JPH0331476A - Method and device for forming thin film - Google Patents
Method and device for forming thin filmInfo
- Publication number
- JPH0331476A JPH0331476A JP16378889A JP16378889A JPH0331476A JP H0331476 A JPH0331476 A JP H0331476A JP 16378889 A JP16378889 A JP 16378889A JP 16378889 A JP16378889 A JP 16378889A JP H0331476 A JPH0331476 A JP H0331476A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- substrate
- reaction chamber
- transition metal
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 76
- 238000006243 chemical reaction Methods 0.000 claims abstract description 46
- 230000003213 activating effect Effects 0.000 claims abstract description 9
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 8
- 150000003624 transition metals Chemical class 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 132
- 239000002994 raw material Substances 0.000 claims description 32
- 150000003623 transition metal compounds Chemical class 0.000 claims description 19
- 230000004913 activation Effects 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000010408 film Substances 0.000 abstract description 44
- 238000001179 sorption measurement Methods 0.000 abstract 1
- 239000007858 starting material Substances 0.000 abstract 1
- 230000008021 deposition Effects 0.000 description 14
- 238000007086 side reaction Methods 0.000 description 14
- 229910052721 tungsten Inorganic materials 0.000 description 13
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 11
- 239000010937 tungsten Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910021332 silicide Inorganic materials 0.000 description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- DJCDXWHFUVBGLR-UHFFFAOYSA-N CCO[Ta] Chemical compound CCO[Ta] DJCDXWHFUVBGLR-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- -1 MoF Chemical class 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- YXPHMGGSLJFAPL-UHFFFAOYSA-J tetrabromotungsten Chemical compound Br[W](Br)(Br)Br YXPHMGGSLJFAPL-UHFFFAOYSA-J 0.000 description 1
- YOUIDGQAIILFBW-UHFFFAOYSA-J tetrachlorotungsten Chemical compound Cl[W](Cl)(Cl)Cl YOUIDGQAIILFBW-UHFFFAOYSA-J 0.000 description 1
- 229910021350 transition metal silicide Inorganic materials 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は原料ガスの供給部分を改良した薄膜形成方法及
び薄膜形成装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a thin film forming method and a thin film forming apparatus in which the raw material gas supply section is improved.
(従来の技術)
近年、コンピュータや通信機器から家電製品に至るまで
電気系の重要部分に半導体からなる大規模集積回路(L
SI)が使用されている。このLSIは、数ミリ角の半
導体基板上に形成された素子や配線等から構成されてい
る。これらのLSIは多くの要望に応えるため増々高集
積化される傾向にあるため、この素子や配線はより微細
に形成される必要が生じている。これらの素子や配線は
金属や絶縁物の薄膜形成工程を経て形成されるが、この
微細化に伴って、被覆性に優れかつ、良好な膜質を得る
ための制御や、膜厚の精密な制御等の必要が生じている
。このため多数のウェハ上に同時に薄膜を形成するバッ
チ式から少数枚のウェハを処理する制御性に優れた少数
バッチ式あるいは枚葉式の薄膜形成装置で薄膜形成する
事が行われる様になってきた。この薄膜形成装置のうち
。(Prior art) In recent years, large-scale integrated circuits (L) made of semiconductors have been used in important parts of electrical systems, from computers and communication equipment to home appliances.
SI) is used. This LSI is composed of elements, wiring, etc. formed on a semiconductor substrate several millimeters square. Since these LSIs tend to be more and more highly integrated in order to meet many demands, it has become necessary for these elements and wiring to be formed more finely. These elements and wiring are formed through a process of forming thin films of metals and insulators, but with this miniaturization, control to obtain excellent coating properties and good film quality, and precise control of film thickness are required. There is a need for such things. For this reason, thin film formation has shifted from batch-type systems that simultaneously form thin films on a large number of wafers to small-batch-type or single-wafer-type thin film forming systems that process a small number of wafers and have excellent controllability. Ta. Of this thin film forming device.
広く知られているコールドウオール形のタングステン膜
の形成装置を第6図に示して説明する。A widely known cold wall type tungsten film forming apparatus will be described with reference to FIG.
先ずωはシリコン基板であり、基板支持具■に載置され
ている。またこの基板(υは基板支持具■内に設けられ
たヒーター■により加熱される様になっている。に)は
この基板■と基板支持具■を収容する反応室である。
(9x)、(9□)、 (93)は基板(1)上に形成
するタングステン膜の原料となるガスをこの反応室に)
内に供給する配管であり、この夫々の配管には所望に応
じて原料ガス導入の供給或はカットを行うための開閉バ
ルブ(7□)、 (7,)、 (7,)が設けられてい
る。 (81)、 (as)は反応室内のガスの排気を
行うための排気口である。First, ω is a silicon substrate, which is placed on a substrate support ①. Further, this substrate (υ is heated by a heater (2) provided in the substrate support (2)) is a reaction chamber that accommodates this substrate (2) and the substrate support (2).
(9x), (9□), (93) are gases that will be the raw material for the tungsten film to be formed on the substrate (1) into this reaction chamber)
Each of these pipes is equipped with an on-off valve (7□), (7,), (7,) for supplying or cutting the raw material gas introduction as desired. There is. (81) and (as) are exhaust ports for exhausting gas in the reaction chamber.
一般にこの様な装置で化量的気相成長法(CVD)によ
りタングステン膜を形成するには、基板ωを基板支持具
■にセットした状態で配管(9つ)から例えば水素(H
2)ガスを流量500 cc/分で反応室に)に導入し
、基板ωの温度が所望の温度に安定するまで放置する。Generally, in order to form a tungsten film by quantitative vapor deposition (CVD) using such an apparatus, for example, hydrogen (H
2) Gas is introduced into the reaction chamber at a flow rate of 500 cc/min and left until the temperature of the substrate ω stabilizes at a desired temperature.
基板温度が所望の温度例えば300℃で安定した後、原
料ガス例えば、六フッ化タングステン(W F、)を配
管(9□)から、 またシランガス(SiH,)を配管
(9,)から夫々流量10cc/分にて反応室に)に導
入する。この時反応室6)内の圧力は例えば0.3 T
orrに保っておく。この様にする事で、夫々の原料ガ
スが基板ωに吸着した後基板の熱によって活性化して化
学反応を起こす、これによりタングステン(W)膜が基
板0表面に500人/分の速さで成長する。After the substrate temperature has stabilized at a desired temperature, e.g. 300°C, the raw material gas, e.g., tungsten hexafluoride (WF, ), is supplied from the pipe (9□), and the silane gas (SiH,) is supplied from the pipe (9,) at a flow rate. ) into the reaction chamber at 10 cc/min. At this time, the pressure inside the reaction chamber 6) is, for example, 0.3 T.
Keep it at orr. By doing this, each raw material gas is adsorbed onto the substrate ω and then activated by the heat of the substrate to cause a chemical reaction, which causes a tungsten (W) film to be deposited on the surface of the substrate at a rate of 500 per minute. grow up.
しかしながら、この様な薄膜形成装置は一回の膜形成操
作において処理できる枚数が少ないという根本的な問題
の他に、膜形成反応の反応収率が悪く堆積速度が低い事
に起因して、スルーブツトが低いという問題があった。However, in addition to the fundamental problem that such thin film forming equipment can process only a small number of sheets in a single film forming operation, it also has problems with throughput due to poor reaction yield of the film forming reaction and low deposition rate. There was a problem of low
即ち、実際に基板上で反応する六フッ化タングステン(
wps)は反応室に)へ導入された量の100分の1以
下であるため、薄膜の堆積に時間を要するのである。こ
の問題を解決するために反応ガスの供給量を増加すれば
良いのだが、しかしそうするとこんどは排気系へ大きな
負担を与えしかもゴミが増大し、半導体プロセスで使用
可能な水準のタングステン膜を形成できず、良好な素子
が得られないといった問題が生じてしまう、この様な問
題は、タングステン以外の他の遷移金属膜の形成或は遷
移金属の硅化物膜の形成等にも同様に生じる。That is, tungsten hexafluoride (
wps) is less than 1/100 of the amount introduced into the reaction chamber (), so it takes time to deposit the thin film. In order to solve this problem, it would be possible to increase the amount of reactant gas supplied, but this would put a heavy burden on the exhaust system and increase the amount of dust, making it impossible to form a tungsten film of a level that can be used in semiconductor processes. First, a problem arises in that a good element cannot be obtained.Such a problem also occurs in the formation of a transition metal film other than tungsten or in the formation of a transition metal silicide film.
(発明が解決しようとする課題)
以上説明した様に、従来の薄膜形成装置は反応収率が低
い事に起因して膜の堆積速度が遅く、そのためスループ
ットが低いという問題があった。(Problems to be Solved by the Invention) As explained above, conventional thin film forming apparatuses have a problem of slow film deposition rate due to low reaction yield, and therefore low throughput.
またスループットを向上できても形成する膜の膜質が良
好でないという問題があった。Further, even if the throughput can be improved, there is a problem that the quality of the formed film is not good.
本発明は上記問題点に鑑みなされたもので、スループッ
トが極めて高く、シかも、膜質の良好な薄膜を形成でき
る薄膜形成方法を提供することを第1の目的とする。The present invention has been made in view of the above-mentioned problems, and a first object thereof is to provide a thin film forming method capable of forming a thin film with extremely high throughput and good film quality.
また、この様な薄膜形成方法を容易に実施することので
きる薄膜形成装置を提供することを第2の目的とする。A second object of the present invention is to provide a thin film forming apparatus that can easily carry out such a thin film forming method.
(課題を解決するための手段)
上記問題点を解決するために、第1の発明は被加工基板
を加熱する工程と、前記基板を加熱した状態で前記基板
表面に遷移金属化合物ガス及びこのガスと反応するガス
を吸着させて前記基板の熱で化学反応を起こす事により
前記基板表面に遷移金属を含む薄膜を形成する工程とを
備える薄膜形成方法において、前記遷移金属化合物ガス
を前記基板に吸着する前に予め活性化しておく事を特徴
とする薄膜形成方法を提供するものである。(Means for Solving the Problems) In order to solve the above-mentioned problems, a first invention includes a step of heating a substrate to be processed, and applying a transition metal compound gas to the surface of the substrate while the substrate is heated. and forming a thin film containing a transition metal on the surface of the substrate by adsorbing a gas that reacts with the substrate and causing a chemical reaction with the heat of the substrate, the transition metal compound gas being adsorbed onto the substrate. The present invention provides a method for forming a thin film, which is characterized in that it is activated in advance.
また第2の発明は被加工基板を載置する基板支持手段と
、この被加工基板を加熱する加熱手段と、前記被加工基
板及び前記基板支持手段を収容する反応室と、前記被加
工基板上に形成する遷移金属を含んだ薄膜の原料となる
複数のガスを前記反応室内に夫々供給する複数のガス供
給手段と、前記反応室内を排気する排気手段とを備えた
薄膜形成装置において、前記ガス供給手段に設けられ前
記原料ガスのうち遷移金属化合物ガスを前記反応室に導
入する前に予め活性化するガス活性化手段を具備する事
を特徴とする薄膜形成装置を提供するものである。Further, a second invention provides a substrate supporting means for placing a substrate to be processed, a heating means for heating the substrate to be processed, a reaction chamber for accommodating the substrate to be processed and the substrate supporting means, and a substrate supporting means for placing the substrate to be processed. A thin film forming apparatus comprising: a plurality of gas supply means for respectively supplying a plurality of gases, which are raw materials for a thin film containing a transition metal to be formed into the reaction chamber; and an exhaust means for exhausting the inside of the reaction chamber. There is provided a thin film forming apparatus characterized in that the supply means is provided with a gas activation means for activating a transition metal compound gas among the raw material gases before introducing it into the reaction chamber.
(作 用)
本発明では、原料ガスつまり遷移金属化合物ガス及びこ
のガスと反応するガスのうち遷移金属化合物ガスの方を
基板上に吸着させる前に予めガス活性化手段によりこれ
を活性化しておく。これにより、従来原料ガスを基板上
に吸着させた後基板の熱により活性化していた場合と比
べ1本発明では基板の熱による活性化に加えて予めガス
を活性化しているため、活性種の基板上での濃度が高く
なる。このため、同−景の原料ガスを反応室に導入した
場合でも、基板表面に吸着した多量の原料ガスによる反
応の進行が起きつまり反応収率が上がって、膜の堆積速
度が向上する。(Function) In the present invention, of the raw material gas, that is, the transition metal compound gas, and the gas that reacts with this gas, the transition metal compound gas is activated by a gas activation means before being adsorbed onto the substrate. . As a result, compared to the conventional case in which raw material gas was adsorbed onto the substrate and then activated by the heat of the substrate, the present invention activates the gas in advance in addition to the activation by the heat of the substrate. The concentration on the substrate becomes higher. Therefore, even when the same raw material gas is introduced into the reaction chamber, the reaction progresses due to the large amount of raw material gas adsorbed on the substrate surface, which increases the reaction yield and improves the film deposition rate.
ここで遷移金属化合物ガスの方を活性化しておく理由は
、このガスがこれと反応するガス例えば水素化物に比べ
、最終生成物(遷移金属)になるまでに極めて多くのエ
ネルギーを必要とするため、遷移金属化合物ガスの活性
化率が膜形成速度に大きく影響しており、そのため遷移
金属化合物ガスの方を予め活性化し、ておくことで膜の
堆積速度を効果的に向上できるからである0種々の実験
の結果、遷移金属化合物ガスを活性化しておく方が、こ
れと反応するガスを活性化するより、膜の堆積速度が極
めて大きくできる事が判った。また遷移金属化合物ガス
は、それ自体活性化してもこれと反応するガスに比べ極
めて堆積物が生じにくい事が判明し、この点からも遷移
金属化合物ガスの方を予め活性化するのが良い事も判っ
た。The reason why the transition metal compound gas is activated is because this gas requires significantly more energy to become the final product (transition metal) than the gas that reacts with it, such as a hydride. This is because the activation rate of the transition metal compound gas has a large effect on the film formation rate, and therefore the film deposition rate can be effectively improved by activating the transition metal compound gas in advance. As a result of various experiments, it has been found that activating the transition metal compound gas can significantly increase the film deposition rate than activating the gas that reacts with the transition metal compound gas. In addition, it has been found that even when transition metal compound gases are activated themselves, deposits are much less likely to form than the gases that react with them, and from this point of view, it is better to activate transition metal compound gases in advance. I also understood.
(実施例) 本発明の詳細を実施例により説明する。(Example) The details of the present invention will be explained by examples.
夷工■失豊■
本発明の第1の実施例に係る薄膜形成装置を第1図に示
す、第6図に示した従来の装置と同一箇所は同一番号を
附した。以下では従来の装置と異なる所を中心に説明す
る。(5□L (52)は副反応室であり、原料ガスの
活性化を行う所である。0は活性化した原料ガスの流量
を制御するためのオリフィスである。またこのオリフィ
スを境に副反応室(5L)側の圧力を主反応室(イ)側
より高め、その圧力差でガスを主反応室に)へ送る様に
している。A thin film forming apparatus according to a first embodiment of the present invention is shown in FIG. 1, and the same parts as the conventional apparatus shown in FIG. 6 are given the same numbers. The following will focus on the differences from conventional devices. (5□L (52) is a side reaction chamber, where the raw material gas is activated. 0 is an orifice for controlling the flow rate of the activated raw material gas. The pressure on the reaction chamber (5L) side is higher than on the main reaction chamber (a) side, and the pressure difference is used to send gas to the main reaction chamber.
(7,)は、(7□)、(7□)、 (7,)と同様の
開閉バルブである。(7,) is an on-off valve similar to (7□), (7□), and (7,).
次に、この装置を使用して基板ω上に金属膜を堆積形成
する場合について説明する。Next, a case will be described in which a metal film is deposited on the substrate ω using this apparatus.
先ず、原料ガス例えば六フッ化タングステン(wFs)
の入ったガスボンベ(図示せず)に接続された開閉バル
ブ(71)を開き、配管(9□)を通してWF、ガスを
副反応室(51)に導入する。副反応室(5,)はガス
を励起するための手段例えばマイクロ波放電が行える様
になっている。ここではこの副反応室(51)自体がマ
イクロ波放電管になっている。First, a raw material gas such as tungsten hexafluoride (wFs) is used.
An on-off valve (71) connected to a gas cylinder (not shown) containing WF is opened, and WF and gas are introduced into the side reaction chamber (51) through the pipe (9□). The side reaction chamber (5,) is equipped with a means for exciting the gas, for example a microwave discharge. Here, this side reaction chamber (51) itself is a microwave discharge tube.
この管は例えば直径は2 cs 、放電領域は53であ
る。この副反応室(5□)にて放電時圧力0.6Tor
r。This tube has, for example, a diameter of 2 cs and a discharge area of 53. The pressure during discharge in this side reaction chamber (5□) is 0.6 Tor.
r.
マイクロ波周波数2.45GHz、マイクロ波出力50
0すの放電を行って、WF、ガスを活性化し、流ml。Microwave frequency 2.45GHz, microwave output 50
Activate the WF gas by discharging 0 ml.
cc/分にて主反応室(イ)に導入する。この様な条件
にてWF、ガスを活性化したが放電管内或は配管(9□
)等にはWやWのフッ化物等の堆積物は見られなかった
。cc/min into the main reaction chamber (a). The WF and gas were activated under these conditions, but the inside of the discharge tube or piping (9□
), etc., no deposits of W or W fluoride were found.
一方、これと同時に、原料ガス例えばシラン(SiH,
)の入ったガスボンベ(図示せず)に接続された開閉バ
ルブ(7,)及び、水素(H2)ガスの入ったガスボン
ベ(図示せず)に接続された開閉バルブ(74)を夫々
開き、 SiH,ガス及びH2ガスを夫々流量10cc
7分及び500cc 7分にて主反応室に)に導入す
る。この際の主反応室に)内の圧力は0.3Torr、
シリコン基板■の温度は例えば300℃にしておく
。On the other hand, at the same time, the raw material gas such as silane (SiH,
) and the on-off valve (74) connected to a gas cylinder (not shown) containing hydrogen (H2) gas, respectively, are opened. , gas and H2 gas at a flow rate of 10cc each.
7 minutes and 500cc into the main reaction chamber at 7 minutes). At this time, the pressure inside the main reaction chamber was 0.3 Torr,
The temperature of the silicon substrate (2) is set to, for example, 300°C.
この様に活性化した原料ガスを主反応室に導入する事で
、基板ω上にタングステン(W)が堆積速度1500人
/分にて所望の部分のみに選択成長した。この成長速度
は、第6図で示した従来の装置を用いて同一のガス(W
F、等)流量でW膜を形成した場合と比べ、3倍にな
った。これにより、−枚当たりの薄膜形成に要する時間
も従来と比べ1/3倍に向上するため、大幅なスループ
ットの向上が可能となる。しかも、この実施例のW膜を
電子顕微鏡で観察したところ、従来と同様に欠陥が少な
く良好なものである事が判った。By introducing the raw material gas activated in this manner into the main reaction chamber, tungsten (W) was selectively grown only in desired portions on the substrate ω at a deposition rate of 1500 persons/min. This growth rate was determined using the same gas (W) using the conventional apparatus shown in FIG.
F, etc.) The flow rate was three times that of the case where a W film was formed. As a result, the time required to form a thin film per sheet is increased by 1/3 compared to the conventional method, and therefore, it is possible to significantly improve throughput. Furthermore, when the W film of this example was observed using an electron microscope, it was found that it was good with few defects, similar to the conventional film.
ここで、原料ガスの流量を変え1種々の条件にしてこの
活性化を行ったところ1次の事が判った。Here, when this activation was performed under various conditions by changing the flow rate of the raw material gas, the following was found.
■安定な流量或は放電を得るために、 キャリアガスと
して不活性ガス例えばAr等でWF、を希釈しても、同
様の効果が得られた。■WF、の副反応室(51)への
導入量を100cc/分に高め、これに伴って放電時圧
力を0.8Torr、マイクロ波出力を800wに夫々
高めることによって主反応室に)内の活性種の濃度を高
めた場合には、Wの堆積速度はさらに速くなり、基板全
面へ非選択に膜が成長した。(2) A similar effect was obtained even when WF was diluted with an inert gas such as Ar as a carrier gas in order to obtain a stable flow rate or discharge. ■By increasing the amount of WF introduced into the side reaction chamber (51) to 100 cc/min, and increasing the discharge pressure to 0.8 Torr and the microwave output to 800 W, the amount of WF in the main reaction chamber When the concentration of active species was increased, the deposition rate of W became even faster, and a film non-selectively grew over the entire surface of the substrate.
夏λ!す11舛
この実施例は、金属化合物ガスと共にこのガスと反応す
るガスも活性化したものである。先の実施例と同様に活
性化した六フッ化タングステン(w F@)を主反応室
(至)に導入すると共に、水素(H2)とシラン(S
i H4)の混合ガスを開閉バルブ(9,)から配管(
9,)を通して副反応室(52)へ導入する。この際、
副反応室(5,)への夫々のガスの流量は1例えばH,
ガスが500cc/分、SiH,ガスが10cc/分で
ある。 この副反応室(52)は加熱手段例えば熱交換
部分の表面積が約100dで内径31の内筒形ヒーター
を備えており、これ自体が予備加熱室となっている。こ
の加熱室の壁温を例えば100℃〜500℃にすること
により、 SiH,ガス及びH2ガスは活性化する。Summer lambda! In this embodiment, a gas that reacts with the metal compound gas is also activated. As in the previous example, activated tungsten hexafluoride (w F@) was introduced into the main reaction chamber (to), and hydrogen (H2) and silane (S
i H4) mixed gas from the on-off valve (9,) to the pipe (
9,) into the side reaction chamber (52). On this occasion,
The flow rate of each gas to the side reaction chamber (5,) is 1, for example H,
The gas rate is 500 cc/min, and the SiH gas rate is 10 cc/min. This side reaction chamber (52) is equipped with heating means, for example, an inner cylindrical heater with a heat exchange portion having a surface area of about 100 d and an inner diameter of 31, and serves as a preheating chamber itself. By setting the wall temperature of this heating chamber to, for example, 100°C to 500°C, SiH, gas, and H2 gas are activated.
これらの活性化したガスを配管(9,)を通して主反応
室に)に導入すると共に、活性化したWF、ガスを配管
(91)を通して同様に主反応室に)に導入する。この
様にして活性化した原料ガスを導入しても予備加熱室の
内壁或は配管(92)に堆積物は見られなかった。この
後は、第1の実施例同様に基板の温度、室内の圧力を設
定する事により、全く同様の効果が得られた。These activated gases are introduced into the main reaction chamber through the pipe (9,), and the activated WF and gas are similarly introduced into the main reaction chamber through the pipe (91). Even when the raw material gas activated in this manner was introduced, no deposits were observed on the inner wall of the preheating chamber or on the pipe (92). After this, by setting the temperature of the substrate and the pressure in the room in the same manner as in the first embodiment, exactly the same effect was obtained.
第2図は、この実施例におけるガスの予備加熱による作
用を示すもので、 SiH,ガス及びH,ガスの予備加
熱温度に対するW膜の堆積速度を表わす、−會一印はW
FGガスを活性化せずに行なったもの、 また−〇−印
は、先述した方法によりWF、を活性化させて行ったも
のである。 この図から明らかな如く、予備加熱を行う
ことにより、Wの堆積速度が向上する事が判った。また
。Figure 2 shows the effect of preheating the gas in this example, and shows the deposition rate of the W film with respect to the preheating temperature of SiH, gas, and H gas.
The test was carried out without activating the FG gas, and the -0- mark indicates the test carried out by activating the WF using the method described above. As is clear from this figure, it was found that the deposition rate of W was improved by performing preheating. Also.
SiH,ガス及びH2ガスの活性化に加えて、WF。In addition to activation of SiH, gas and H2 gas, WF.
ガスの活性化を行うことにより、堆積速度がより一層向
上する事が判った。It was found that the deposition rate was further improved by activating the gas.
星主夏失産■
本実施例は、先の第1及び第2の実施例の如く所望の膜
厚を得るのが短時間になった事に伴い、装置のバルブ等
の操作によるタイミングのズレによって生じる制御性の
悪さに答えたものである。■ In this example, as in the first and second examples, it took a shorter time to obtain the desired film thickness, so there was a timing lag due to the operation of the valves of the device, etc. This is in response to the poor controllability caused by
これは、WF、ガスと、SiH,及びH2ガスの2種類
のガスを交互に主反応室に)に導入するというもので、
ガスをパルス状に導入する事(ここでのパルス数をガス
パルス数と呼ぶ)により膜厚の精密な制御を行う0本実
施例によれば、1−厚を目標にWF、ガスと、SiH,
及びH2の混合ガスを各々2×10″”ats+のガス
パルスとし、交互に主反応室に)に導入してW膜を形成
した。成膜のその他の条件は第1の実施例と同様に行っ
た。その結果数十枚の基板の平均膜厚のバラツキ〔(最
大値−最小値)/(平均値)×2〕を測定したところ、
ガスパルス数により膜厚制御を行わない場合には、この
バラツキが15%程度であったのが、この制御を行った
場合には、8%と低くなっており、ガスをパルス状に導
入する事で膜厚の制御性が向上する事が判った。This involves alternately introducing two types of gases: WF, gas, and SiH, and H2 gas into the main reaction chamber.
According to this embodiment, the film thickness is precisely controlled by introducing gas in a pulsed manner (the number of pulses here is called the number of gas pulses). WF, gas, SiH,
A mixed gas of 2 x 10'' ats+ and H2 was alternately introduced into the main reaction chamber to form a W film. Other conditions for film formation were the same as in the first example. As a result, we measured the variation in the average film thickness of several dozen substrates [(maximum value - minimum value)/(average value) x 2].
When the film thickness was not controlled by the number of gas pulses, this variation was about 15%, but when this control was performed, it was as low as 8%, and it was found that the variation was as low as 8% when the gas was introduced in a pulsed manner. It was found that the controllability of film thickness was improved.
1生勿失旌■
本実施例は、第1図に示す装置を用いて金属シリサイド
を形成するものである。副反応室(51)にWF、を流
量LOOcc/分で導入し、放電時圧力0.8Torr
、マイクロ波出力800wの条件で活性化した後、これ
をそのままオリフィス■を通して主反応室に)に導入す
る。これと同時に、SiH4ガスを主反応室に)に流量
200cc/分にて導入する。H3は導入せず、基板温
度は例えば300℃にしておく、その他の条件は第1の
実施例と同様にした。In this example, metal silicide is formed using the apparatus shown in FIG. WF was introduced into the side reaction chamber (51) at a flow rate of LOOcc/min, and the pressure during discharge was 0.8 Torr.
, and then activated under the conditions of microwave output of 800 W, and then introduced as it is into the main reaction chamber through orifice (2). At the same time, SiH4 gas was introduced into the main reaction chamber at a flow rate of 200 cc/min. Other conditions were the same as in the first example, except that H3 was not introduced and the substrate temperature was, for example, 300°C.
以上の様に行うこ”とで、タングステンシリサイド(W
S i工)膜がシリコン基板■上に活性化を行なわな
い場合に比べ約2倍の堆積速度で成長した。By doing as above, tungsten silicide (W
The Si engineering) film grew at about twice the deposition rate on the silicon substrate (2) compared to the case where no activation was performed.
ニーの様に、金属シリサイド膜を形成した場合にも、第
1の実施例と同様の効果を得た。Even when a metal silicide film was formed as in the knee, the same effect as in the first example was obtained.
簸旦立末凰孤
この実施例は、原料ガスを高周波(RF)放電や光照射
等の別の手段により活性化させる様にした点に特徴があ
る。第1の方法では、副反応室(5,)内に平行平板電
極(電極間隔21)を設け。This embodiment is characterized in that the raw material gas is activated by another means such as radio frequency (RF) discharge or light irradiation. In the first method, parallel plate electrodes (electrode spacing 21) are provided in the side reaction chamber (5,).
この中にW’F、ガスを流量10cc/分で導入する。W'F gas was introduced into this at a flow rate of 10 cc/min.
そして圧力0.6Torr、周波数13.56阿Hz、
RF出力200vの条件にて放電を行う。これによ
りガスをプラズマ化しながら、これを主反応室に)に導
入する。これと共に、圧力0.3Torr、 SiH4
ガスを10cc/分、H2ガスを500cc/分の夫々
の流量にて主反応室に)内へ導入する0以上の様にする
事でタングステン膜が1200人/分の堆積速度でシリ
コン基板■の所望箇所に選択成長した。また、膜質も良
好であった。ここに示したちの以外の条件は、実施例1
と同様にした。これにより、RF放電による活性化が有
効であることが判った。この場合にも副反応室内に堆積
物が生じることはなかった。第2の方法ではこれと全く
同様の事を、RF放電の代わりに石英窓と赤外光カット
フィルターを通し500v水銀ランプ光をガス流路に照
射して行った。つまり、この光によってWF、を活性化
させた。この場合も、タングステン膜が800人/分の
成長速度で選択成長した。これにより、光照射による活
性化の効果が判明した。さらにこの光照射による場合に
は、赤外光カットフィルターをとりのぞき特に赤外光を
照射する事により副反応室(51)の室壁を加熱するこ
とによって、さらにガスの活性化を施すことができ、タ
ングステンの堆積速度はtooo人/分にも向上できる
事が判った。And the pressure is 0.6 Torr, the frequency is 13.56 Hz,
Discharge is performed under the condition of RF output of 200V. As a result, the gas is turned into plasma and introduced into the main reaction chamber. Along with this, the pressure is 0.3 Torr, SiH4
By introducing gas into the main reaction chamber at a flow rate of 10 cc/min and H2 gas at a flow rate of 500 cc/min, the tungsten film was deposited on the silicon substrate at a deposition rate of 1200 cc/min. Selectively grown in the desired location. Moreover, the film quality was also good. Conditions other than those shown here are those of Example 1.
I did the same thing. This revealed that activation by RF discharge is effective. In this case as well, no deposits were generated in the side reaction chamber. In the second method, exactly the same thing was done by irradiating the gas flow path with 500V mercury lamp light through a quartz window and an infrared cut filter instead of RF discharge. In other words, this light activated WF. In this case as well, the tungsten film was selectively grown at a growth rate of 800 people/min. This revealed the activation effect of light irradiation. Furthermore, in the case of this light irradiation, the gas can be further activated by removing the infrared light cut filter and heating the chamber wall of the side reaction chamber (51) by specifically irradiating the infrared light. It was found that the tungsten deposition rate could be improved to 100 people/minute.
以上の第1〜第5の実施例は、以下の様にしても良い事
が1種々の実験の結果判った。As a result of various experiments, it has been found that the above-described first to fifth embodiments may be modified as follows.
■ 原料ガスのうち、遷移金属化合物ガスは。■ Of the raw material gases, transition metal compound gases.
WF、に限るものではなく、 タングステンの他のハロ
ゲン化物、例えば塩化タングステン(wag、)。WF, but also other halides of tungsten, such as tungsten chloride (wag).
臭化タングステン(W B r、 )等を用いても良く
。Tungsten bromide (WBr, ) or the like may also be used.
さらには他の高融点金属のハロゲン化物例えばMoF、
、(MoF、)4.(MoCQs)2等を用いても構わ
ない。また、原料ガスに高融点金属以外の遷移金属化合
物ガス例えばエトキシタンタルTa(Oc2Hs)sを
用いて酸化タンタル膜を形成する場合にも本発明は適用
できる。Furthermore, halides of other high melting point metals such as MoF,
, (MoF,)4. (MoCQs)2 or the like may be used. Further, the present invention can also be applied to the case where a tantalum oxide film is formed using a transition metal compound gas other than a high-melting point metal as a raw material gas, such as ethoxytantalum Ta (Oc2Hs)s.
■ 一方、原料ガスのうち、上述した遷移金属化合物ガ
スと反応するガスは、 SiH4やH2に限るものでは
なく、他の水素化物例えばSi、H,。(2) On the other hand, among the raw material gases, the gas that reacts with the above-mentioned transition metal compound gas is not limited to SiH4 or H2, but may include other hydrides such as Si, H, etc.
B z Ha −P Hsを用いても良い、 また、金
属の酸化膜例えば酸化タングステン(W Ox )膜を
形成する場合には、これらの水素化物ガスと同様にして
酸素(02)ガスを用いても構ねない。BzHa-PHs may be used. Also, when forming a metal oxide film, such as a tungsten oxide (WOx) film, oxygen (02) gas may be used in the same manner as these hydride gases. I don't mind.
蒐旦豊失庶■
この実施例に係る薄膜形成装置を第3図のその要部構成
図に沿って説明する。この装置は主反応室内に載置され
た基板に対してどの様に活性化した原料ガスを当てるか
について工夫したものである− (3OZ)は予め活
性化した原料ガスを主反応室に)内に通す配管であり、
(31)はこの配管(3Ot )の先端に設けられ
たリング状のノズル(第3図0はその平面図)である、
このノズル(31)にはガスの吹き出し口(32)が下
方に向けて設けられている。The thin film forming apparatus according to this embodiment will be explained with reference to the main part configuration diagram shown in FIG. 3. This device is designed to determine how activated raw material gas is applied to the substrate placed in the main reaction chamber. It is a pipe that runs through the
(31) is a ring-shaped nozzle (Fig. 3 0 is a plan view thereof) installed at the tip of this pipe (3Ot).
This nozzle (31) is provided with a gas outlet (32) facing downward.
(30□)は(30,)によって導入されるガスと異な
る種類のガスを主反応室に)内に導入する配管であり。(30□) is a pipe that introduces a different type of gas from the gas introduced by (30,) into the main reaction chamber.
導入するガスは活性化していない方が好ましいが、して
いても差し支えない。この様な構成にすることによって
、ノズル(31)から基板0表面に均一に原料ガスを吹
き付けることができるため、基板(1)表面に均一膜厚
の薄膜を形成することができる。Although it is preferable that the gas introduced is not activated, there is no problem even if it is activated. With this configuration, the raw material gas can be uniformly sprayed from the nozzle (31) onto the surface of the substrate 0, so that a thin film with a uniform thickness can be formed on the surface of the substrate (1).
これは次の様な理由による。つまり活性化していない原
料ガスは、基板に吸着した後基板の温度により活性化す
るため、基板上の活性種の濃度のバラツキは小さい、と
ころが予め活性化しておいた原料ガスを基板ωに吹き付
けた場合には、吹き付けた量に応じて基板上の活性種の
濃度が敏感に変化する。このため、堆積速度が場所によ
り異なりやすくなり、基板面内におけるバラツキが大き
くなりやすい、従って均一な膜厚にて成膜するには、基
板0表面に原料ガスを均等に吹き付ける必要があるので
ある。This is due to the following reasons. In other words, the unactivated raw material gas is activated by the temperature of the substrate after being adsorbed onto the substrate, so the variation in the concentration of active species on the substrate is small.However, when the raw material gas that has been activated in advance is blown onto the substrate ω. In some cases, the concentration of active species on the substrate changes sensitively depending on the amount sprayed. For this reason, the deposition rate tends to vary depending on the location, and variations within the substrate surface tend to increase.Therefore, in order to form a film with a uniform thickness, it is necessary to spray the raw material gas evenly onto the surface of the substrate 0. .
第4匠
第4図は本実施例に係る薄膜形成装置の要部断面図であ
る。以下の実施例では、第6の実施例と同様の理由によ
り基板■に均一にガスを吹き付ける様にしたものである
。(40□)、 (40□)は配管である。 また、(
41□)は活性化した原料ガスを基板の表面に均一に吹
き付けるためのノズルであり、円すい形でその底には多
数の穴がほぼ均一な間隔で開いている− (’tx*
’)もノズルであり、この円すい形ノズル(4tZ)を
中心に対称な位置に配置されている。ここでは2本示し
ているが、これ以上の被数本設ける方が好ましい、ここ
から吹き出すガスは、 円すい形ノズル(41□)から
出すガスと反応する異種のガスであり、また活性化して
いない方が好ましい、この様に構成する事によっても第
6の実施例と同様の効果が得られる。4th Artisan FIG. 4 is a sectional view of essential parts of the thin film forming apparatus according to this embodiment. In the following embodiments, gas is uniformly sprayed onto the substrate (1) for the same reason as in the sixth embodiment. (40□) and (40□) are piping. Also,(
41□) is a nozzle for spraying activated raw material gas uniformly onto the surface of the substrate. It is conical in shape and has many holes at almost uniform intervals at the bottom.
') is also a nozzle, and is arranged at symmetrical positions with this conical nozzle (4tZ) as the center. Although two are shown here, it is preferable to provide more than this.The gas blown out from these is a different type of gas that reacts with the gas coming out from the conical nozzle (41□), and is not activated. This is more preferable, and by configuring it in this way, the same effects as in the sixth embodiment can be obtained.
簸旦夏尖豊■
第5図はこの実施例に係る薄膜形成装置の断面図である
。(41ユ)は活性化した原料ガスを、ヒーター■上に
載置された複数の基板0表面に均一に吹き付けることの
できるノズルである。またこのノズル(411)は先端
にいくほど多くの開孔が設けられており、先端に近い基
板■はど多くのガスを吹き付ける様にしている。これに
よりガス導入側より排気側の温度が低い温度勾配がつい
ていても全てのウェハー面に均一な速度で膜形成が可能
である。Figure 5 is a sectional view of the thin film forming apparatus according to this embodiment. (41U) is a nozzle that can uniformly spray activated raw material gas onto the surfaces of a plurality of substrates placed on heater (2). Further, this nozzle (411) is provided with more openings toward the tip, so that more gas is blown onto the substrate (2) near the tip. As a result, even if there is a temperature gradient where the temperature on the gas exhaust side is lower than that on the gas introduction side, it is possible to form a film on all wafer surfaces at a uniform rate.
以上の実施例6〜8で説明した薄膜形成装置は高融点金
属の薄膜形成に用いられるだけでなく、実施例1〜7で
説明したあらゆる種類の膜形成に用いる事ができる事は
いうまでもない、また、以上の実施例6〜8では、基板
表面に活性化した原料ガスを均一に吹き付けることがで
きる装置を説明したが、これ以外の構成特にノズル形状
が異なるものであっても、また、基板を回転させること
を行なうなど要は活性化したガスを基板表面に均一性良
く吹き付ける様にしたものであれば、どの様にしても構
わない。It goes without saying that the thin film forming apparatus described in Examples 6 to 8 above can be used not only for forming thin films of high melting point metals, but also for forming all kinds of films as described in Examples 1 to 7. In addition, in Examples 6 to 8 above, an apparatus capable of uniformly spraying activated raw material gas onto the substrate surface was described, but other configurations, especially those with different nozzle shapes, may also be used. In short, any method may be used as long as the activated gas is sprayed onto the substrate surface with good uniformity, such as by rotating the substrate.
上記構成により、スループットを向上することができ、
しかも膜質の良好な薄膜を形成することができる。With the above configuration, throughput can be improved,
Moreover, a thin film with good film quality can be formed.
第1図は本発明の第1の実施例を示す断面図、第2図は
本発明の第2の実施例を説明する図、第3図は本発明の
第6の実施例を示す図、第4図は本発明の第7の実施例
を示す断面図、第5図は本発明の第8の実施例を示す断
面図、第6図は従来例を示す断面図である。
1・・・被処理基板 2・・・基板支持具3・・
・ヒーター 4・・・主反応室5・・・副反応
室 6・・・オリフィス7・・・開閉バルブ
8・・・排気口9.30・・・配管 3
1.41・・・ノズル32・・・開孔
第1図
H2,SiH4予燭力t1キ^11j覧、七第2図FIG. 1 is a sectional view showing a first embodiment of the invention, FIG. 2 is a diagram explaining a second embodiment of the invention, and FIG. 3 is a diagram showing a sixth embodiment of the invention. FIG. 4 is a sectional view showing a seventh embodiment of the present invention, FIG. 5 is a sectional view showing an eighth embodiment of the invention, and FIG. 6 is a sectional view showing a conventional example. 1... Substrate to be processed 2... Substrate support 3...
・Heater 4... Main reaction chamber 5... Side reaction chamber 6... Orifice 7... Opening/closing valve
8...Exhaust port 9.30...Piping 3
1.41... Nozzle 32... Opening hole Fig. 1 H2, SiH4 pre-candle power t1 Ki^11j view, 7 Fig. 2
Claims (3)
た状態で前記基板表面に遷移金属化合物ガス及びこのガ
スと反応するガスを吸着させて前記基板の熱で化学反応
を起こす事により前記基板表面に遷移金属を含む薄膜を
形成する工程とを備える薄膜形成方法において、前記遷
移金属化合物ガスを前記基板に吸着する前に予め活性化
しておく事を特徴とする薄膜形成方法。(1) A process of heating the substrate to be processed, and adsorbing a transition metal compound gas and a gas that reacts with this gas onto the surface of the substrate while the substrate is heated, and causing a chemical reaction using the heat of the substrate. forming a thin film containing a transition metal on the surface of a substrate, the method comprising activating the transition metal compound gas in advance before adsorbing the transition metal compound gas to the substrate.
工基板を加熱する加熱手段と、前記被加工基板及び前記
基板支持手段を収容する反応室と、前記被加工基板上に
形成する遷移金属を含んだ薄膜の原料となる複数のガス
を前記反応室内に夫々供給する複数のガス供給手段と、
前記反応室内を排気する排気手段とを備えた薄膜形成装
置において、前記ガス供給手段に設けられ前記原料ガス
のうち遷移金属化合物ガスを前記反応室に導入する前に
予め活性化するガス活性化手段を具備する事を特徴とす
る薄膜形成装置。(2) A substrate support means for placing a substrate to be processed, a heating means for heating the substrate to be processed, a reaction chamber for accommodating the substrate to be processed and the substrate support means, and formed on the substrate to be processed. a plurality of gas supply means for respectively supplying a plurality of gases that are raw materials for a thin film containing a transition metal into the reaction chamber;
and an exhaust means for evacuating the inside of the reaction chamber, wherein the gas activation means is provided in the gas supply means and activates a transition metal compound gas among the source gases before introducing it into the reaction chamber. A thin film forming apparatus characterized by comprising:
一に前記原料ガスを供給する手段を備えた事を特徴とす
る請求項2記載の薄膜形成装置。(3) The thin film forming apparatus according to claim 2, wherein the gas supply means includes means for uniformly supplying the raw material gas to the surface of the substrate to be processed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16378889A JPH0331476A (en) | 1989-06-28 | 1989-06-28 | Method and device for forming thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16378889A JPH0331476A (en) | 1989-06-28 | 1989-06-28 | Method and device for forming thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0331476A true JPH0331476A (en) | 1991-02-12 |
Family
ID=15780721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16378889A Pending JPH0331476A (en) | 1989-06-28 | 1989-06-28 | Method and device for forming thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0331476A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030082849A (en) * | 2002-04-18 | 2003-10-23 | 정비희 | Method of reinforcing the slope of the embankment and construction thereof |
-
1989
- 1989-06-28 JP JP16378889A patent/JPH0331476A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030082849A (en) * | 2002-04-18 | 2003-10-23 | 정비희 | Method of reinforcing the slope of the embankment and construction thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100421572B1 (en) | Method of passivating a CVD chamber | |
US7763115B2 (en) | Vacuum film-forming apparatus | |
JP3925566B2 (en) | Thin film forming equipment | |
US6656282B2 (en) | Atomic layer deposition apparatus and process using remote plasma | |
KR100214910B1 (en) | Utilization of sih4 soak and purge in deposition processes | |
JP2020510314A (en) | Selective growth of silicon oxide or silicon nitride on silicon surface in the presence of silicon oxide | |
US20070215036A1 (en) | Method and apparatus of time and space co-divided atomic layer deposition | |
US20050281951A1 (en) | Dielectric barrier discharge method for depositing film on substrates | |
KR20030081177A (en) | Apparatus and method for single-wafer-processing type cvd | |
US20090078201A1 (en) | Vertical plasma processing apparatus for semiconductor process | |
KR100721504B1 (en) | Plasma enhanced atomic layer deposition equipment and method of forming a thin film using the same | |
KR102709945B1 (en) | Methods for reducing or eliminating defects in tungsten films | |
JP2008091805A (en) | Method of fabricating semiconductor device, and substrate processing apparatus | |
EP4364192A1 (en) | Shadow ring lift to improve wafer edge performance | |
CN109868459B (en) | Semiconductor device | |
KR20010104260A (en) | Gas reactions to eliminate contaminates in a cvd chamber | |
JPH0331476A (en) | Method and device for forming thin film | |
JP2004296820A (en) | Method of manufacturing semiconductor device and substrate treatment equipment | |
JP2650530B2 (en) | Gas phase reactor for semiconductor device manufacturing | |
US20200149164A1 (en) | Thermal metal chemical vapor deposition apparatus and process | |
JP2723053B2 (en) | Method and apparatus for forming thin film | |
US20020094387A1 (en) | Method for improving chemical vapor deposition of titanium | |
KR20010106232A (en) | Methods for improving chemical vapor deposition processing | |
KR20020096860A (en) | Method and apparatus for manufacturing a semiconductor device and processing a substrate | |
KR20010104261A (en) | Conditioned chamber for improving chemical vapor deposition |