPS63196787A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090205741A1 (en) * 2007-01-10 2009-08-20 Sumitomo (Sei) Steel Wire Corp. Connection method of metal linear element and connection device of metal linear element
JP2015041541A (en) * 2013-08-22 2015-03-02 中国電力株式会社 Optical ground wire and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581238A (en) * 1981-06-26 1983-01-06 Fujitsu Ltd Document forming device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581238A (en) * 1981-06-26 1983-01-06 Fujitsu Ltd Document forming device

Also Published As

Publication number Publication date
JPS63196787A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
US4947636A (en) Metal wire cord for elastomer reinforcement
RU2151227C1 (en) Steel cord manufacture method and apparatus
RU98107841A (en) METHOD FOR PRODUCING STEEL CORD AND STEEL CORD MANUFACTURED BY THIS METHOD
KR100412924B1 (en) Wire filaments for reinforcing rubber or plastic articles and methods and apparatus for their manufacture.
JPH0377313B2 (en)
JPH1061723A (en) Steel chord for reinforcing timing belt or transmitting belt
US4604860A (en) Method for stranding profile strands
US4464892A (en) Metallic cable for reinforcing elastomeric articles
JPH0331831B2 (en)
US3295311A (en) Dead end and method of making the same
EP0040877A1 (en) Metal wire cord having strands with parallel filaments
JPH0411465B2 (en)
JPS6366959B2 (en)
JPH0127802B2 (en)
JP3231064B2 (en) How to connect FRP striatum
CN214168560U (en) Special wire rope for electrified high-speed railway
JP2526209B2 (en) Optical fiber composite overhead ground wire manufacturing method
JPH01148887A (en) Steel cord
JPH10129211A (en) Manufacture of steel chord excellent in corrosion and fatigue resistance
JPH02170313A (en) Manufacture of compressed stranded cable
JPS6234110A (en) Manufacture of optical fiber composite electric wire
RU2243053C1 (en) Method for making double-layer twisted wire articles
JPH1018189A (en) Twisted metal fiber yarn and its production
JPS6012724B2 (en) Manufacturing method of composite cable
SU1180426A2 (en) Rope with triple-edge strains