JPH0331575B2 - - Google Patents

Info

Publication number
JPH0331575B2
JPH0331575B2 JP56165603A JP16560381A JPH0331575B2 JP H0331575 B2 JPH0331575 B2 JP H0331575B2 JP 56165603 A JP56165603 A JP 56165603A JP 16560381 A JP16560381 A JP 16560381A JP H0331575 B2 JPH0331575 B2 JP H0331575B2
Authority
JP
Japan
Prior art keywords
film
heat
laminated
thermoplastic resin
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56165603A
Other languages
Japanese (ja)
Other versions
JPS5867442A (en
Inventor
Toshio Nishihara
Akira Shingu
Masao Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP56165603A priority Critical patent/JPS5867442A/en
Priority to EP19820305523 priority patent/EP0077672B1/en
Priority to DE8282305523T priority patent/DE3271844D1/en
Priority to US06/435,184 priority patent/US4465736A/en
Publication of JPS5867442A publication Critical patent/JPS5867442A/en
Publication of JPH0331575B2 publication Critical patent/JPH0331575B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、積層体に関し、特に透明なフイルム
を二枚の透明板の間に介在させてなる外観良好な
合せ窓に適用するのに好適な積層体に関し、更に
はフイルムに機能性をもたせることにより新たな
機能が付与された合せ窓を得るのに適した積層体
に関する。 安全性が要求される透明な開口部、例えば自動
車、電車、飛行機等の窓、あるいは建物窓の一部
には合せガラス窓が用いられている。合せ窓の基
本構成は、ガスラ板等の透明体で熱可塑性樹脂層
を挟んだものであるが、合せ窓に更に機能性を付
与する目的からフイルムを更に介在させることが
なされている。例えば、飛散防止効果のために透
明な機械的強度に優れたフイルムを介在させる方
法、結露防止効果のため透明な導電膜フイルムを
介在させる方法、あるいは可視光線は通すが近赤
外線は通しにくいという光選択透過性機能をもつ
たフイルムを介在させたりする方法が提案されて
いる。 しかしながら、フイルムを介在した合せ窓で外
観良好なものはフイルムの膜厚が約130μm以上
のものを用いないと得られなかつた。 フイルムの膜厚を薄くしていくと、合せ窓の透
視性は良好であるが、合せ窓の表面からの反射像
を見た時、像に細かな凹凸が生じ像自体が歪んで
見えるため実用には供し得ないものであつた。 一方、一般にフイルムの表面に機能性をもたせ
るためにフイルムの表面に薄膜加工を施す方法が
あるが、この薄膜加工は真空容器内でなされる事
が多く、その加工性、生産性(例えば連続生産)
の点からフイルムの膜厚が薄い方が良好である。 したがつてフイルムの膜厚が130μm以下の、
例えば25μmといつた薄い膜厚のフイルムを用い
て外観良好な合せ窓を製造することができれば、
種々の機能性を有する合せ窓を得ることが可能と
なる。 本発明者らは、かかる目的を達成しうるために
鋭意研究した結果、特定の熱収縮条件を満たすフ
イルムをあらかじめ熱可塑性樹脂層で両側から挟
み積層したものを用意し、これを二枚の透明板の
間に入れて積層することによつて別個に積層する
場合に較べて外観良好な合せ窓が得られることを
見出し本発明に到達した。 即ち、本発明は、熱収縮性フイルム特にフイル
ムの膜厚d(μm)と熱収縮率E(%)が以下の式 E−0.006×d+0.75 を満たす熱収縮フイルムの両側に、ポリビニルブ
チラール樹脂及び/又はスチレン−酢酸ビニル共
重合樹脂層を積層してなる合せ窓用積層体及びそ
の製造法に関する。 本発明の特徴は、フイルム自身に熱収縮特性を
もたせる事により、合せ窓製造時に生じる反射像
の凹凸を減少させ、更には熱可塑性樹脂層、熱収
縮性フイルム、熱可塑性樹脂層を前もつてローラ
ー等で積層しておくことにより、単に透明板上に
熱可塑性樹脂層、熱収縮性フイルム、熱可塑性樹
脂層、透明板を積み重ねて積層し合せ窓にしたも
のに比べて著しく外観の凹凸が減少したものが得
られることに有る。 熱可塑性樹脂層、熱収縮性フイルム、熱可塑性
樹脂層を前もつて積層しておくことの効果はもう
一つある。熱収縮性フイルムを手で取り扱う場
合、いかに注意深く取り扱つても、フイルムが均
一な張力下にないため折れたり、フイルム表面が
凹凸を形成し、その凹凸の境に運河状の細いスジ
が発生する。このスジや折れた跡は、熱収縮性フ
イルムをそのまま未処理の状態で合せ窓に使用す
る時は、さほど気にならないが、該熱収縮性フイ
ルムが機能性を付与するために加工処理、例えば
光選択透過性機能を有する様に加工処理を行なつ
たものであれば、その加工処理を施した表面に発
生したスジや折れた跡は耐久試験途中に劣化拡大
し易い欠点を有している。 熱可塑性樹脂層、熱収縮性フイルム、熱可塑性
樹脂層を前もつてローラー等で積層しておくこと
により、上記記載の様な該熱収縮性フイルムのス
ジや折れを大巾に減少させることができる。 フイルムの熱収縮率E(%)は、合せ窓を製造
する時の加工温度での値であり、その加工温度は
100℃から160℃の範囲であるが、通常の加工温度
は120℃〜140℃である。又、フイルムの熱収縮率
は、フイルムの機械的方向(以下MDと略す),
巾方向(以下TDと略す)のうち熱収縮率の小さ
い方の値を示す。 良好な外観を得るにはMD,TD両方の熱収縮
率が同程度である方が好ましい。 積層体の製造法としては、エクストルジヨンの
ダイスから出てきた熱可塑性樹脂のシート状のも
のを熱収縮性フイルムの両側に積層する方式、あ
るいは熱可塑性樹脂をシート状にしたものの片面
に離型フイルムをつけてすでに巻き込んだものか
ら巻きほぐしながら熱収縮性フイルムの両面にラ
ミネートする方法がある。 いずれの場合も、熱収縮性フイルム面と接合す
る熱可塑性樹脂の表面はエンボス加工のない、あ
るいは非粘着性をもたせるために通常用いられる
炭酸水素ナトリウム粉末等のついていないものが
良い。 熱可塑性樹脂のエンボス加工された面は、熱収
縮性フイルムの膜厚が薄い場合にエンボス加工に
よる凹凸が熱収縮性フイルム上に転写することが
有り良好な外観が得ずらくなる。 熱可塑性樹脂の透明板に接する面は、エンボス
加工されたものが好ましい。これは、エンボス加
工されてない表面を熱可塑性樹脂が透明板と接し
た時に、気泡が生じないように均一に積層するこ
とが困難であるからである。又、この様な時には
液状の粘着性をもつ他の樹脂を流し気泡の発生を
防ぐ方法も考えられるが、合せ窓の製造工程が増
え、かえつてコスト増大を招く。以上のことから
もエンボン加工は気泡の発生をなくし、脱気を容
易にする点からも良好である。 熱可塑性樹脂層、熱収縮性フイルム、熱可塑性
樹脂層が順次積層された積層体は、ロール状にし
た時の熱可塑性樹脂相互に付着を防ぐ目的から、
離型フイルムを更に積層したり、あるいは炭酸水
素ナトリウム粉末等を付着させ熱可塑性樹脂の粘
着性を下げるのが好ましい。 以下、各構成要素について詳述する。 熱可塑性樹脂とは、透明板に適切な接着力を有
し、透視性良好で、積層体加工温度で十分なやわ
らかさを有するものが良く、例えばポリビニルブ
チラール、合成ゴム、スチレンブタジエンラバ
ー、ニトリルブタジエンラバー、ネオプレン、ポ
リイソブチレン、ポリイソプレン、ブチルゴム、
塩化ゴム、ポリアクリル酸エステル、ポリ酢酸ビ
ニル、ポリビニルエーテル、ポリ塩化ビニル、ポ
リエチレンプロピレンコポリマー、ポリエステル
コポリマー等が挙げられるが、本発明にあつては
ポリビニルブチラール樹脂及び/又はエチレン−
酢酸ビニル共重合樹脂が採用される。 熱収縮性フイルムとしてのフイルムは、合せ窓
の安全性を高める意味で、未加工の単なるフイル
ムを積層しても良く、機能性の付与された薄膜加
工フイルムであつても良い。 フイルムの材質としては、ポリエチレンテレフ
タレート樹脂、ポリビニルアルコール、ポリプロ
ピレン、ポリエチレン、ポリ塩化ビニル樹脂、ポ
リブチレンテレフタレート樹脂、ポリカーボネー
ト樹脂、アクリル樹脂、ポリアミド樹脂、及びそ
の他の樹脂の成形物があり、前述の熱収縮率をも
つていなければならない。 熱収縮性フイルムの透明導電性の機能を付与す
る例としては、酸化インジウムと酸化錫からなる
薄膜、酸化錫薄膜、金、銀、銅、アルミニウム等
の金属等の薄膜等が挙げられる。 又、太陽エネルギーのうち目に見えない熱線を
通しにくくする光選択透過性の機能を付与する例
としては、金、銀、銅、アルミニウム、ニツケ
ル、パラジウム、錫及びこれらの合金、あるいは
混合物の金属の薄膜、又はこの金属の薄膜の片面
又は両面に誘電体を積層したものが挙げられる。
誘電体の例としては、例えばチタンの酸化物、ビ
スマスの酸化物、硫化亜鉛、タングステンの酸化
物、インジウムの酸化物、ジルコニウムの酸化
物、珪素の酸化物等が挙げられる。 本発明に用いる熱収縮フイルムは、合せ窓に積
層する段階で、フイルムの膜厚をd(μm)、合せ
窓の加工温度でのフイルムの熱収縮率をE(%)
とするならば、 E−0.006×d+0.75 の条件を満たすことが要求される。 さらに好ましくは、100d10を満足するも
のであり、特に80d10を満足するものが好ま
しい。フイルムのコスト低減或いは機能付与の際
の生産性の観点からはフイルムの厚さは小さい程
好ましい。また、合せ窓の要求特性の1つである
衝突時の安全性確保のためには、フイルムが厚す
ぎるのは好ましくない。フイルムが厚すぎると、
ガラスの破壊と熱可塑性樹脂の変形によるエネル
ギーを吸収し難くなる。 熱収縮性フイルムのフイルム膜厚が厚くなる
と、熱収縮率の値は小さくても外観が良くなり、
膜厚が130μm以上では、フイルムの熱収縮率特
性に関係なく、良好なものが得られるがフイルム
の膜厚が薄くなるとフイルムの熱収縮の値を大き
くしないと外観良好なものが得られず、上記の条
件式を満足する時、良好なものが得られる。 以下、実施例によつて本発明を具体的に説明す
る。 実施例1及び比較例1 可視光線透過率86%の2軸延伸ポリエチレンテ
レフタレートフイルム(膜厚50μm)に、酸化イ
ンジウム・酸化錫の被膜を設けた。製膜は、
In2O3・SnO2(SnO2は全体で5wt%)のターゲツ
トをAr/O2(O22%)が混合ガス中で、2×
10-3Torrの真空下でRFスパツタすることによつ
て膜厚約500Åのものを得た。 この表面加工されたポリエチレンテレフタレー
トフイルムの120℃での熱収縮率は、ND,TDそ
れぞれ2.0%,1.8%であつた。 該加工済ポリエチレンテレフタレートフイルム
の両面に、厚さ380μmのポリビニルブチラール
フイルムをラミネーターで積層した。ポリビニル
ブチラールシートは片面がエンボス加工処理さ
れ、熱収縮フイルムに付着する面は非エンボス加
工してない平滑性のあるもので、あらかじめ離型
フイルムをつけてロール状になつていたものであ
る。 該積層体を更に2枚の厚さ2mmの並ガラス板で
挾み、減圧下で空気を抜いた後、90℃下、圧力2
Kg/cm2で30分間処理し予備接着を行なつた。その
後、オートクレーブ中で120℃、圧力14Kg/cm2
で40分間放置した。その後、圧力を加えたまま室
温まで冷却し合せ窓を得た。 得られた合せ窓の外観は良好で、反射像の凹凸
や歪みは認められなかつた。 一方、フイルムの熱収縮率がMD,TDそれぞ
れ0.2%,0%のものを使用する以外は全く同じ
条件で積層され、得られた合せ窓の外観は反射像
に凹凸があり不良であつた。 実施例2〜7及び比較例2〜6 種々の熱収縮率と膜厚を有する透明な2軸延伸
ポリエチレンテレフタレートフイルム上に、厚さ
120Åの銀・銅(銅成分11wt%)合金膜を設け、
更に厚さ100Åの酸化チタン膜を順次積層してな
る光選択透過性機能を有するフイルムを得た。酸
化チタン膜は、テトラブチルチタネートの加水分
解法で得た。 該フイルムの可視光線透過率は79%、近赤外線
透過率は41%であつた。 該フイルムの両面に、それぞれ厚さ380μmの
ポリビニルブチラールフイルム、更に厚さ2mmの
ガラス板を積層した。その後、減圧により空気を
抜いた後、90℃、圧力1Kg/cm2下で60分間予備接
着を行なつた後、オートクレーブ中で、120℃、
圧力12Kg/cm2下で50分間放置し本接着を行なつ
た。その後、室温まで冷却後、圧力を抜き合せ窓
サンプルを取り出した。フイルムの120℃での熱
収縮率と膜厚、合せ窓の外観を表1にまとめて記
載した。 実施例 8 熱収縮性の膜厚75μmを有する透明な2軸延伸
ポリエチレンテレフタレートフイルム上に、厚さ
120Åの銀・銅(銅成分11wt%)合金膜を設け、
更に厚さ100Åの酸化チタン膜を順次積層してな
る光選択透過性機能を有するフイルムを得た。酸
化チタン膜は、テトラブチルチタネートの加水分
解法で得た。 該フイルムの可視光線透過率は79%、近赤外線
透過率は41%であつた。 該フイルムの両面に、それぞれ厚さ250μmの
エチレン・酢酸ビニル共重合体樹脂フイルム(武
田薬品工業(株)製、商品名“デユミラン”)更に厚
さ2mmのガラス板を積層した。その後、減圧によ
り空気を抜いた後、85℃、圧力1Kg/cm2下で30分
間予備接着を行なつた後、オートクレーブ中で、
120℃、圧力10Kg/cm2下で30分間放置し本接着を
行なつた。その後、室温まで冷却後、圧力を抜き
合せ窓サンプルを取り出した。フイルムの120℃
での熱収縮率と膜厚、合せ窓の外観を表1に記載
した。
The present invention relates to a laminate, and particularly to a laminate that is suitable for application to a laminated window with a good appearance and is made by interposing a transparent film between two transparent plates, and furthermore, it relates to a laminate that is suitable for application to a laminated window with a good appearance, and furthermore, it relates to a laminate that is made by interposing a transparent film between two transparent plates and is suitable for application to a laminated window that has a good appearance. The present invention relates to a laminate suitable for obtaining a laminated window provided with functions. BACKGROUND OF THE INVENTION Laminated glass windows are used for transparent openings that require safety, such as windows of automobiles, trains, airplanes, etc., or some building windows. The basic structure of a laminated window is that a thermoplastic resin layer is sandwiched between transparent materials such as gas laminated plates, but a film is further interposed in order to impart further functionality to the laminated window. For example, there are methods of interposing a transparent film with excellent mechanical strength to prevent scattering, methods of interposing a transparent conductive film to prevent condensation, or methods of interposing a transparent film with excellent mechanical strength to prevent scattering, or methods of interposing a transparent conductive film to prevent condensation. A method has been proposed in which a film with a selective permeability function is interposed. However, a laminated window with a film interposed therebetween with a good appearance could not be obtained unless the film thickness was about 130 μm or more. As the thickness of the film is made thinner, the transparency of the laminated window becomes better, but when looking at the reflected image from the surface of the laminated window, fine irregularities occur in the image, making the image itself appear distorted, making it difficult to put into practical use. It was something that could not be offered. On the other hand, there is generally a method of applying thin film processing to the surface of the film in order to impart functionality to the surface of the film, but this thin film processing is often done in a vacuum container, improving processability and productivity (e.g. continuous production )
From this point of view, the thinner the film, the better. Therefore, if the film thickness is 130μm or less,
For example, if a laminated window with a good appearance could be manufactured using a film with a thin film thickness of 25 μm,
It becomes possible to obtain laminated windows with various functionalities. As a result of intensive research to achieve this objective, the present inventors prepared a film that satisfies specific heat shrinkage conditions and laminated it with thermoplastic resin layers sandwiched from both sides. The present inventors have discovered that by stacking the sheets between the plates, a laminated window with a better appearance can be obtained than when the sheets are laminated separately, and the present invention has been achieved. That is, the present invention provides polyvinyl butyral resin on both sides of a heat-shrinkable film, particularly a heat-shrinkable film whose film thickness d (μm) and heat shrinkage rate E (%) satisfy the following formula: E-0.006×d+0.75. and/or a laminate for laminated windows formed by laminating styrene-vinyl acetate copolymer resin layers, and a method for producing the same. A feature of the present invention is that by providing the film itself with heat-shrinkable properties, it is possible to reduce the unevenness of the reflected image that occurs during the manufacturing of laminated windows. By laminating them with rollers, etc., the appearance is noticeably uneven compared to a laminated window made by simply stacking a thermoplastic resin layer, a heat shrinkable film, a thermoplastic resin layer, and a transparent plate on a transparent plate. It consists in gaining what is reduced. There is another effect of laminating the thermoplastic resin layer, heat-shrinkable film, and thermoplastic resin layer in advance. When handling heat-shrinkable film by hand, no matter how carefully you handle it, the film is not under uniform tension and may break, or the film surface may become uneven, with thin canal-like lines appearing at the boundaries of the unevenness. . These streaks and broken marks are not a big concern when the heat-shrinkable film is used as is for laminated windows in an untreated state, but in order to impart functionality to the heat-shrinkable film, processing, such as If a product has been processed to have a selective light transmittance function, it has the disadvantage that streaks and broken marks that occur on the processed surface are likely to deteriorate and spread during durability tests. . By laminating the thermoplastic resin layer, the heat-shrinkable film, and the thermoplastic resin layer in advance using a roller, etc., it is possible to greatly reduce the streaks and folds of the heat-shrinkable film as described above. can. The thermal contraction rate E (%) of the film is the value at the processing temperature when manufacturing laminated windows, and the processing temperature is
The normal processing temperature is 120°C to 140°C, although it ranges from 100°C to 160°C. In addition, the thermal shrinkage rate of the film is determined by the mechanical direction (hereinafter abbreviated as MD) of the film,
Indicates the smaller value of the thermal shrinkage rate in the width direction (hereinafter abbreviated as TD). In order to obtain a good appearance, it is preferable that both MD and TD have similar heat shrinkage rates. The laminate can be manufactured by laminating a sheet of thermoplastic resin from an extrusion die on both sides of a heat-shrinkable film, or by laminating a sheet of thermoplastic resin on one side. There is a method of laminating heat-shrinkable film on both sides by attaching a molding film and unrolling the film that has already been rolled up. In either case, the surface of the thermoplastic resin to be bonded to the heat-shrinkable film should not be embossed or coated with sodium bicarbonate powder, which is commonly used to impart non-adhesive properties. On the embossed surface of the thermoplastic resin, if the heat-shrinkable film is thin, the unevenness caused by the embossing may be transferred onto the heat-shrinkable film, making it difficult to obtain a good appearance. The surface of the thermoplastic resin in contact with the transparent plate is preferably embossed. This is because when the thermoplastic resin comes into contact with the transparent plate on the non-embossed surface, it is difficult to uniformly laminate the resin without forming bubbles. Additionally, in such cases, a method of pouring another adhesive liquid resin to prevent the generation of air bubbles may be considered, but this increases the number of manufacturing steps for the laminated window, leading to an increase in cost. From the above, embossing is also good in that it eliminates the generation of bubbles and facilitates degassing. A laminate in which a thermoplastic resin layer, a heat-shrinkable film, and a thermoplastic resin layer are sequentially laminated has the following properties: In order to prevent the thermoplastic resins from adhering to each other when rolled,
It is preferable to further laminate a release film or attach sodium bicarbonate powder or the like to reduce the tackiness of the thermoplastic resin. Each component will be explained in detail below. Thermoplastic resins are those that have suitable adhesion to transparent plates, good transparency, and sufficient softness at laminate processing temperatures, such as polyvinyl butyral, synthetic rubber, styrene-butadiene rubber, and nitrile butadiene. Rubber, neoprene, polyisobutylene, polyisoprene, butyl rubber,
Examples include chlorinated rubber, polyacrylic acid ester, polyvinyl acetate, polyvinyl ether, polyvinyl chloride, polyethylene propylene copolymer, polyester copolymer, etc. In the present invention, polyvinyl butyral resin and/or ethylene-
Vinyl acetate copolymer resin is used. In order to improve the safety of the laminated window, the heat-shrinkable film may be a laminated unprocessed film, or may be a functionalized thin film. Film materials include polyethylene terephthalate resin, polyvinyl alcohol, polypropylene, polyethylene, polyvinyl chloride resin, polybutylene terephthalate resin, polycarbonate resin, acrylic resin, polyamide resin, and molded products of other resins. must have a certain rate. Examples of heat-shrinkable films imparting a transparent conductive function include thin films of indium oxide and tin oxide, tin oxide thin films, and thin films of metals such as gold, silver, copper, and aluminum. In addition, examples of metals that have a selective light transmittance function that makes it difficult for invisible heat rays of solar energy to pass through include gold, silver, copper, aluminum, nickel, palladium, tin, and alloys or mixtures of these metals. or a thin film of this metal with a dielectric layered on one or both sides.
Examples of the dielectric include titanium oxide, bismuth oxide, zinc sulfide, tungsten oxide, indium oxide, zirconium oxide, silicon oxide, and the like. At the stage of laminating the heat-shrinkable film used in the present invention, the thickness of the film is d (μm), and the heat shrinkage rate of the film at the processing temperature of the laminated window is E (%).
If so, it is required to satisfy the condition E-0.006×d+0.75. More preferably, it satisfies 100d10, particularly preferably 80d10. From the viewpoint of cost reduction of the film or productivity when adding functions, it is preferable that the thickness of the film is as small as possible. Furthermore, in order to ensure safety in the event of a collision, which is one of the characteristics required for laminated windows, it is not preferable for the film to be too thick. If the film is too thick,
It becomes difficult to absorb energy due to glass breaking and thermoplastic resin deformation. The thicker the film thickness of the heat-shrinkable film, the better the appearance even if the heat shrinkage rate is small.
When the film thickness is 130 μm or more, a good product can be obtained regardless of the film's heat shrinkage characteristics, but as the film thickness becomes thinner, a good appearance cannot be obtained unless the film's heat shrinkage value is increased. Good results can be obtained when the above conditional expressions are satisfied. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 and Comparative Example 1 A film of indium oxide and tin oxide was provided on a biaxially stretched polyethylene terephthalate film (thickness: 50 μm) having a visible light transmittance of 86%. Film production is
A target of In 2 O 3 ·SnO 2 (SnO 2 is 5 wt% in total) was heated 2× in a mixed gas of Ar/O 2 (O 2 2%).
A film with a thickness of about 500 Å was obtained by RF sputtering under a vacuum of 10 -3 Torr. The heat shrinkage rates of this surface-treated polyethylene terephthalate film at 120°C were 2.0% and 1.8% for ND and TD, respectively. A 380 μm thick polyvinyl butyral film was laminated on both sides of the processed polyethylene terephthalate film using a laminator. The polyvinyl butyral sheet was embossed on one side, and the surface to be attached to the heat-shrinkable film was non-embossed and smooth, and had been made into a roll with a release film attached in advance. The laminate was further sandwiched between two 2 mm thick ordinary glass plates, the air was removed under reduced pressure, and then heated at 90°C under a pressure of 2.
Preliminary bonding was performed by treating with Kg/cm 2 for 30 minutes. Thereafter, it was left in an autoclave at 120° C. and under a pressure of 14 Kg/cm 2 for 40 minutes. Thereafter, the glass was cooled to room temperature while applying pressure to obtain a laminated window. The resulting laminated window had a good appearance, and no unevenness or distortion of the reflected image was observed. On the other hand, lamination was carried out under exactly the same conditions except that films with heat shrinkage rates of 0.2% and 0% for MD and TD were used, respectively, and the appearance of the resulting laminated window was poor with irregularities in the reflected image. Examples 2 to 7 and Comparative Examples 2 to 6 On transparent biaxially stretched polyethylene terephthalate films having various heat shrinkage rates and film thicknesses,
A 120Å silver/copper (copper content 11wt%) alloy film is provided.
Furthermore, a film having a selective light transmission function was obtained by sequentially laminating titanium oxide films with a thickness of 100 Å. The titanium oxide film was obtained by a hydrolysis method of tetrabutyl titanate. The film had a visible light transmittance of 79% and a near infrared transmittance of 41%. A polyvinyl butyral film with a thickness of 380 μm and a glass plate with a thickness of 2 mm were laminated on both sides of the film. Thereafter, after removing the air by reducing the pressure, preliminary bonding was performed at 90℃ for 60 minutes under a pressure of 1Kg/ cm2 , and then at 120℃ in an autoclave.
Main adhesion was performed by leaving it for 50 minutes under a pressure of 12 kg/cm 2 . Thereafter, after cooling to room temperature, the pressure was released and the laminated window sample was taken out. The heat shrinkage rate and thickness of the film at 120°C, and the appearance of the laminated window are summarized in Table 1. Example 8 On a transparent biaxially stretched polyethylene terephthalate film having a heat-shrinkable film thickness of 75 μm,
A 120Å silver/copper (copper content 11wt%) alloy film is provided.
Furthermore, a film having a selective light transmission function was obtained by sequentially laminating titanium oxide films with a thickness of 100 Å. The titanium oxide film was obtained by a hydrolysis method of tetrabutyl titanate. The film had a visible light transmittance of 79% and a near infrared transmittance of 41%. Ethylene/vinyl acetate copolymer resin films (manufactured by Takeda Pharmaceutical Co., Ltd., trade name: "DUMILAN") each having a thickness of 250 μm and glass plates having a thickness of 2 mm were laminated on both sides of the film. Then, after removing the air by reducing the pressure, preliminary bonding was performed at 85℃ and under a pressure of 1Kg/ cm2 for 30 minutes, and then in an autoclave.
Main adhesion was carried out by leaving it for 30 minutes at 120°C and under a pressure of 10 kg/cm 2 . Thereafter, after cooling to room temperature, the pressure was released and the laminated window sample was taken out. 120℃ for film
The thermal shrinkage rate, film thickness, and appearance of the laminated window are listed in Table 1.

【表】 実施例 9 2軸延伸ポリエチレンテレフタレートフイルム
(膜厚25μm)上に、厚さ150Åの酸化タングステ
ン、厚さ100Åの銀、厚さ200Åの酸化タングステ
ンを順次積層した。酸化タングステンは、タング
ステンをターゲツトとして反応性スパツタリング
で、銀は、ターゲツトとしてスパツタリングによ
り設けた。表面加工されたフイルムの熱収縮率
は、MD,TDがそれぞれ3.1%,2.8%であつた。 可塑剤と共にメルターで混合融解されたポリビ
ニルブチラールを押し出し、カレンダー法で製膜
した厚さ380μmの熱可塑性樹脂、ポリビニルブ
チラールを、該熱収縮フイルムの両側からラミネ
ーターで積層した。熱収縮フイルムと接合するポ
リビニルブチラールシートの表面はできるだけ平
滑にした。又ポリビニルブチラールシートのもう
一方の面は、ラミネート後、エンボス加工し、更
に離形フイルムをつけてロールに巻き取つた。 該積層体を厚さ2mmのガラス板の間に挾みオー
トクレープ中で、ガラス板と熱可塑性樹脂層間の
空気を減圧にして除去しながら90℃、圧力2Kg/
cm2で30分間行ない予備接着した後、温度を120℃、
圧力を14Kg/cm2にし40分間本接着を行なつた。そ
の後、室温まで冷やしてから圧力を抜き、サンプ
ルを取り出した。 得られた合せ窓のサンプルは外観が良好であつ
た。 比較例 7 実施例5において、該フイルムをあらかじめポ
リビニルブチラールフイルムで両側から挾み積層
したものを用意するかわりに、厚さ2mmのガラス
板の上に順次別個に、ポリビニルブチラールフイ
ルム、該フイルム、ポリビニルブチラールフイル
ム、厚さ2mmのガラス板を積層した。それ以外は
まつたく同じ条件で製造された積層体の外観は凹
凸が幾分あり、評価は△であつた。
[Table] Example 9 Tungsten oxide with a thickness of 150 Å, silver with a thickness of 100 Å, and tungsten oxide with a thickness of 200 Å were sequentially laminated on a biaxially stretched polyethylene terephthalate film (film thickness: 25 μm). Tungsten oxide was provided by reactive sputtering using tungsten as a target, and silver was provided by sputtering using tungsten as a target. The heat shrinkage rates of the surface-treated film were 3.1% and 2.8% for MD and TD, respectively. Polyvinyl butyral mixed and melted with a plasticizer in a melter was extruded, and polyvinyl butyral, a thermoplastic resin having a thickness of 380 μm, formed into a film by a calendar method was laminated on both sides of the heat-shrinkable film using a laminator. The surface of the polyvinyl butyral sheet to be bonded to the heat shrink film was made as smooth as possible. After lamination, the other side of the polyvinyl butyral sheet was embossed, a release film was applied, and the sheet was wound onto a roll. The laminate was sandwiched between 2 mm thick glass plates and heated at 90°C under a pressure of 2 kg/cm in an autoclave to remove air between the glass plate and the thermoplastic resin layer under reduced pressure.
After pre-bonding at cm 2 for 30 minutes, the temperature was increased to 120°C.
Main adhesion was carried out for 40 minutes at a pressure of 14 kg/cm 2 . Then, after cooling to room temperature, the pressure was released and the sample was taken out. The resulting laminated window sample had a good appearance. Comparative Example 7 In Example 5, instead of preparing a film in which the film was sandwiched between polyvinyl butyral films from both sides and laminated, the polyvinyl butyral film, the film, and the polyvinyl A butyral film and a 2 mm thick glass plate were laminated. The appearance of the laminate produced under otherwise identical conditions was somewhat uneven, and the evaluation was △.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の製造方法の1例である。 1,1′はダイ、2,2′は熱可塑性樹脂フイル
ム、3は熱収縮性フイルム、4,4′はロール、
5,5′はエンボス加工用ロールを示す。
The drawing is an example of the manufacturing method of the present invention. 1, 1' are die, 2, 2' are thermoplastic resin films, 3 are heat shrinkable films, 4, 4' are rolls,
5 and 5' indicate embossing rolls.

Claims (1)

【特許請求の範囲】 1 少くとも熱可塑性樹脂層、熱収縮性フイル
ム、熱可塑性樹脂層が順次積層してなる積層体で
あつて、当該熱可塑性樹脂がポリビニルブチラー
ル樹脂及び/又はエチレン−酢酸ビニル共重合樹
脂である合せ窓用積層体。 2 熱収縮性フイルム面に面する熱可塑性樹脂層
面が非エンボス加工面である特許請求の範囲第1
項の合せ窓用積層体。 3 ポリビニルブチラール樹脂及び/又はエチレ
ン−酢酸ビニル共重合樹脂からなる熱可塑性樹脂
層のシートを形成後、熱収縮性フイルムの両側か
ら該熱可塑性樹脂シートを同時に積層することか
らなる合せ窓用積層体の製造法。
[Scope of Claims] 1. A laminate comprising at least a thermoplastic resin layer, a heat-shrinkable film, and a thermoplastic resin layer, the thermoplastic resin being polyvinyl butyral resin and/or ethylene-vinyl acetate. A laminate for laminated windows made of copolymer resin. 2. Claim 1, wherein the thermoplastic resin layer surface facing the heat-shrinkable film surface is a non-embossed surface.
Laminate for laminated windows. 3. A laminated body for laminated windows, which consists of forming a sheet of a thermoplastic resin layer made of polyvinyl butyral resin and/or ethylene-vinyl acetate copolymer resin, and then simultaneously laminating the thermoplastic resin sheets from both sides of a heat-shrinkable film. manufacturing method.
JP56165603A 1981-10-19 1981-10-19 Laminate and its manufacture Granted JPS5867442A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56165603A JPS5867442A (en) 1981-10-19 1981-10-19 Laminate and its manufacture
EP19820305523 EP0077672B1 (en) 1981-10-19 1982-10-18 Selectively light transmitting film and preformed laminar structure
DE8282305523T DE3271844D1 (en) 1981-10-19 1982-10-18 Selectively light transmitting film and preformed laminar structure
US06/435,184 US4465736A (en) 1981-10-19 1982-10-19 Selectively light transmitting film and preformed laminar structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165603A JPS5867442A (en) 1981-10-19 1981-10-19 Laminate and its manufacture

Publications (2)

Publication Number Publication Date
JPS5867442A JPS5867442A (en) 1983-04-22
JPH0331575B2 true JPH0331575B2 (en) 1991-05-07

Family

ID=15815485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165603A Granted JPS5867442A (en) 1981-10-19 1981-10-19 Laminate and its manufacture

Country Status (1)

Country Link
JP (1) JPS5867442A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121768A (en) * 2010-12-09 2012-06-28 Sekisui Chem Co Ltd Interlayer for laminated glass and laminated glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940376A (en) * 1972-08-25 1974-04-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940376A (en) * 1972-08-25 1974-04-15

Also Published As

Publication number Publication date
JPS5867442A (en) 1983-04-22

Similar Documents

Publication Publication Date Title
EP0077672B1 (en) Selectively light transmitting film and preformed laminar structure
JP3844361B2 (en) Improved laminated structure and manufacturing process thereof
EP2216304B1 (en) Process for producing laminated glass with inserted plastic film
EP2988930B1 (en) Laminated glazing
US4973511A (en) Composite solar/safety film and laminated window assembly made therefrom
CN1090559C (en) Method for producing laminated glass pane and substrate for manufacturing and application thereof
JP2018008867A (en) Laminated glass comprising functional film
CN105722678B (en) Method for manufacturing composite glass laminate having thermal radiation shielding properties
JP2865768B2 (en) Method for producing laminated safety glass comprising a plurality of layers, laminated safety glass produced by this method, and apparatus for implementing this method
EP3535122B1 (en) Fabrication process for laminated glass comprising a functional film
JP3352488B2 (en) Selective light transmission film for laminated glass and laminated glass
JPH0331575B2 (en)
JPH05162194A (en) Preparation of sheet of thermoplastic material, sheet prepared by said method and laminated safety glass prepared by using said sheet
JPS6152093B2 (en)
EP1423270B1 (en) Glazing prelaminates, glazing laminates, and methods of making same
JPS5970558A (en) Laminate
JPS5981161A (en) Selective light transmitting film
JP2000219543A (en) Production of laminated glass using transfer material for laminated glass
JPS5867440A (en) Laminate
JP3883738B2 (en) Transparent laminate
JPS644911B2 (en)
JPH0419179B2 (en)
JPH0321495B2 (en)
JP2000167988A (en) Safety glass and fire prevention safety glass
JPH061642A (en) Laminated glass