JPH0331705A - Method for measuring film thickness in optical system - Google Patents

Method for measuring film thickness in optical system

Info

Publication number
JPH0331705A
JPH0331705A JP1167546A JP16754689A JPH0331705A JP H0331705 A JPH0331705 A JP H0331705A JP 1167546 A JP1167546 A JP 1167546A JP 16754689 A JP16754689 A JP 16754689A JP H0331705 A JPH0331705 A JP H0331705A
Authority
JP
Japan
Prior art keywords
film thickness
measurement
thin film
measured
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1167546A
Other languages
Japanese (ja)
Other versions
JPH083406B2 (en
Inventor
Chiaki Horii
堀井 千秋
Shiro Kimura
木村 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1167546A priority Critical patent/JPH083406B2/en
Publication of JPH0331705A publication Critical patent/JPH0331705A/en
Publication of JPH083406B2 publication Critical patent/JPH083406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve the accuracy of measurement by using parallel beams when the film thickness of a thin film is measured by means of an optical system film thickness measuring instrument utilizing interference stripes and using concentrated beams obtd. from high magnification of an objective lens to the thin film for the measurement of references. CONSTITUTION:A photosensitive thin film is formed by applying organic high conductor to an aluminium element tube and the film thickness is measured from the interference stripes of spectral reflection spectra by the optical system film thickness measuring instrument using parallel beams. In the measurement of references, the photosensitive thin film itself is measured by an objective lens of 50-magnification, and in the measurement of the film thickness, the wavelength area is divided into three areas and the film thickness values of respective areas are measured by the objective lens of 5-magnification. Consequently, a spectral reflection spectrum generated at the time of using the reference as the base of the thin film can be prevented from generating a peak shifting phenomenon, the difference between the film thickness values due to the difference of the wavelengths and that of measuring positions of the references can be reduced, a more stable value is obtained and the measuring accuracy can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学系における膜厚測定方法に関し、特に反射
干渉を利用した薄膜の膜厚測定を行う光学系における膜
厚測定に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring film thickness in an optical system, and more particularly to a method for measuring film thickness in an optical system that uses reflection interference to measure the thickness of a thin film.

〔従来の技術〕[Conventional technology]

従来、反射干渉を利用した光学系膜厚測定装置を用いて
の薄膜の膜厚測定においては、リファレンスの測定の際
に、薄膜下の基板をリファレンスとし、低倍率の平行光
で測定している。従って、分光反射スペクトルの干渉縞
はピークシフトを起こすが、膜厚値計算にはこのピーク
シフトの影響を無視して行っている。
Conventionally, when measuring the thickness of a thin film using an optical film thickness measurement device that uses reflective interference, the reference measurement is performed using parallel light at low magnification, using the substrate under the thin film as a reference. . Therefore, although the interference fringes of the spectral reflection spectrum undergo a peak shift, the effect of this peak shift is ignored in calculating the film thickness value.

第3図はかかる従来の一例を説明するための薄膜膜厚測
定の分光反射スペクトル図である。
FIG. 3 is a spectral reflection spectrum diagram for thin film thickness measurement to explain an example of such a conventional method.

第3図に示すように、従来の膜厚測定は被測定物である
感光体薄膜下のアルミ基板をリファレンスとして対物レ
ンズ5倍で測定し、二個所の膜厚測定点およびそれぞれ
三種類の波長領域で対物レンズ5倍で膜厚測定を行なっ
ている。この測定結果は第1表に示すとおりであり、(
a) 、 (b)は二個所の膜厚測定点、また■および
■はリファレンス測定の際のアルミ基板の二個所の位置
である。更に、第1表中、1■−■1はリファレンス測
定位置の相違による膜厚値の差を示し、またdmax−
dminは三種類の波長領域中の膜厚値の最高値と最低
値の差をそれぞれ示す。
As shown in Figure 3, in conventional film thickness measurement, the aluminum substrate under the photoreceptor thin film, which is the object to be measured, is used as a reference and measured with a 5x objective lens. The film thickness was measured using a 5x objective lens. The measurement results are shown in Table 1, and (
a) and (b) are two film thickness measurement points, and ■ and ■ are two positions on the aluminum substrate at the time of reference measurement. Furthermore, in Table 1, 1■-■1 indicates the difference in the film thickness value due to the difference in the reference measurement position, and dmax-
dmin indicates the difference between the highest and lowest film thickness values in three wavelength ranges.

第1表において、リファレンス測定位置の相違による膜
厚値の差1■−■1及び三種類の波長領域中の膜厚値の
最高値と最低値の差dmax−dminは、各々ばらつ
きが大きく、絶対値も大きい。また、波長の相違による
膜厚値のばらつきも大きく、リファレンスをどこにとっ
ても膜厚値の変化が大きい。
In Table 1, the difference in film thickness values 1■-■1 due to differences in reference measurement positions and the difference dmax-dmin between the maximum and minimum film thickness values in the three wavelength ranges each have large variations. The absolute value is also large. Further, there is a large variation in the film thickness value due to the difference in wavelength, and the film thickness value changes greatly no matter where the reference is set.

以上のことは、第3図においてピークシフトが生じてい
るためであり、従来はこのピークシフトの影響を無視し
て膜厚値を測定している。
The reason for the above is that a peak shift occurs in FIG. 3, and conventionally, the film thickness value is measured while ignoring the influence of this peak shift.

第4図は従来の他の例を説明するための薄膜膜厚測定の
分光反射スペクトル図である。
FIG. 4 is a spectral reflection spectrum diagram for thin film thickness measurement to explain another conventional example.

第4図に示すように、かかる膜厚測定は前述した被測定
物とは異なる別の被測定物を用いた場合の薄膜膜厚測定
であり、前述した測定条件と同一条件で行なうとともに
、リファレンスにアルミ基板を用いて行なったケースで
あるにの測定結果は第2表に示すとおりである。すなわ
ち、波長の相違による膜厚値の変化も大きく、薄膜自体
のどこをリファレンスとするかで膜厚値の変化が大きい
ことが理解される。
As shown in FIG. 4, this film thickness measurement is a thin film thickness measurement using a different object to be measured than the above-mentioned object, and is carried out under the same conditions as the above-mentioned measurement conditions. Table 2 shows the measurement results for the case in which an aluminum substrate was used. In other words, it is understood that the change in film thickness value is large due to a difference in wavelength, and that the change in film thickness value is large depending on where in the thin film itself is used as a reference.

以上のことは、第4図において第3図と同様のピークシ
フトが生じているためである。
The above is because a peak shift similar to that in FIG. 3 occurs in FIG. 4.

第  1  表 〔発明が解決しようとする課題〕 上述した従来の薄膜の膜厚測定方法は、リファレンスの
測定に薄膜下の基板を平行光で測定しているため、膜厚
測定における干渉縞がピークシフトを起こしてしまって
いるので、波長領域によって膜厚値の差が大きくなり、
測定誤差を大きくするという欠点がある。
Table 1 [Problems to be Solved by the Invention] In the conventional thin film thickness measurement method described above, the substrate under the thin film is measured with parallel light for reference measurement, so interference fringes in film thickness measurement peak. Since this has caused a shift, the difference in film thickness values depending on the wavelength range becomes large.
This method has the disadvantage of increasing measurement errors.

本発明の目的は、かかる干渉縞のピークシフトを防止し
、波長領域による膜厚値の差を小さくし、測定精度を向
上をさせることのできる光学系における膜厚測定方法を
提供することにある。
An object of the present invention is to provide a method for measuring film thickness in an optical system that can prevent such a peak shift of interference fringes, reduce differences in film thickness values depending on wavelength range, and improve measurement accuracy. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光学系における膜厚測定方法は、光学系膜厚測
定装置を用い干渉縞を利用して薄膜の膜厚測定を行うに
あたり、リファレンスの測定には薄膜自体を対物レンズ
の高倍率とした集中光を用いて測定する一方、膜厚測定
には平行光を用いて測定するように構成される。
The film thickness measurement method in the optical system of the present invention uses an optical system film thickness measurement device to measure the film thickness of a thin film using interference fringes, and the thin film itself is used as a reference measurement with a high magnification of the objective lens. While the measurement is performed using concentrated light, the film thickness is also configured to be measured using parallel light.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第一の実施例を説明するための薄膜膜
厚測定の分光反射スペクトル図である。
FIG. 1 is a spectral reflection spectrum diagram for thin film thickness measurement for explaining the first embodiment of the present invention.

第1図に示すように、本実施例は第3図および第1表で
説明した被測定物と同様に有機光導電体をアルミ素管に
塗布した感光体薄膜とし、光学系膜厚測定装置は周知の
測定装置を用いている。
As shown in FIG. 1, this example uses a photoreceptor thin film coated with an organic photoconductor on an aluminum tube, similar to the object to be measured explained in FIG. 3 and Table 1, and an optical film thickness measuring device. uses a well-known measuring device.

まず、膜厚計算方法は光学系膜厚測定装置により得られ
た分光反射スペクトルの干渉縞から次の(1)式を用い
て求める。
First, the film thickness is calculated using the following equation (1) from the interference fringes of the spectral reflection spectrum obtained by an optical film thickness measuring device.

但し、dは膜厚値、Nは分光反射スペクトルの明暗の縞
の数、nは薄膜の屈折率、λは波長をそ九ぞれ表わす。
Here, d is the film thickness value, N is the number of bright and dark stripes in the spectral reflection spectrum, n is the refractive index of the thin film, and λ is the wavelength.

次に、測定条件として、リファレンスの測定は前記被測
定物の感光体薄膜自体を対物レンズ50倍で測定し、ま
た、膜厚測定は対物レンズ5倍で測定する。一方、波長
λの領域(λmin〜λnax)は三種類とし、すなわ
ち640 (nm)〜720 (nm)。
Next, as measurement conditions, the reference measurement is performed by measuring the photoreceptor thin film itself of the object to be measured using a 50x objective lens, and the film thickness is measured using a 5x objective lens. On the other hand, there are three wavelength ranges (λmin to λnax), namely 640 (nm) to 720 (nm).

650(nm)〜730Cntn)、  660(nm
)〜740(nm)とし、各々の波長領域で膜厚値を求
める。膜厚測定点は二個所であり、これは測定結果を示
す第3表の(a)および(b)に相当する。また、リフ
ァレンス測定点も二個所であり、これは第3表の■およ
び■に相当する。
650 (nm) ~ 730 Cntn), 660 (nm)
) to 740 (nm), and the film thickness value is determined in each wavelength region. There were two film thickness measurement points, which correspond to (a) and (b) in Table 3 showing the measurement results. There are also two reference measurement points, which correspond to ■ and ■ in Table 3.

かかる薄膜膜厚測定の結果、第1表にはリファレンス測
定位置の相違による膜厚値の差1■−■1および三種類
の波長領域中における膜厚値の最高値と最低値の差dm
ax−dminを示している。
As a result of such thin film thickness measurement, Table 1 shows the difference in film thickness value 1■-■1 due to the difference in the reference measurement position and the difference dm between the highest and lowest film thickness values in three types of wavelength ranges.
ax-dmin is shown.

この第3表の結果を前述した第1表の結果と比較すると
、本実施例ではリファレンス測定位置の相違による膜厚
値の差1■−■1及び三種類の波長領域中における膜厚
値の最高値と最低値の差dmax−dminを共に小さ
くすることができる。また、波長の相違による膜厚値の
ばらつきも小さく且つリファレンスをどこにとっても膜
厚値の変化を小さくできるので、−層安定し測定精度を
向上させることができる。
Comparing the results in Table 3 with the results in Table 1 above, we find that in this example, the difference in film thickness values due to the difference in the reference measurement position is 1■-■1, and the difference in film thickness values in the three types of wavelength regions. Both the difference dmax-dmin between the highest value and the lowest value can be reduced. In addition, variations in film thickness values due to differences in wavelength are small, and changes in film thickness values can be made small no matter where the reference is set, so that -layer stability can be achieved and measurement accuracy can be improved.

以上のことは、第1図において、ピークシフトが現われ
ていないためである。
The reason for the above is that no peak shift appears in FIG.

第2図は本発明の第二の実施例を説明するための薄膜膜
圧測定の分光反射スペクトル図である。
FIG. 2 is a spectral reflection spectrum diagram of thin film thickness measurement for explaining a second embodiment of the present invention.

第2図に示すように、本実施例は前述した第一の実施例
の被測定物とは異なる有機光導電体をアルミ素管に塗布
した感光体薄膜を被測定物とし、しかも前述した第一の
実施例と同一条件で被測定物の感光体薄膜自体をリファ
レンスとして膜厚測定を行なうものである。本実施例は
前述した従来の第4図および第2表に対応したものであ
り、その測定結果は第4表に示している。尚、(a)、
(b)および■、■は前述した第一の実施例と同様であ
る。
As shown in FIG. 2, in this example, the object to be measured was a photoreceptor thin film obtained by coating an aluminum tube with an organic photoconductor that was different from the object to be measured in the first example. The film thickness is measured using the photoreceptor thin film itself of the object to be measured as a reference under the same conditions as in the first embodiment. The present example corresponds to the above-mentioned conventional FIG. 4 and Table 2, and the measurement results are shown in Table 4. Furthermore, (a),
(b), ■, and ■ are the same as in the first embodiment described above.

この第4表の結果を前述した第2表の結果と比較すると
第一の実施例と同様に本実施例も波長の相違による膜厚
値の変化が小さく、薄膜自体のどこをリファレンスとし
ても膜厚値の変化かはとんどなく、−層安定した高精度
の薄膜膜厚測定を行うことができる。
Comparing the results in Table 4 with the results in Table 2 above, it is found that, similar to the first example, this example also shows that the change in film thickness due to the difference in wavelength is small. It is possible to measure the thickness of a thin film with high accuracy and stability, without causing any changes in the thickness value.

以上のことは第2図において、ピークシフトが現われて
いないことからも理解される。
The above can also be understood from the fact that no peak shift appears in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光学系における膜厚測定
方法は、光学系膜厚測定装置を用いて薄膜の膜厚測定を
行う際、リファレンスを被測定物の薄膜自体とし対物レ
ンズの高倍率で測定することにより、リファレンスを薄
膜下の基板としだ時に生ずる分光反射スペクトルの干渉
縞がピークシフトしてしまう現像を防止し、波長領域の
相違およびリファレンスの測定位置の相違による膜厚値
の差を小さくするとともに、より安定した値を得て測定
精度を高めることができるという効果がある。
As explained above, in the method for measuring film thickness in an optical system of the present invention, when measuring the film thickness of a thin film using an optical film thickness measuring device, the reference is the thin film itself of the object to be measured, and the high magnification of the objective lens is used. By measuring with , it is possible to prevent the peak shift of interference fringes in the spectral reflection spectrum that occurs when the reference is taken from the substrate under the thin film, and to prevent differences in film thickness values due to differences in wavelength range and reference measurement position. This has the effect of making it smaller, obtaining more stable values, and increasing measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例を説明するための薄膜膜
厚測定の分光反射スペクトル図、第2図は本発明の第二
の実施例を説明するための薄膜膜厚測定の分光反射スペ
クトル図、第3図および第4図はそれぞれ従来の一例お
よび他の例を説明するための薄膜膜厚測定の分光反射ス
ペクトル図である。
Fig. 1 is a spectral reflection spectrum diagram for thin film thickness measurement to explain the first embodiment of the present invention, and Fig. 2 is a spectral reflection spectrum diagram for thin film thickness measurement to explain the second embodiment of the present invention. Reflection spectrum diagrams, FIGS. 3 and 4 are spectral reflection spectrum diagrams of thin film thickness measurement for explaining one conventional example and another example, respectively.

Claims (1)

【特許請求の範囲】[Claims] 光学系膜厚測定装置を用い干渉縞を利用して薄膜の膜厚
測定を行うにあたり、リファレンスの測定には薄膜自体
を対物レンズの高倍率とした集中光を用いて測定する一
方、膜厚測定には平行光を用いて測定することを特徴と
する光学系における膜厚測定方法。
When measuring the thickness of a thin film using interference fringes using an optical film thickness measurement device, the reference measurement uses focused light with a high magnification of the objective lens to measure the thin film itself. A method for measuring film thickness in an optical system, characterized in that measurement is performed using parallel light.
JP1167546A 1989-06-28 1989-06-28 Film thickness measurement method in optical system Expired - Fee Related JPH083406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167546A JPH083406B2 (en) 1989-06-28 1989-06-28 Film thickness measurement method in optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167546A JPH083406B2 (en) 1989-06-28 1989-06-28 Film thickness measurement method in optical system

Publications (2)

Publication Number Publication Date
JPH0331705A true JPH0331705A (en) 1991-02-12
JPH083406B2 JPH083406B2 (en) 1996-01-17

Family

ID=15851720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167546A Expired - Fee Related JPH083406B2 (en) 1989-06-28 1989-06-28 Film thickness measurement method in optical system

Country Status (1)

Country Link
JP (1) JPH083406B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033289A (en) * 2020-08-31 2020-12-04 国网陕西省电力公司电力科学研究院 Photosensitive measuring rod device and method for measuring slope descending height

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033289A (en) * 2020-08-31 2020-12-04 国网陕西省电力公司电力科学研究院 Photosensitive measuring rod device and method for measuring slope descending height

Also Published As

Publication number Publication date
JPH083406B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
KR100916618B1 (en) Method for measuring thickness profile of thin-film layers by dispersive white-light interferometry based on spectroscopic reflectometry
US20060140538A1 (en) Surface reflection type phase grating
JP2779102B2 (en) Multi-wavelength interferometer
EP0747666B1 (en) Method and apparatus for characterising multilayer thin film systems and for measuring the distance between two surfaces in the presence of thin films
US20070109556A1 (en) Methods and Apparatus for Reducing Error in Interferometric Imaging Measurements
US8625075B2 (en) System and methods related to generating electromagnetic radiation interference patterns
JP2002333371A (en) Wavemeter
JPH09133517A (en) Distribution measuring device
JPH0331705A (en) Method for measuring film thickness in optical system
JPS6271804A (en) Film thickness measuring instrument
Matsui et al. Fringe-scanning white-light microscope for surface profile measurement and material identification
US8139215B2 (en) Method for measuring polarization characteristics and measurement apparatus
JP3808192B2 (en) Movement amount measuring apparatus and movement amount measuring method
JP3864719B2 (en) Film thickness measuring method and film thickness measuring apparatus
KR20160037483A (en) Measuring method of surface of specimen and measurement apparatus of surface of specimen
CN213932397U (en) Double-light-source white light interferometer
CN111536883B (en) Micro-displacement sensor based on combined type grating
JPH11237209A (en) High sensitivity space-positioning method
TW201420993A (en) Multi-function measurement system for thin film elements
KR100525808B1 (en) Method for measuring the focus of photo equipment
JPS58120104A (en) Optical measuring method of thickness of transparent plate
JPS61246607A (en) Measuring method for film thickness
JPH10254124A (en) Method for inspecting phase shift mask and device therefor
JP3221748B2 (en) Encoder
JPS6398608A (en) Manufacture of diffraction grating

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees