JPH0331514Y2 - - Google Patents

Info

Publication number
JPH0331514Y2
JPH0331514Y2 JP1986167408U JP16740886U JPH0331514Y2 JP H0331514 Y2 JPH0331514 Y2 JP H0331514Y2 JP 1986167408 U JP1986167408 U JP 1986167408U JP 16740886 U JP16740886 U JP 16740886U JP H0331514 Y2 JPH0331514 Y2 JP H0331514Y2
Authority
JP
Japan
Prior art keywords
cylinder
workpiece
laser beam
laser
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986167408U
Other languages
Japanese (ja)
Other versions
JPS6371990U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986167408U priority Critical patent/JPH0331514Y2/ja
Publication of JPS6371990U publication Critical patent/JPS6371990U/ja
Application granted granted Critical
Publication of JPH0331514Y2 publication Critical patent/JPH0331514Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の目的〕 「産業上の利用分野」 この考案はレーザ光を用いてフープ等に多数の
細孔を穿孔するレーザ加工機に関する。
[Detailed description of the invention] [Purpose of the invention] "Field of industrial application" This invention relates to a laser processing machine that uses laser light to drill a large number of holes in a hoop or the like.

「従来の技術」 従来、レーザ光で金属、プラスチツクス、ゴム
等の薄板に細孔を穿設できることはよく知られて
いる。この技術を応用して一定幅の長尺の薄いテ
ープに多数の穿孔を行なうことが行われている
(以下、テープに多数の穿孔したもの又は素材を
フープという)。
"Prior Art" It is well known that pores can be drilled in thin plates of metal, plastic, rubber, etc. using laser light. This technique has been applied to make a large number of perforations in a long thin tape of a constant width (hereinafter, a tape with a large number of perforations or a material is referred to as a hoop).

従来、フープの穿孔はレーザ光を投射する加工
ヘツドによりレーザ光をフープの板面に直交する
方向に投射して穿孔し、送りはフープの長手方向
に交叉する幅方向に連続の送りを該加工ヘツドに
与えフープの幅全体にレーザ光を間欠投射して行
ない、フープの全幅について一列の穿孔が終ると
フープを長手方向に穿孔すべき細孔間の一ピツチ
分を送り、加工ヘツドを復動させフープの全幅に
わたり、幅方向送りを行つて順次穿孔している。
かかる加工ヘツドのフープの幅方向の往復動とフ
ープの長手方向送りがくり返されてフープには多
数の細孔が形成される。
Conventionally, hoop holes are drilled using a processing head that projects laser light in a direction perpendicular to the hoop plate surface, and feeding is performed by continuously feeding the hoop in the width direction that intersects with the longitudinal direction of the hoop. This is done by intermittently projecting a laser beam across the entire width of the hoop, and once a row of holes has been drilled across the entire width of the hoop, the hoop is sent in the longitudinal direction one pitch between the holes to be drilled, and the processing head is moved back and forth. The holes are sequentially perforated by feeding in the width direction over the entire width of the hoop.
A large number of pores are formed in the hoop by repeating the reciprocating movement of the processing head in the width direction of the hoop and the feeding of the hoop in the longitudinal direction.

他の穿孔方向としてはフープの長手方向送りは
連続しておいて加工ヘツドの往動時のみレーザ光
をフープに投射し、復動時には投射しないで同様
な多数の細孔を有するフープが形成される。
In other drilling directions, the hoop is continuously fed in the longitudinal direction, and the laser beam is projected onto the hoop only during the forward movement of the processing head, and not during the backward movement to form a hoop with a similar number of pores. Ru.

「考案が解決しようとする問題点」 しかし乍ら、従来のフープの加工方法では加工
ヘツドは往復動するため、加工ヘツドの往復動の
方向変換のため、加速減速が繰返し働くのでそれ
による衝撃を小さくするため加速度を小さくしな
ければならず無駄な時間を要する。又、慣性力が
働くので装置の剛性に大きく影響し、装置が大型
となり易い欠点がある。
``Problem that the invention aims to solve'' However, in the conventional hoop processing method, the processing head moves back and forth, so acceleration and deceleration are repeated to change the direction of the reciprocating movement of the processing head. In order to make it smaller, the acceleration must be made smaller, which requires wasted time. In addition, since inertial force acts, the rigidity of the device is greatly affected and the device tends to be large.

この考案はフープ等の加工における上記欠点を
解消し、運動が円滑で無駄時間が少なく装置が小
型化できるレーザ加工機を提供することを目的と
する。
The purpose of this invention is to eliminate the above-mentioned drawbacks in processing hoops and the like, and to provide a laser processing machine that can operate smoothly, reduce wasted time, and can be miniaturized.

〔考案の構成〕[Structure of the idea]

「問題点を解決するための手段」 この考案は被加工物に一定ピツチで配すべき多
数の細孔をレーザ光を用いて加工するレーザ加工
機において、その軸心を中心に回転するように支
持された円筒を備え、円筒には円筒の軸心を中心
として円筒の軸方向にリードを持つスパイラル状
の反射面が形成され、該反射面は円筒の軸心と平
行する方向から発射されたレーザ光が一定方向に
反射するように円筒外周面とは交叉しており、該
反射面で反射したレーザ光を受ける位置に被加工
物を配し、前記レーザ光の発生手段、円筒の回転
駆動装置、被加工物の手前に配した前記円筒の回
転と同期して円筒の軸方向に移動する集光レンズ
の移動手段、レーザ光の発生手段と円筒の回転駆
動装置間の制御装置を備えたレーザ加工機であ
る。
``Means to solve the problem'' This idea is for a laser processing machine that uses a laser beam to process a large number of pores that must be arranged at a constant pitch on a workpiece. A spiral reflecting surface having a lead in the axial direction of the cylinder centered on the axial center of the cylinder is formed on the cylinder, and the reflecting surface is emitted from a direction parallel to the axial center of the cylinder. The laser beam intersects with the outer circumferential surface of the cylinder so that it is reflected in a certain direction, and a workpiece is placed at a position to receive the laser beam reflected by the reflecting surface, and the laser beam generating means and the cylinder are rotated. The apparatus includes a moving means for a condensing lens that moves in the axial direction of the cylinder in synchronization with the rotation of the cylinder disposed in front of the workpiece, and a control device between the laser beam generating means and the cylinder rotation drive device. It is a laser processing machine.

「作 用」 円筒とレーザ光発生手段とを関連させて動作す
る。即ち、円筒を間欠回転してレーザ光発生手段
を円筒を停止している間駆動するか、円筒を連続
回転してレーザ光発生手段を一定間隔で駆動す
る。前者は比較的被加工物にレーザ光を長時間投
射しないと穿孔されない場合に適し、後者は被加
工物が薄く、穿孔し易い材質でレーザ光を極短い
時間投射するだけで穿孔できる場合に適する。
"Function" It operates by associating the cylinder with the laser beam generating means. That is, the cylinder is rotated intermittently and the laser beam generating means is driven while the cylinder is stopped, or the cylinder is continuously rotated and the laser beam generating means is driven at regular intervals. The former is suitable when the workpiece cannot be perforated unless the laser beam is projected for a relatively long period of time, and the latter is suitable when the workpiece is thin and made of an easily perforated material and can be perforated by simply projecting the laser beam for a very short period of time. .

レーザ光発生手段から発射されたレーザ光はス
パイラルの反射面上の反射点の一点で反射し集光
レンズの移動手段により移動した集光レンズを通
じて被加工物上に結像し、被加工物を穿孔する。
円筒が細孔の間隔の一ピツチ分回転すると反射点
は円筒の軸方向に一ピツチ移動すると共に集光レ
ンズも一ピツチ同方向に移動し、ここでレーザ光
が発射され被加工物には同ピツチで隣接した細孔
が穿孔される。これを繰り返すと被加工物にはス
パイラルの反射面リード分を限度とした幅の範囲
に細孔が配列される。端部の細孔が穿孔された後
被加工物を送り、同様に穿孔する。
The laser beam emitted from the laser beam generating means is reflected at one reflection point on the reflective surface of the spiral, and is imaged on the workpiece through the condenser lens moved by the condenser lens moving means. perforate.
When the cylinder rotates by one pitch between the pores, the reflection point moves one pitch in the axial direction of the cylinder, and the condenser lens also moves one pitch in the same direction, where the laser beam is emitted and the workpiece is illuminated in the same direction. Adjacent pores are drilled in pitch. When this process is repeated, pores are arranged in the workpiece within a width range limited to the lead of the reflective surface of the spiral. After the end holes are drilled, the workpiece is sent and drilled in the same manner.

「実施例」 以下、この考案の実施例を図面により説明す
る。第1図は側面図である。固設したモータ1の
軸端には円筒2が固定されている。この円筒2の
軸心とモータ1のモータ軸の軸心は一致してい
る。円筒2のモータ1に対する側と反対の端面は
円筒2の軸心を中心線とし、円筒2の軸方向に
180度の円筒の回転角に関しリード持つスパイラ
ル状反射面3となつている。つづく該端面は180
度の回転角に関し、レーザ光に対して無反射面又
は反射したレーザ光が被加工物6に向わない形状
となつている。この反射面3は端面反射鏡で通常
の反射鏡と同工程を経て仕上げられる。この反射
面3に円筒2の軸心と平行な方向からレーザ光5
が当るようにパルスレーザ発振器4が設けられ
る。被加工物6はレーザ光5の反射面3の反射点
3−iからの反射光に板面が交叉する方向に配さ
れ、被加工物6がフープの場合は第1図の紙面に
直角方向に送られるようになつている(送り装置
は図示されない)。
"Example" Hereinafter, an example of this invention will be described with reference to the drawings. FIG. 1 is a side view. A cylinder 2 is fixed to the shaft end of a fixed motor 1. The axial center of this cylinder 2 and the axial center of the motor shaft of the motor 1 coincide. The end surface of the cylinder 2 opposite to the motor 1 has the axis of the cylinder 2 as the center line, and is aligned in the axial direction of the cylinder 2.
The spiral reflecting surface 3 has a lead with respect to a cylindrical rotation angle of 180 degrees. The following end face is 180
Regarding the rotation angle in degrees, the shape is such that the surface does not reflect the laser beam or the reflected laser beam does not face the workpiece 6. This reflecting surface 3 is an end face reflecting mirror and is finished through the same process as a normal reflecting mirror. A laser beam 5 is applied to this reflective surface 3 from a direction parallel to the axis of the cylinder 2.
A pulse laser oscillator 4 is provided so that The workpiece 6 is arranged in a direction in which the plate surface intersects the reflected light from the reflection point 3-i of the reflection surface 3 of the laser beam 5, and when the workpiece 6 is a hoop, it is arranged in a direction perpendicular to the paper plane of FIG. (feeding device not shown).

モータ1と同軸のエンコーダ7の信号は計数回
路8に送られ、計数回路8は適時にレーザ駆動回
路9に信号を送り、レーザ駆動回路9はパルスレ
ーザ発振器4を駆動してレーザ光5を発射するよ
うな制御装置になつている。
A signal from an encoder 7 coaxial with the motor 1 is sent to a counting circuit 8, and the counting circuit 8 sends a signal to a laser drive circuit 9 in a timely manner, and the laser drive circuit 9 drives a pulsed laser oscillator 4 to emit a laser beam 5. It has become a control device that allows

ここで反射面3はリード角45度の場合で被加工
物6の板面に直角に細孔を穿孔する場合は円筒2
の軸心と被加工物6は平行している。反射面3の
リード角が45゜以外の場合はレーザ光5を被加工
物6の板面に直交させるとすると被加工物6は円
筒2の軸心に対して傾ける必要がある。
Here, the reflective surface 3 has a lead angle of 45 degrees, and when drilling a hole perpendicular to the plate surface of the workpiece 6, the cylinder 2
The axis of the workpiece 6 and the workpiece 6 are parallel to each other. If the lead angle of the reflective surface 3 is other than 45°, the workpiece 6 must be tilted with respect to the axis of the cylinder 2 if the laser beam 5 is to be perpendicular to the plate surface of the workpiece 6.

第2図は第1図の一部平面図で円筒2の回転と
同期して円筒2の軸方向に移動する集光レンズの
移動手段を示す。円筒2の外周180゜間には反射面
3と同リードで、そして続いて逆勝手に同リード
でカム溝11が連続して設けてある。反射面3と
カム溝11はレーザ光の反射面3における反射点
3−iとカム溝11に入つているカムフオロワ1
5が円筒2の周方向にずれている角90度だけ位相
差を設けてある。円筒2と平行に図示されない両
端が不動部分に固定されたガイドバー12,12
にはレンズキヤリツジ13が移動自在に係合して
いる。レンズキヤリツジ13は集光レンズ14、
円筒カム溝11に係合するカムフオロワ15を備
えている。
FIG. 2 is a partial plan view of FIG. 1, showing a means for moving the condenser lens that moves in the axial direction of the cylinder 2 in synchronization with the rotation of the cylinder 2. FIG. A cam groove 11 is continuously provided between 180 degrees of the outer circumference of the cylinder 2 with the same lead as the reflecting surface 3, and then in the opposite direction with the same lead. The reflective surface 3 and the cam groove 11 are connected to the reflection point 3-i of the laser beam on the reflective surface 3 and the cam follower 1 inserted in the cam groove 11.
5 is shifted in the circumferential direction of the cylinder 2 by an angle of 90 degrees. Guide bars 12, 12 whose both ends (not shown) are fixed to immovable parts parallel to the cylinder 2.
A lens carriage 13 is movably engaged with. The lens carriage 13 includes a condensing lens 14,
A cam follower 15 that engages with the cylindrical cam groove 11 is provided.

次に作用をのべる。被加工物6が薄板で細孔の
あき易い材質の場合はモータ1は連続回転をす
る。この場合レーザ光5の発射している時間は極
細孔で0.0005秒位であるからモータ1をこれに対
して充分遅い速度で回転するとほぼ円孔が穿孔さ
れるものである。モータ1の回転はエンコーダ7
にてとらえられ、そのパルス信号は計数回路8で
計数される。今図の位置でレーザ駆動回路9が計
数回路8からの信号により、駆動され、パルスレ
ーザ発振器4がレーザ光5を発射し、反射面3−
i(i=4)で反射すると被加工物6には穿孔点
6−i(i=2)に向つてレーザ光5が投射され
て集光レンズ14により、被加工物6に結像し、
被加工物6は穿孔される。この穿孔はレーザ光5
のパルスとして極短時間発射されて終る。続いて
モータ1は回転しているのでエンコーダ7はパル
ス信号を発し、先のレーザ光発射のための信号を
レーザ駆動回路9に送つたために払い出された計
数回路8は再びエンコーダ7からのパルス信号を
計数する。
Next, I will explain the effect. When the workpiece 6 is a thin plate and is made of a material that is easily perforated, the motor 1 rotates continuously. In this case, since the emitting time of the laser beam 5 is about 0.0005 seconds for an extremely small hole, if the motor 1 is rotated at a sufficiently slow speed compared to this, a substantially circular hole will be drilled. The rotation of motor 1 is determined by encoder 7.
The pulse signal is captured by a counting circuit 8 and counted by a counting circuit 8. At the position shown in the figure, the laser drive circuit 9 is driven by the signal from the counting circuit 8, the pulse laser oscillator 4 emits laser light 5, and the reflection surface 3-
i (i=4), the laser beam 5 is projected onto the workpiece 6 toward the perforation point 6-i (i=2), and is focused on the workpiece 6 by the condenser lens 14,
The workpiece 6 is perforated. This perforation is done by laser beam 5
It ends up being emitted for a very short time as a pulse. Subsequently, since the motor 1 is rotating, the encoder 7 emits a pulse signal, and the counting circuit 8, which was sent out because the signal for the previous laser beam emission was sent to the laser drive circuit 9, is again output from the encoder 7. Count pulse signals.

円筒2の回転と共にスパイラル状の反射面3は
円筒2の軸心を中心に回転するので反射点は3−
iから円筒の軸方向に移動する。同時にカム溝1
1はカムフオロワ15を送り、レンズキヤリツジ
13をガイドバー12に沿つて送るから集光レン
ズ14は反射点直下にあるように追従する。次の
反射点3−(i+1)がレーザ光5の光路上に回
転して来ると円筒2の反射点3−iから3−(i
+1)の周方向に関する回転角はエンコーダ7に
よりパルス信号として送られたものが計数回路8
で合計され、この合計した信号の数により計数回
路8は駆動回路9に信号を送り、駆動回路9はパ
ルスレーザ発振器4からレーザ光5を発射させ
る。このレーザ光5の光路上に反射点3−(i+
1)が来ているのでレーザ光5は反射点3−(i
+1)で反射する。従つてレーザ光5は90度屈折
して穿孔点6−iからピツチPだけ離れた穿孔点
6−(i+1)に反射点の移動と共に移動した集
光レンズ14を通じて投射され、次の細孔が加工
される。この第1の穿孔点6−iと第2の穿孔点
6−(i+1)のピツチPは図示のように平行し
て被加工物6に直交するレーザ光5の間隔であ
る。以下同様にして穿孔点6−i列に細孔群が並
列する。被加工物6に一列の孔をあける場合はこ
れで加工は終る。
As the cylinder 2 rotates, the spiral reflecting surface 3 rotates around the axis of the cylinder 2, so the reflection point is 3-
Move from i in the axial direction of the cylinder. At the same time, cam groove 1
1 sends the cam follower 15 and the lens carriage 13 along the guide bar 12, so that the condenser lens 14 follows the reflection point directly below. When the next reflection point 3-(i+1) rotates onto the optical path of the laser beam 5, from the reflection point 3-i of the cylinder 2 to 3-(i
The rotation angle in the circumferential direction of +1) is sent as a pulse signal by the encoder 7 to the counting circuit 8.
The counting circuit 8 sends a signal to the drive circuit 9 based on the number of the total signals, and the drive circuit 9 causes the pulse laser oscillator 4 to emit the laser beam 5. Reflection point 3-(i+
1) is coming, the laser beam 5 is reflected at the reflection point 3-(i
+1) to reflect. Therefore, the laser beam 5 is refracted by 90 degrees and projected onto the perforation point 6-(i+1), which is a pitch P away from the perforation point 6-i, through the condensing lens 14, which moves with the movement of the reflection point. Processed. The pitch P between the first perforation point 6-i and the second perforation point 6-(i+1) is the distance between the laser beams 5 which are parallel to each other and orthogonal to the workpiece 6 as shown. Thereafter, pore groups are arranged in parallel in the perforation point 6-i row in the same manner. When drilling a row of holes in the workpiece 6, this is the end of the machining.

被加工物6は碁盤目状に細孔をあける場合につ
いてのべれば、円筒2の回転の180度のみについ
て反射面3は被加工物6側へレーザ光を反射する
ので円筒2の180度以内の定められた角、例えば
被加工物6に9個の細孔をあける場合8P間反射
面3が用いられ、反射面3のレーザ光5の反射点
3−iの円筒2の軸方向移動量8Pに対応する円
筒2の回転の角だけ回転するとその次に第3図A
点からB点まで円筒2が同方向に回転する間に被
加工物6を図の紙面に直交する方向に図のピツチ
Pと直角方向の1ピツチ分だけ送る。円筒2は同
方向に回転しているのでスパイラルの反射面が終
る第3図A点からは被加工物6へは反射せず、続
く円筒2の180度の回転により、B点からは再び
反射面3がレーザ光5を受けることが出来る位置
に来りレーザ光5の反射光により被加工物6の平
面図の第4図に示す穿孔点7−iが穿孔され、次
に7−(1+1)の穿孔点が加工され、同様にし
て6−iの穿孔点の列とは同方向に順に7−iの
穿孔点の列に穿孔がされる。かくして穿孔点7−
nに対応する円筒2のつづく回転により、被加工
物6は送られ、次の列の細孔の穿孔が行われる。
In the case where the workpiece 6 has pores in a grid pattern, the reflective surface 3 reflects the laser beam to the workpiece 6 side for only 180 degrees of rotation of the cylinder 2, so the 180 degrees of the cylinder 2 rotates only 180 degrees. For example, when drilling nine pores in the workpiece 6, the reflective surface 3 between 8P is used, and the reflection point 3-i of the laser beam 5 on the reflective surface 3 moves in the axial direction of the cylinder 2. When the cylinder 2 is rotated by the angle of rotation corresponding to the amount 8P, then Fig. 3A
While the cylinder 2 rotates in the same direction from point B to point B, the workpiece 6 is fed in a direction perpendicular to the plane of the drawing by one pitch perpendicular to the pitch P in the drawing. Since the cylinder 2 is rotating in the same direction, it is not reflected to the workpiece 6 from point A in Figure 3, where the reflective surface of the spiral ends, but it is reflected again from point B due to the subsequent 180 degree rotation of the cylinder 2. The surface 3 comes to a position where it can receive the laser beam 5, and the reflected light of the laser beam 5 punches the perforation point 7-i shown in FIG. ) are machined, and similarly, holes are drilled in the row of punching points 7-i in the same direction as the row of punching points 6-i. Thus, drilling point 7-
With the continued rotation of the cylinder 2 corresponding to n, the workpiece 6 is advanced and the next row of holes is drilled.

このようにモータ1は一方向に連続或いは間欠
して回転するので装置は小さくても振動、剛性が
あり、加工時間が短くなり、能率を向上すること
ができるものである。
In this way, the motor 1 rotates continuously or intermittently in one direction, so that even if the device is small, it has vibration and rigidity, shortens machining time, and improves efficiency.

実施例は反射面3を円筒2の端面の中心角180
度の範囲に設けたが、第6図、第7図に示すよう
に中心角360度について設けることも出来る。第
6図は円筒のみを示すが全体の構成は前実施例と
同様である。第6図において反射面3はスパイラ
ルの1リードL分円筒2の端面に形成されてい
る。従つて反射点3−1側の反射面3の限度位置
Cと反射点3−n側の反射面の限度位置Dは円筒
2を軸方向からみた正面図の第4図では一致し、
これら反射面3の限度位置は軸方向にリードL分
だけ異なる位置に有る。カム溝11は反射面3に
90度位相を異にして1リードL分設けられると共
に連結して逆勝手でねじれた1リードL分設け
る。この場合カムフオロワ15はレンズキヤリツ
ジ13に固定した円筒形ピンに船形の滑り子を回
転自在に取付け、該滑り子をカム溝11に移動自
在に嵌める。
In the embodiment, the reflecting surface 3 is set at a central angle of 180 degrees from the end surface of the cylinder 2.
Although the center angle is set within the range of 360 degrees, it is also possible to set the center angle at 360 degrees as shown in FIGS. 6 and 7. Although FIG. 6 shows only the cylinder, the overall structure is the same as that of the previous embodiment. In FIG. 6, the reflective surface 3 is formed on the end face of the cylinder 2 corresponding to one lead L of the spiral. Therefore, the limit position C of the reflection surface 3 on the reflection point 3-1 side and the limit position D of the reflection surface 3 on the reflection point 3-n side match in FIG. 4, which is a front view of the cylinder 2 viewed from the axial direction.
The limit positions of these reflective surfaces 3 are located at positions that differ by the lead L in the axial direction. Cam groove 11 is on reflective surface 3
One lead L is provided with a 90 degree phase difference, and one lead L is connected and twisted in the opposite direction. In this case, the cam follower 15 has a boat-shaped slider rotatably attached to a cylindrical pin fixed to the lens carriage 13, and the slider is movably fitted into the cam groove 11.

実施例は円筒端面をスパイラル状の反射面とし
てあるが、円筒面外周にスパイラル状の突条を反
射面として設けても同様である(第5図参照)。
又、円筒2は片持支持されているが、これを両持
支持することもできる。
In the embodiment, the cylindrical end face is a spiral reflective surface, but the same effect can be obtained by providing a spiral protrusion on the outer periphery of the cylindrical surface as a reflective surface (see FIG. 5).
Furthermore, although the cylinder 2 is supported on one side, it can also be supported on both sides.

実施例は円筒の連続回転の場合をのべたが間欠
回転の場合は細孔の間隔1Pに相当する回転角で
円筒は断続回転する。
In the embodiment, the cylinder is continuously rotated, but in the case of intermittent rotation, the cylinder is intermittently rotated at a rotation angle corresponding to the pore spacing 1P.

実施例は集光レンズの移動手段としてカム装置
を設けてレンズキヤリツジの移動を行つたが、レ
ンズキヤリツジにナツトを固定し、該ナツトに固
設した軸受に支承されガイドバーと平行に配され
た送りねじを係合し、送りねじと円筒との間を例
えば巻掛伝導装置或いは同期電動機で連結しても
よい。又直動流体圧シリンダを用いて投射光のピ
ツチPの間隔でレンズキヤリツジを割出し移動す
るようにしてもよい。
In the embodiment, a cam device was provided as a means for moving the condensing lens to move the lens carriage, but a nut was fixed to the lens carriage, supported by a bearing fixed to the nut, and arranged parallel to the guide bar. The feed screw and the cylinder may be connected by, for example, a winding transmission device or a synchronous motor. Alternatively, a direct-acting hydraulic cylinder may be used to index and move the lens carriage at intervals of the pitch P of the projected light.

この考案は被加工物に一定ピツチで配すべき多
数の細孔をレーザ光を用いて加工するレーザ加工
機において、その軸心を中心に回転するように支
持された円筒を備え、円筒には円筒の軸心を中心
として円筒の軸方向にリードを持つスパイラル状
の反射面が形成され、該反射面は円筒の軸心と平
行する方向から発射されたレーザ光が一定方向に
反射するように円筒外周面とは交叉しており、該
反射面で反射したレーザ光を受ける板に被加工物
を配し、前記レーザ光の発生手段、円筒の回転駆
動装置、被加工物の手前に配した前記円筒の回転
と同期して円筒の軸方向に移動する集光レンズの
移動手段、レーザ光の発生手段と円筒の回転駆動
装置間の制御装置を備えたレーザ加工機としたか
ら、装置は簡易であり、運動が円滑で装置剛性が
小さくても振動等を生じないので装置を小さくで
きる。又加工速度を高速化することが可能とな
り、高能率を計ることができる。実施例は集光レ
ンズの移動をカム装置で駆動しているので移動限
度位置における運動方向の変換を円滑にできる。
This idea was developed for a laser processing machine that uses laser light to process a large number of pores arranged at a constant pitch on a workpiece. A spiral reflecting surface with a lead in the axial direction of the cylinder is formed around the axis of the cylinder, and the reflecting surface reflects laser light emitted from a direction parallel to the axis of the cylinder in a fixed direction. A workpiece is arranged on a plate that intersects with the outer circumferential surface of the cylinder and receives the laser beam reflected by the reflective surface, and the means for generating the laser beam, the cylinder rotation drive device, and the workpiece are arranged in front of the workpiece. Since the laser processing machine is equipped with a means for moving a condensing lens that moves in the axial direction of the cylinder in synchronization with the rotation of the cylinder, and a control device between the means for generating laser light and the rotary drive device for the cylinder, the apparatus is simple. Since the motion is smooth and vibrations do not occur even if the device rigidity is small, the device can be made smaller. Furthermore, it is possible to increase the processing speed and achieve high efficiency. In the embodiment, since the movement of the condensing lens is driven by a cam device, the movement direction can be smoothly changed at the movement limit position.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の実施例の側面図、第2図は
第1図の一部平面図、第3図は反射面を備えた円
筒の斜視図、第4図は被加工物の平面図、第5図
は他の実施例の側面図、第6図は他の実施例の要
部側面図、第7図は第6図の正面図である。 1……モータ、2……円筒、3……反射面、4
……パルスレーザ発振器、5……レーザ光、6…
…被加工物、7……エンコーダ、8……計数回
路、9……レーザ駆動回路、11……カム溝、1
2……ガイドバー、13……レンズキヤリジ、1
4……集光レンズ、15……カムフオロア。
Fig. 1 is a side view of an embodiment of this invention, Fig. 2 is a partial plan view of Fig. 1, Fig. 3 is a perspective view of a cylinder with a reflective surface, and Fig. 4 is a plan view of the workpiece. , FIG. 5 is a side view of another embodiment, FIG. 6 is a side view of essential parts of another embodiment, and FIG. 7 is a front view of FIG. 6. 1... Motor, 2... Cylinder, 3... Reflective surface, 4
...Pulse laser oscillator, 5...Laser light, 6...
... Workpiece, 7 ... Encoder, 8 ... Counting circuit, 9 ... Laser drive circuit, 11 ... Cam groove, 1
2... Guide bar, 13... Lens carriage, 1
4... Condensing lens, 15... Cam follower.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被加工物に一定ピツチで配すべき多数の細孔を
レーザ光を用いて加工するレーザ加工機におい
て、その軸心を中心に回転するように支持された
円筒を備え、円筒には円筒の軸心を中心として円
筒の軸方向にリードを持つスパイラル状の反射面
が形成され、該反射面は円筒の軸心と平行する方
向から発射されたレーザ光が一定方向に反射する
ように円筒外周面とは交叉しており、該反射面で
反射したレーザ光を受ける位置に被加工物を配
し、前記レーザ光の発生手段、円筒の回転駆動装
置、被加工物の手前に配した前記円筒の回転と同
期して円筒の軸方向に移動する集光レンズの移動
手段、レーザ光の発生手段と円筒の回転駆動装置
間の制御装置を備えたレーザ加工機。
A laser processing machine uses laser light to process a large number of pores arranged at a constant pitch on a workpiece, and is equipped with a cylinder that is supported to rotate around its axis. A spiral reflecting surface with a lead in the axial direction of the cylinder is formed with the center as the center, and the reflecting surface is formed on the outer peripheral surface of the cylinder so that the laser beam emitted from the direction parallel to the axis of the cylinder is reflected in a certain direction. A workpiece is placed at a position to receive the laser beam reflected by the reflecting surface, and a means for generating the laser beam, a cylindrical rotation drive device, and a cylinder placed in front of the workpiece are connected to the workpiece. A laser processing machine equipped with a means for moving a condensing lens that moves in the axial direction of a cylinder in synchronization with rotation, a control device between a means for generating laser light, and a rotational drive device for the cylinder.
JP1986167408U 1986-10-30 1986-10-30 Expired JPH0331514Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986167408U JPH0331514Y2 (en) 1986-10-30 1986-10-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986167408U JPH0331514Y2 (en) 1986-10-30 1986-10-30

Publications (2)

Publication Number Publication Date
JPS6371990U JPS6371990U (en) 1988-05-13
JPH0331514Y2 true JPH0331514Y2 (en) 1991-07-04

Family

ID=31099308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986167408U Expired JPH0331514Y2 (en) 1986-10-30 1986-10-30

Country Status (1)

Country Link
JP (1) JPH0331514Y2 (en)

Also Published As

Publication number Publication date
JPS6371990U (en) 1988-05-13

Similar Documents

Publication Publication Date Title
US4160894A (en) Method and apparatus for the focal form cutting of a moving web of material by a laser beam
CN1097501C (en) Perforating device for strip material
US20080307935A1 (en) Method and apparatus for machining roll surface
CN113473868B (en) Online cigarette perforating machine, control system and control method thereof
JPH11114759A (en) Machine tool
JPH0740133A (en) Cutter
JPH0331514Y2 (en)
US5504612A (en) Synchronized XY laser scanner
JP2000158170A (en) Processing head
JPH0493109A (en) Device and method for cutting roller gear cam
JPH0312468Y2 (en)
JPH058072A (en) Laser beam machining method
JPH0317597B2 (en)
JPH05309483A (en) Method and machine for laser beam machining
JPH08132268A (en) Laser beam machining equipment
JPS6318826B2 (en)
JP2989292B2 (en) Cutting method of corrugated fin
JPS6229149B2 (en)
GB2280631A (en) Cutting device
JPS5927993Y2 (en) Laser beam scanning device
JPH088079Y2 (en) Ultrasonic processing machine
JPS62127559A (en) Rectilinear reciprocating device
JPH0248369B2 (en) SENKOSOCHI
JPS58202709A (en) Machining method and device of turbine rotor axial groove
JPH0734680Y2 (en) Print pattern magnification changing device for laser printer