JPH0331405B2 - - Google Patents

Info

Publication number
JPH0331405B2
JPH0331405B2 JP62127697A JP12769787A JPH0331405B2 JP H0331405 B2 JPH0331405 B2 JP H0331405B2 JP 62127697 A JP62127697 A JP 62127697A JP 12769787 A JP12769787 A JP 12769787A JP H0331405 B2 JPH0331405 B2 JP H0331405B2
Authority
JP
Japan
Prior art keywords
water intake
water
relay
tank
deep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62127697A
Other languages
Japanese (ja)
Other versions
JPS63291517A (en
Inventor
Haruyoshi Makita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP62127697A priority Critical patent/JPS63291517A/en
Publication of JPS63291517A publication Critical patent/JPS63291517A/en
Publication of JPH0331405B2 publication Critical patent/JPH0331405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、富栄養、清浄及び低水温の深層水を
取水するための取水装置に係り、特に浮力を保有
した中継取水槽を備え、深層海水の鉛直方向取水
に適用される深層水取水装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a water intake device for taking in eutrophic, clean, and low-temperature deep water, and in particular, it is equipped with a relay water intake tank having buoyancy, and This invention relates to a deep water intake device applied to vertical intake of seawater.

〔従来の技術〕[Conventional technology]

海の深層部(通常200m以上)に存在する海水
は、有機栄養分が豊富であること、清浄であるこ
と、及び低水温であるという特徴を有しており、
このため、水産、発電及び工業等の各分野で、こ
れらの特徴を活かした利用が増えてきている。ま
た、このような深層水は海岸から比較的遠距離の
沖合で、しかも一定深さ以上に存在するものであ
る。
Seawater that exists deep in the ocean (usually over 200 meters) is characterized by being rich in organic nutrients, being clean, and having a low water temperature.
For this reason, applications that take advantage of these characteristics are increasing in various fields such as fisheries, power generation, and industry. Further, such deep water exists offshore at a relatively long distance from the coast and at a certain depth or more.

従来、深層水を取水するための取水装置として
は、特公昭61−24238号公報等に示すものが知ら
れている。
BACKGROUND ART Conventionally, as a water intake device for taking in deep water, one shown in Japanese Patent Publication No. 61-24238 and the like is known.

この種の取水装置は、フロート体により海面上
に浮かせた貯水池をトラス構造の連結手段により
バージ体に結合し、貯水池には、垂下方向に伸縮
可能としたロツドアンテナ式の取水ダクトの上端
を連結すると共に、フロート体上に設置した巻上
装置のワイヤーを取水ダクトの最下段に連結し、
ワイヤーを巻上装置で巻き取り、巻き戻すことに
より取水ダクトを伸縮して、その取水口を水深の
所望レベル位置に調整するようにしたものであ
る。
This type of water intake device connects a reservoir suspended above the sea surface by a float body to a barge body by a truss structure connecting means, and connects the upper end of a rod antenna-type water intake duct that can be expanded and contracted in the downward direction to the reservoir. At the same time, connect the wire of the hoisting device installed on the float body to the lowest stage of the water intake duct,
By winding and unwinding the wire with a winding device, the water intake duct is expanded and contracted, and the water intake port is adjusted to a desired level of water depth.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の深層水取水装置では、次に
述べる問題がある。
The conventional deep water intake device as described above has the following problems.

(a) 海面上にフロート体により浮かせた取水用貯
水池に取水ダクトを垂下状態に連結し、これら
の取水機構はトラス構造の連結手段によりバー
ジ体に結合されるものであるため、連結手段が
複雑かつ重量化する。
(a) The water intake duct is connected in a hanging state to the water intake reservoir suspended above the sea surface by a float body, and these water intake mechanisms are connected to the barge body by a truss structure connection means, so the connection means are complicated. And it becomes heavier.

(b) テレスコープ型取水ダクト及びこれを貯水池
に連結した状態での洋上曳航が不可能なため、
取水ダクトの敷設及び貯水池への接合は洋上現
場で行なう必要があり、しかも取水ダクトの沈
設工事には専用の建設機械が必要になると共
に、その吊下げ設備が大掛かりとなり、工事用
設備の係留作業も大掛かりになる等、作業性・
安全性にも問題がある。
(b) Since it is impossible to tow the telescope-type water intake duct and it connected to the reservoir,
Laying the intake duct and connecting it to the reservoir must be done at the offshore site. Moreover, special construction machinery is required to sink the intake duct, and the hanging equipment is large-scale, making it difficult to moor the construction equipment. Workability and
There are also safety issues.

(c) 比較的遠距離の沖合洋上で行なわれる取水部
の施工精度を上げるためには、潮流・海流・波
浪の影響を考慮しなければならず、これを考慮
して比較的静穏な洋上状態を選ぶと、施工可能
な時間が短くなり、施工日数が多くかかると共
に作業管理が繁雑になる。
(c) In order to improve the accuracy of construction of water intakes that are carried out relatively far offshore, it is necessary to take into account the effects of tides, ocean currents, and waves. If you choose , the available construction time will be shortened, construction will take more days, and work management will be complicated.

(d) バージ体と取水機構部及び取水機構部の貯水
池と取水ダクトとは一体化されているため、台
風等の荒天時にバージ体を避難させることがで
きず、そのため、バージ体及び貯水池等に構造
物強度の大きいものが必要となりシステムが大
型化する。
(d) Because the barge body and the water intake mechanism, and the reservoir and water intake duct of the water intake mechanism are integrated, the barge body cannot be evacuated during stormy weather such as a typhoon. A strong structure is required, which increases the size of the system.

(e) バージ体に母港等での修理が必要となつた場
合、取水部側をバージ体から切り捨てるか、取
水部を保持する仮サポートシステムを取水部に
組む必要があつた。
(e) If the barge required repairs at the home port, it was necessary to cut the intake section from the barge body or install a temporary support system to hold the intake section.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題点を解決するために
なされたもので、深層水取水部を組立状態で洋上
現場に曳航可能にし、かつ、洋上現場での取水部
の沈設作業を特別な沈設設備を要することなく簡
便にかつ安全になし得るようにすると共に、取水
部とバージ体等との結合、分離を簡便化した深層
水の取水装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it allows the deep water intake section to be towed to an offshore site in an assembled state, and the work of submerging the water intake section at the offshore site can be carried out using special submersion equipment. It is an object of the present invention to provide a deep water intake device which can be easily and safely done without requiring a water intake part and a barge body, etc., and which facilitates connection and separation of a water intake part and a barge body, etc.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る深層水取水装置は、深層水取水機
構と、係留ブイと、深層水処理システムとを有
し、上記深層水取水機構が、密閉構造の中継取水
層と、この中継取水槽に一体に設けられた浮力付
与用のフロート部と、上記中継取水槽の下端に結
合され該中継取水槽内に深層水を導入する長尺の
取水パイプと、上記中継取水槽の上端側に接続さ
れ深水槽を上記深層水処理システムへ供給する取
水用のフレキシブルホースと、上記中継取水槽に
連結され該中継取水槽及び取水パイプからの排出
エアーを該取水パイプの沈降につれコントロール
するエアー調整手段とを備え、上記深層水取水機
構が、上記係留ブイに吊下げ部材を介して連結さ
れ上記中継取水槽を上部側にして該中継取水槽を
含む上記取水パイプを水中に吊下げ保持されるよ
うにしたものである。
A deep water intake device according to the present invention includes a deep water intake mechanism, a mooring buoy, and a deep water treatment system, and the deep water intake mechanism is integrated with a relay water intake layer of a closed structure and this relay water intake tank. a long water intake pipe connected to the lower end of the relay water intake tank to introduce deep water into the relay water intake tank; and a long water intake pipe connected to the upper end of the relay water intake tank and connected to the deep water A flexible hose for water intake that supplies the water tank to the deep water treatment system, and an air adjustment means connected to the relay water intake tank to control the discharge air from the relay water intake tank and the water intake pipe as the water intake pipe sinks. , wherein the deep water intake mechanism is connected to the mooring buoy via a hanging member, and the water intake pipe including the relay water intake tank is suspended and held in the water with the relay water intake tank on the upper side. It is.

〔発明の作用〕[Action of the invention]

本発明においては、沈設現場に曳航された深層
水取水機構を沈設する場合、これを吊下げ部材に
より係留ブイに連結した後、中継取水槽及び取水
パイプ内のエアーをエアー調整手段を通して順次
排出すると同時に取水パイプの先端から水を流入
することで取水パイプの先端側から水中に沈降さ
せる。従つて、深層水取水機構の沈設作業が簡便
になり、深層水処理システムを搭載したシステム
浮体と深層水取水機構との切離しも容易になる。
In the present invention, when a deep water intake mechanism is towed to a sinking site and is sunk, it is connected to a mooring buoy by a hanging member, and then the air in the relay water intake tank and water intake pipe is sequentially discharged through the air adjustment means. At the same time, water flows in from the tip of the intake pipe, causing it to settle into the water from the tip side of the intake pipe. Therefore, the work of sinking the deep water intake mechanism is simplified, and the system floating body equipped with the deep water treatment system and the deep water intake mechanism can be easily separated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図において、1は海水中に垂直に沈設して
深層水を取水するための取水機構で、この取水機
構1は、第2図に示す如く、直径が4m、長さが
16m程度の筒体から成る密閉型の中継取水槽(取
水バツフア部)2と、中継取水槽2の上部に一体
に形成したフロート部3と、中継取水槽2の下端
漏斗部2aに内部と連通するよう結合され垂直に
吊下される取水パイプ(直径が60cm、長さが250
m程度のもの)4とを有し、中継取水槽2の上部
側壁には複数個の取水ホース接続口5,5が設け
られている。各ホース接続口5,5には取水用の
フレキシブルホース6,6が接続されており、さ
らにホース接続口5,5は中継取水槽2の軸方向
に平行にかつ下方に向けて延長された導水管7,
7を介して中継取水槽2内に連通されている。ま
た、中継取水槽2の上部側壁には、中継取水槽2
及び取水パイプ4内にエアーを充填したり、排出
したりするためのエアーノズル8が設けられてお
り、このノズル8にはエアーホース9が接続され
ている。
In Fig. 1, 1 is a water intake mechanism that is vertically submerged in seawater to take in deep water.As shown in Fig. 2, this water intake mechanism 1 has a diameter of 4 m and a length.
A closed type relay water intake tank (water intake buffer part) 2 consisting of a cylindrical body with a length of about 16 m, a float part 3 integrally formed on the upper part of the relay water intake tank 2, and a funnel part 2a at the lower end of the relay water intake tank 2 communicate with the inside. Water intake pipes (60 cm in diameter and 250 cm in length) connected and suspended vertically so that
m) 4, and a plurality of water intake hose connection ports 5, 5 are provided on the upper side wall of the relay water intake tank 2. Flexible hoses 6, 6 for water intake are connected to each hose connection port 5, 5, and the hose connection ports 5, 5 are connected to a conductor extending downward parallel to the axial direction of the relay water intake tank 2. water pipe 7,
It is communicated with the inside of the relay water intake tank 2 via 7. In addition, on the upper side wall of the relay water intake tank 2, there is a
An air nozzle 8 for filling and discharging air into the water intake pipe 4 is provided, and an air hose 9 is connected to this nozzle 8.

第1図において、10は上記取水機構1を海水
中に垂直にかつ埋没状態に保持するためのドラム
状の係留ブイで、この係留ブイ10は係留索11
によつて設定海域に係留できるようにしてある。
また、係留ブイ10の軸心に形成した貫通穴10
aを通して垂下される取水部吊下げチエーン12
の下端には、フロート部3の上端に設けたフツク
13(第2図参照)が係合され、これにより取水
機構1全体を水中に吊下げ状態に保持するように
なつている。
In FIG. 1, reference numeral 10 denotes a drum-shaped mooring buoy for holding the water intake mechanism 1 vertically and submerged in seawater.
It is designed so that it can be moored in designated sea areas.
In addition, a through hole 10 formed in the axis of the mooring buoy 10
Water intake suspension chain 12 suspended through a
A hook 13 (see FIG. 2) provided at the upper end of the float portion 3 is engaged with the lower end of the float portion 3, thereby holding the entire water intake mechanism 1 suspended in the water.

また、第1図において、14は深層水処理シス
テムを搭載するバージ、船等の洋上サブシステム
浮体で、このサブシステム浮体14は、その前側
部に係留ブイ10の外周形状より大きい径の半円
状の係合部15を有し、この係合部15は古タイ
ヤ等のクツシヨン体16を介して径留ブイ10の
外周に係合されるようになつていると共に、係留
ブイ10とサブシステム浮体14とをワイヤーロ
ープ17により互いに連結し、これによりサブシ
ステム浮体14を係留ブイ10に係留させるよう
になつている。
In FIG. 1, 14 is an offshore subsystem floating body such as a barge or ship on which a deep water treatment system is mounted, and this subsystem floating body 14 has a semicircle with a diameter larger than the outer circumferential shape of the mooring buoy 10 on its front side. The engaging portion 15 is adapted to be engaged with the outer periphery of the mooring buoy 10 via a cushion body 16 such as an old tire, and the mooring buoy 10 and the subsystem. The floating bodies 14 are connected to each other by a wire rope 17, thereby mooring the subsystem floating body 14 to the mooring buoy 10.

上記サブシステム浮体14上には、デイーゼル
エンジン18により駆動される取水ポンプ19が
設置されており、取水ポンプ19の吸込み側に接
続した採水用メインパイプ20には、深層水用の
採水管21及び表層水用の採水管22が接続さ
れ、深層水用採水管21には複数の流量調整弁2
3,23,…を介して取水用フレキシブルホース
6,6を連結するための連結管24が接続されて
いると共に、該連結管24の両端には、取水機構
1に接続したフレキシブルホース6,6がそれぞ
れに接続されている。また、上記表層水用採水管
22に複数の取水口25,25,…が各別の流量
調整弁26,26,…を介して接続されている。
A water intake pump 19 driven by a diesel engine 18 is installed on the subsystem floating body 14, and a water sampling main pipe 20 connected to the suction side of the water intake pump 19 has a water sampling pipe 21 for deep water. A sampling pipe 22 for surface water is connected to the sampling pipe 21 for deep water, and a plurality of flow rate regulating valves 2 are connected to the sampling pipe 21 for deep water.
A connecting pipe 24 for connecting the water intake flexible hoses 6, 6 is connected through the water intake mechanisms 3, 23, . are connected to each. Further, a plurality of water intake ports 25, 25, . . . are connected to the surface water sampling pipe 22 via separate flow rate regulating valves 26, 26, .

上記取水ポンプ19の吐出側には送水パイプ2
7が接続され、さらに送水パイプ27には、浮体
14上に設置した散水管28が接続されている。
A water supply pipe 2 is provided on the discharge side of the water intake pump 19.
7 is connected to the water supply pipe 27, and a water sprinkler pipe 28 installed on the floating body 14 is further connected to the water supply pipe 27.

なお、取水機構1の中継取水槽2のエアーノズ
ル8に接続したエアーホース9は、サブシステム
浮体14上に設置されるエアー制御部及びエアー
供給源(いずれも図示せず)に接続されるもので
ある。
The air hose 9 connected to the air nozzle 8 of the relay water intake tank 2 of the water intake mechanism 1 is connected to an air control unit and an air supply source (both not shown) installed on the subsystem floating body 14. It is.

次に、上記のように構成された本実施例の動作
について説明する。
Next, the operation of this embodiment configured as described above will be explained.

まず、取水機構1を希望する海域に沈設する場
合について述べる。
First, a case will be described in which the water intake mechanism 1 is sunk in a desired sea area.

工場において、中継取水槽2及びフロート部
3、取水用ホース接続口5、導水管7、エアーノ
ズル8を一体に組み立てた取水機構1、及び所望
長さに製作した取水パイプ4等を河川、岸壁際、
港湾等の静穏水地に搬送し、陸上等の足場の安定
した場所で、中継取水槽2のホース接続口5に取
水用のフレキシブルホース6を、エアーノズル8
にエアーホース9をそれぞれ接続すると共に、所
望長さに成形された取水パイプ4を数本中継取水
槽2の漏斗部2aに順次接続した後、クレーンに
より静穏水面上に下ろす。この時、フレキシブル
ホース6及びエアーホース9の非接続端の開口を
蓋部材により仮閉塞し、海水の流入を防止する。
At a factory, a water intake mechanism 1, which is an integral assembly of a relay water intake tank 2, a float part 3, a water intake hose connection port 5, a water conduit 7, and an air nozzle 8, and a water intake pipe 4 manufactured to a desired length are installed on rivers and quays. edge,
Transfer to a calm water area such as a port, and then connect the flexible hose 6 for water intake to the hose connection port 5 of the relay water intake tank 2 and connect it to the air nozzle 8 at a place with stable footing such as on land.
At the same time, several water intake pipes 4 formed to desired lengths are connected to the funnel portion 2a of the relay water intake tank 2 in sequence, and then lowered onto the calm water surface by a crane. At this time, the openings at the non-connecting ends of the flexible hose 6 and the air hose 9 are temporarily closed with a lid member to prevent seawater from entering.

その後、所望長さに成形された取水パイプ4を
後続端に順次接続しながら静穏水面上へ引き出し
てゆく。必要の場合は第3図に示すように一線状
に結合された取水パイプ4に所望の間隔で工事用
補助フロート29を取り付け、取水パイプ4自体
が水面上に浮くようにする。
Thereafter, the water intake pipe 4 formed to a desired length is successively connected to the trailing end and pulled out onto the calm water surface. If necessary, construction auxiliary floats 29 are attached to the water intake pipes 4 connected in a straight line at desired intervals as shown in FIG. 3, so that the water intake pipes 4 themselves float on the water surface.

なお、沈降し易いエアーホース9に対しても、
必要に応じてフロート29を取り付ける。また、
水面上に浮かされた取水パイプ4内に海水が流入
するのを防止するため、第4図に示す如く、取水
パイプ4の終端側取水口に、所定の水深に達する
とその水圧により破壊されるラプチヤ・デイスク
30を取り付けておく。
In addition, for the air hose 9 that tends to settle,
Attach the float 29 if necessary. Also,
In order to prevent seawater from flowing into the water intake pipe 4 floating on the water surface, as shown in Fig. 4, a rapture is installed at the water intake port at the end of the water intake pipe 4, which is destroyed by the water pressure when the water reaches a predetermined depth.・Install disk 30.

上記のように気み立てた取水機構1を第3図に
示すように水面上に浮かせて、フロート部3に連
結した吊下げチエーン12をタグボート31に連
結して沈設海域へ曳航し、沈設海域に設置してあ
る係留ブイ10に吊下げチエーン12を、第1図
に示す如く中心貫通穴10a内に下端側から挿通
して連結する。次いで、タグボート31により曳
航されて来たサブシステム浮体14の係合部15
をクツシヨン体16を介して係留ブイ10の外周
に係合させ、ワイヤーロープ17により両者を接
続する。その後、取水用フレキシブルホース6,
6の自由端部を水中からサブシステム浮体14上
に引き上げ、その閉塞用蓋材を除去した後、取水
用の連結管24にそれぞれ接続する。さらに、エ
アーホース9をサブシステム浮体14上にエアー
制御部に接続する。
The water intake mechanism 1 prepared as described above is floated on the water surface as shown in FIG. A suspension chain 12 is connected to a mooring buoy 10 installed at a mooring buoy 10 by inserting it into the center through hole 10a from the lower end side as shown in FIG. Next, the engaging portion 15 of the subsystem floating body 14 that has been towed by the tugboat 31
is engaged with the outer periphery of the mooring buoy 10 via the cushion body 16, and the two are connected by a wire rope 17. After that, the flexible hose for water intake 6,
After the free ends of the subsystems 6 are pulled up from the water onto the subsystem floating body 14 and their closing covers are removed, they are connected to the water intake connecting pipes 24, respectively. Furthermore, the air hose 9 is connected to the air control section on the subsystem floating body 14.

上記フレキシブルホース6及びエアーホース9
の接続が完了したならば、取水パイプ4に取り付
けてあるフロート29を取水パイプ4の先端側か
ら順に取り外す。すると、取水パイプ4は自重に
より先端側から順次沈降し始める。そして、取水
パイプ4の先端側が所定の水深に達すると、ラプ
チヤ・デイスク30が破壊され、海水が取水パイ
プ4内に流入していく。取水パイプ4が海面上に
浮くに充分な浮力を有している場合は、海面でラ
プチヤーデイスク30を物理的に破壊し海水を浸
入せしめる。この時、取水パイプ4と連通する中
継取水槽2内のエアーはエアーノズル8、エアー
ホース9及びエアー制御部(図示せず)を通して
大気へ流出されるが、この流出エアー量を調節す
ることにより、取水パイプ4の沈降速度をコント
ロールできる。
The above flexible hose 6 and air hose 9
When the connection is completed, the floats 29 attached to the water intake pipe 4 are sequentially removed from the tip side of the water intake pipe 4. Then, the water intake pipe 4 starts to sink sequentially from the tip side due to its own weight. When the tip end of the water intake pipe 4 reaches a predetermined water depth, the rapture disk 30 is destroyed and seawater flows into the water intake pipe 4. If the water intake pipe 4 has sufficient buoyancy to float on the sea surface, the rupture disk 30 is physically destroyed on the sea surface, allowing seawater to infiltrate. At this time, the air in the relay water intake tank 2 communicating with the water intake pipe 4 is discharged to the atmosphere through the air nozzle 8, the air hose 9, and the air control section (not shown). , the settling speed of the water intake pipe 4 can be controlled.

中継取水槽2内のエアーが全部排出されると、
この中継取水槽2及び取水パイプ4内が海水によ
つて充満し、取水パイプ4及び中継取水槽2は吊
下げチエーン12により係留ブイ10に鉛直状態
に吊り下げられることになる。
When all the air in the relay water intake tank 2 is exhausted,
The relay water intake tank 2 and the water intake pipe 4 are filled with seawater, and the water intake pipe 4 and the relay water intake tank 2 are vertically suspended from the mooring buoy 10 by the suspension chain 12.

次に、深層水を汲み上げる場合について述べ
る。
Next, we will discuss the case of pumping deep water.

この場合、デイーゼルエンジン18を起動して
取水ポンプ19を回転し、表層水用の流量調整弁
26を開くと、表層水は、取水口25→流量調整
弁26→採水管22→メインパイプ20→ポンプ
19→送水パイプ27を通して散水管28から海
上表面に散布される。
In this case, when the diesel engine 18 is started, the water intake pump 19 is rotated, and the surface water flow rate adjustment valve 26 is opened, the surface water flows from the water intake port 25 → flow rate adjustment valve 26 → water sampling pipe 22 → main pipe 20 → The water is sprayed onto the sea surface from the water spray pipe 28 via the pump 19 → water pipe 27.

一方、深層水用の流量調整弁23を開くと、海
底側の深層海水は、取水パイプ4→中継取水層2
→導水管7→ホース接続口5→フレキシブルホー
ス6→連結管24→流量調整弁23→採水管21
→メインパイプ20を通してポンプ19により吸
引され、表層水と混合されて散水管28から海上
表面へ散布される。
On the other hand, when the flow rate adjustment valve 23 for deep water is opened, the deep seawater on the seabed side flows from the water intake pipe 4 to the relay water intake layer 2.
→ Water conduit 7 → Hose connection port 5 → Flexible hose 6 → Connecting pipe 24 → Flow rate adjustment valve 23 → Water sampling pipe 21
→The water is sucked through the main pipe 20 by the pump 19, mixed with surface water, and sprayed onto the sea surface from the sprinkler pipe 28.

これにより、低温で有機栄養分の豊富な深層水
を表層水と混合することで、散布される海水の温
度を魚の養殖等に適した水温にすると共に、有機
成分の豊富な深層水を散布することで魚の養殖又
は魚の呼び寄せなどを行なう。
By mixing deep water, which is low temperature and rich in organic nutrients, with surface water, the temperature of the seawater to be sprayed becomes suitable for fish farming, etc., and deep water rich in organic components is sprayed. fish farming or attracting fish.

また、台風の発生等によりサブシステム浮体1
4を緊急避難させたり、あるいはサブシステム浮
体14及びこれに設置された処理システム等の修
理をドツクで行なうような場合は、フレキシブル
ホース6及びエアーホース9をサブシステム浮体
14側から切り離し、かつワイヤーロープ17を
解けば良く、サブシステム浮体14を係留ブイ1
0から簡便に切り離すことができ、ドツク等へ容
易に曳航し得る。
In addition, due to the occurrence of a typhoon, etc., the subsystem floating body 1
4, or when repairing the subsystem floating body 14 and the processing system installed therein, disconnect the flexible hose 6 and air hose 9 from the subsystem floating body 14 side, and disconnect the wires. Just untie the rope 17 and move the subsystem floating body 14 to the mooring buoy 1.
It can be easily separated from 0 and easily towed to a dock, etc.

従つて、上記のような本実施例にあつては、取
水機構1を港湾等の静穏水地で組み立てた状態で
沈設海域へ曳航することができ、しかも取水機構
1の沈設に際しては、密閉型中継取水層2及び取
水パイプ4内のエアーを排出しながら海水を順次
流入して沈降させる機構になつているため、洋上
現場での沈設作業が簡便となり、安全であると共
に、従来のような取水部専用の建設機構が不要と
なる。
Therefore, in this embodiment as described above, the water intake mechanism 1 can be assembled in a calm water area such as a port and towed to the sinking area, and when the water intake mechanism 1 is sunk, it is possible to use a closed type Since the mechanism is such that the air in the relay water intake layer 2 and the water intake pipe 4 is discharged while seawater is allowed to flow in and settle in sequence, the sinking work at offshore sites is simple and safe, and it is not as easy as conventional water intake. There is no need for a dedicated construction organization for the department.

また、係留ブイ10と取水機構1とを繋ぐ吊下
げチエーン12の長さを変えることにより、取水
深度を容易に調整することができる。さらにま
た、取水機構1は係留ブイ10からチエーン12
により吊下げ保持されるものであるから、取水機
構1が波浪の影響を軽減できる水深5m〜10m以
上に設置されるように設計すれば、取水機構を堅
固耐波構造にする必要がなく、経済的である。ま
た、万一、係留ブイ10との吊下げチエーン12
が切れても、中継取水槽2の上部にフロート部3
が設けられているため、取水機構1は海底上に直
立あるいは傾斜した状態に維持でき、大水深の設
置場所でも取水機構1の回収・引上げが容易にな
る。
Further, by changing the length of the hanging chain 12 that connects the mooring buoy 10 and the water intake mechanism 1, the water intake depth can be easily adjusted. Furthermore, the water intake mechanism 1 connects the mooring buoy 10 to the chain 12.
Therefore, if the water intake mechanism 1 is designed to be installed at a depth of 5 m to 10 m or more where the influence of waves can be reduced, there is no need for the water intake mechanism to have a rigid wave-resistant structure, making it economical. It is. In addition, in the unlikely event that the suspension chain 12 with the mooring buoy 10
Even if the float part 3 is cut off, the float part 3 is placed at the top of the relay water intake tank 2.
, the water intake mechanism 1 can be maintained in an upright or inclined state on the seabed, and the water intake mechanism 1 can be easily retrieved and pulled up even in a place where it is installed in deep water.

次に、本発明の他の実施例について説明する。 Next, other embodiments of the present invention will be described.

第5図は本発明に係る取水機構1の第2の実施
例を示す。第5図においては、フロート部3を付
けた中継取水槽2に接続される取水パイプ4の中
間部分に1個(又は複数個)の中間フロート32
を取り付け、これにより取水機構1の曳航時ある
いは取水運転時の浮力を調整可能にする。
FIG. 5 shows a second embodiment of the water intake mechanism 1 according to the present invention. In FIG. 5, one (or a plurality of) intermediate floats 32 are installed in the middle part of the water intake pipe 4 connected to the relay water intake tank 2 with the float part 3 attached.
This makes it possible to adjust the buoyancy of the water intake mechanism 1 during towing or water intake operation.

第6図は本発明に係る取水機構1の第3の実施
例を示す。第2図に示す実施例の異なる点は、フ
ロート部3を容積の大きい筒体より構成し、この
フロート部3の上部に、これより容積の小さい中
継取水槽2を形成すると共に、中継取水槽2にフ
ロート部3内の軸線を貫通して差し込まれる取水
パイプ4の上端を連通し、さらに中継取水槽2の
上面に設けた導水管7に連通するホース接続口5
に取水用のフレキシブルホース6を接続したもの
である。
FIG. 6 shows a third embodiment of the water intake mechanism 1 according to the present invention. The difference in the embodiment shown in FIG. 2 is that the float part 3 is composed of a cylindrical body with a large volume, and a relay water intake tank 2 with a smaller volume is formed in the upper part of the float part 3. A hose connection port 5 communicates with the upper end of a water intake pipe 4 inserted through the axis line inside the float part 3 to 2, and further communicates with a water conduit 7 provided on the upper surface of the relay water intake tank 2.
A flexible hose 6 for water intake is connected to.

この実施例にあつては、フロート部3の容積を
取水槽部より大きくすることにより、取水機構1
の浮力が増大し、係留ブイ10にかかる荷重を軽
減できる効果がある。係留ブイ10にかかる荷重
を軽減させるために第5図に示すような中間フロ
ート32を併用することもできる。
In this embodiment, by making the volume of the float part 3 larger than that of the water intake tank part, the water intake mechanism 1
This has the effect of increasing the buoyancy of the mooring buoy and reducing the load on the mooring buoy 10. In order to reduce the load on the mooring buoy 10, an intermediate float 32 as shown in FIG. 5 can also be used.

第7図は、取水機構1を係留ブイ10の係留索
に兼用した場合の例を示すものである。
FIG. 7 shows an example in which the water intake mechanism 1 is also used as a mooring cable for the mooring buoy 10.

即ち、第7図に示す如く、係留ブイ10に吊下
げチエーン12により連結した取水機構1の取水
パイプ4の下端にチエーン33を介してアンカー
34を連結し、アンカー34を海底35に打ち込
むことにより、係留ブイ10の係留索として機能
させる。そして、取水パイプ4の中間部に複数個
の中間フロート36を設けることにより係留ブイ
10にかかる荷重を軽減することができる。
That is, as shown in FIG. 7, an anchor 34 is connected via a chain 33 to the lower end of the water intake pipe 4 of the water intake mechanism 1 connected to the mooring buoy 10 by a hanging chain 12, and the anchor 34 is driven into the seabed 35. , to function as a mooring line for the mooring buoy 10. By providing a plurality of intermediate floats 36 in the middle of the water intake pipe 4, the load on the mooring buoy 10 can be reduced.

但し、この場合、風、波、潮流、海流等がサブ
システム浮体、取水部、係留ブイ等に及ぼす影響
を考慮して、所要強度に設計する必要がある。
However, in this case, it is necessary to take into account the effects of wind, waves, tides, ocean currents, etc. on the floating subsystem, water intake, mooring buoy, etc., and design it to the required strength.

なお、上記実施例では、取水機構1が水面上に
浮かせた状態で沈設海域へ曳航する場合について
説明したが、取水パイプ4が非常に長い場合、あ
るいは波浪が大きく取水パイプの強度に心配が生
じる場合は、フロート部3及び補助フロート29
の浮力を調整し、これにより取水機構1全体が海
面下に埋没された宙層状態で曳航する。このよう
にすれば、取水パイプ4の曲げモーメントに関す
る強度面での負担を軽減できる。
In the above embodiment, a case has been described in which the water intake mechanism 1 is towed to the submerged area while floating on the water surface, but if the water intake pipe 4 is very long or the waves are large, there may be concerns about the strength of the water intake pipe. In this case, the float part 3 and the auxiliary float 29
By adjusting the buoyancy of the water intake mechanism 1, the entire water intake mechanism 1 is towed in a suspended state buried under the sea surface. In this way, the burden on the strength of the water intake pipe 4 related to the bending moment can be reduced.

また、第8図に示すように、取水パイプ4の適
所にフレキシブルパイプ37を入れることによつ
て、長尺の取水パイプを複数の短尺パイプと考え
ることができ、曲げモーメントに関する強度面の
負担をさらに軽減できる。
Furthermore, as shown in FIG. 8, by inserting a flexible pipe 37 into the appropriate position of the water intake pipe 4, a long water intake pipe can be considered as a plurality of short pipes, and the burden on strength related to bending moment can be reduced. It can be further reduced.

さらに、第9図に示すように、取水パイプ4の
強度を増すために、取水パイプ4の周囲に、その
軸方向に延長させた複数個の適宜横断面形状のリ
ブ38を補強材として設けることもできる。ま
た、上記実施例では、本発明に係る海水取水装置
を洋上の漁業用プラントに適用した場合について
述べたが、これに限らず、発電、工業プラント及
びウラニウム等の海中の貴金属成分の回収等にも
適用できることは勿論である。
Furthermore, as shown in FIG. 9, in order to increase the strength of the water intake pipe 4, a plurality of ribs 38 having an appropriate cross-sectional shape extending in the axial direction are provided around the water intake pipe 4 as reinforcing members. You can also do it. In addition, in the above embodiment, a case was described in which the seawater intake device according to the present invention is applied to an offshore fishing plant, but it is not limited to this, but is applicable to power generation, industrial plants, recovery of underwater precious metal components such as uranium, etc. Of course, it can also be applied.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、深層水取水機構
と、係留ブイと、深層水処理システムとを有し、
上記深層水取水機構が、密閉構造の中継取水槽
と、この中継取水槽に一体に設けられた浮力付与
用のフロート部と、上記中継取水槽の下端に結合
され該中継取水槽内に深層水を導入する長尺の取
水パイプと、上記中継取水槽の上端側に接続され
深層水を上記深層水処理システムへ供給する取水
用のフレキシブルホースと、上記中継取水槽に連
結され該中継取水槽及び取水パイプからの排出エ
アーを該取水パイプの沈降につれコントロールす
るエアー調整手段とを備え、上記深層水取水機構
が、上記係留ブイに吊下げ部材を介して連結され
上記中継取水層を上部側にして該中継取水槽を含
む上記取水パイプを水中に吊下げ保持されるよう
にしたものであるから、深層水取水機構を港湾、
岸壁際等の静穏水場所での組立てが可能で、しか
も組立て状態のまま沈設海域へ曳航し沈設するこ
とができる。従つて、洋上現場での組立て接続作
業が不要となり、沈設作業が単純化されると共
に、荒天等による沈設作業が左右される度合が減
少し、沈設作業工程管理も容易になる。
As described above, the present invention includes a deep water intake mechanism, a mooring buoy, and a deep water treatment system,
The deep water intake mechanism includes a relay water intake tank having a closed structure, a float part for imparting buoyancy that is integrally provided to the relay water intake tank, and a float part that is connected to the lower end of the relay water intake tank to allow deep water to flow into the relay water intake tank. a long water intake pipe that introduces water, a flexible hose for water intake that is connected to the upper end of the relay water intake tank and supplies deep water to the deep water treatment system, and a flexible hose that is connected to the relay water intake tank and that is connected to the relay water intake tank and and an air adjustment means for controlling discharge air from the water intake pipe as the water intake pipe sinks, the deep water intake mechanism being connected to the mooring buoy via a hanging member and with the intermediate water intake layer on the upper side. Since the water intake pipe including the relay water intake tank is suspended underwater, the deep water intake mechanism can be used in ports, harbors, etc.
It can be assembled in calm water locations such as near a quay, and can be towed to the sea area where it will be sunk in its assembled state. Therefore, assembly and connection work at the offshore site is no longer necessary, and the submergence work is simplified, and the degree to which the submergence work is influenced by rough weather etc. is reduced, and the control of the submergence work process is also facilitated.

また、深層水取水機構の沈設時は、工事用補助
フロートを取水パイプから取り外した後、中継取
水槽からエアーを排出することによつて取水パイ
プの先端側から沈降させるので、緩やかな沈設が
実現でき、その作業も安全で、かつ簡便になる。
In addition, when sinking the deep water intake mechanism, after removing the auxiliary float for construction from the intake pipe, the air is discharged from the relay intake tank to allow it to settle from the tip of the intake pipe, allowing for gentle sinking. This makes the work safe and easy.

さらにまた、深層化取水機構はチエーン等の吊
下げ部材により係留ブイに吊下げ保持されるもの
であるから、吊下げ部材の長さを変えることによ
り、取水深度を容易に調整できる。
Furthermore, since the deepening water intake mechanism is suspended from the mooring buoy by a hanging member such as a chain, the water intake depth can be easily adjusted by changing the length of the hanging member.

また、深層水取水機構、係留ブイ及び深層水処
理システムを搭載したシステム浮体は互いに分離
独立させ得るため、荒天時に重要なシステム浮体
を避難させたり、修理のためにドツクに持ち込む
ことが容易になる効果がある。
In addition, the system floating body equipped with the deep water intake mechanism, mooring buoy, and deep water treatment system can be separated from each other, making it easier to evacuate important system floating bodies during stormy weather or take them to a dock for repairs. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る深層水取水装置の一例を
示す全体の概略構成図、第2図は第1図における
深層水取水機構部の側面図、第3図は取水機構の
曳航状態を示す説明図、第4図は曳航時における
取水パイプの先端閉塞例を示す断面図、第5図、
第6図及び第7図はそれぞれ本発明における取水
機構の他の実施例を示す側面図、第8図は取水パ
イプの補強の断面図、第9図は本発明の取水機構
を係留ブイの係留索に兼用した場合の例を示す説
明図である。 1……取水機構、2……中継取水槽、3……フ
ロート部、4……取水パイプ、5……ホース接続
口、4……取水用フレキシブルホース、8……エ
アーノズル、9……エアーホース、10……係留
ブイ、11……係留索、12……吊下げチエー
ン、14……サブシステム浮体。
Fig. 1 is an overall schematic configuration diagram showing an example of the deep water intake device according to the present invention, Fig. 2 is a side view of the deep water intake mechanism section in Fig. 1, and Fig. 3 shows the towed state of the water intake mechanism. An explanatory diagram, Figure 4 is a sectional view showing an example of the tip of the water intake pipe being blocked during towing, and Figure 5.
Figures 6 and 7 are side views showing other embodiments of the water intake mechanism of the present invention, Figure 8 is a sectional view of reinforcing the water intake pipe, and Figure 9 is a side view showing another embodiment of the water intake mechanism of the present invention. FIG. 4 is an explanatory diagram showing an example of a case where the device is also used as a cable. 1...Water intake mechanism, 2...Relay water intake tank, 3...Float section, 4...Water intake pipe, 5...Hose connection port, 4...Flexible hose for water intake, 8...Air nozzle, 9...Air Hose, 10... Mooring buoy, 11... Mooring line, 12... Hanging chain, 14... Subsystem floating body.

Claims (1)

【特許請求の範囲】 1 深層水取水機構と、係留ブイと、深層水処理
システムとを有し、 上記深層水取水機構が、密閉構造の中継取水槽
と、この中継取水槽に一体に設けられた浮力付与
用のフロート部と、上記中継取水槽の下端に結合
され該中継取水槽内に深層水を導入する長尺の取
水パイプと、上記中継取水槽の上端側に接続され
深層水を上記深層水処理システムへ供給する取水
用のフレキシブルホースと、上記中継取水槽に連
結され該中継取水槽及び取水パイプからの排出エ
アーを該取水パイプの沈降につれコントロールす
るエアー調整手段とを備え、 上記深層水取水機構が、上記係留ブイに吊下げ
部材を介して連結され上記中継取水槽を上部側に
して該中継取水槽を含む上記取水パイプを水中に
吊下げ保持されるようにした ことを特徴とする深層水取水装置。
[Claims] 1. A deep water intake mechanism, a mooring buoy, and a deep water treatment system, wherein the deep water intake mechanism is integrally provided with a relay water intake tank having a closed structure and the relay water intake tank. a long water intake pipe connected to the lower end of the relay water intake tank to introduce deep water into the relay water intake tank; and a long water intake pipe connected to the upper end of the relay water intake tank to introduce deep water into the relay water intake tank. the deep water treatment system, comprising: a flexible hose for water intake supplying to the deep water treatment system; and an air adjustment means connected to the relay water intake tank to control exhaust air from the relay water intake tank and the water intake pipe as the water intake pipe sinks; The water intake mechanism is connected to the mooring buoy via a hanging member so that the water intake pipe including the relay water intake tank is suspended and held in the water with the relay water intake tank on the upper side. Deep water intake device.
JP62127697A 1987-05-25 1987-05-25 Deep water intake apparatus Granted JPS63291517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127697A JPS63291517A (en) 1987-05-25 1987-05-25 Deep water intake apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127697A JPS63291517A (en) 1987-05-25 1987-05-25 Deep water intake apparatus

Publications (2)

Publication Number Publication Date
JPS63291517A JPS63291517A (en) 1988-11-29
JPH0331405B2 true JPH0331405B2 (en) 1991-05-07

Family

ID=14966465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127697A Granted JPS63291517A (en) 1987-05-25 1987-05-25 Deep water intake apparatus

Country Status (1)

Country Link
JP (1) JPS63291517A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055029A1 (en) * 2005-11-14 2007-05-18 Ko Tsuneda Deep-sea water spray system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127889A (en) * 1976-04-17 1977-10-26 Yoshiki Maeda Process for propagation and growth stimulation of marine life with use of sea bottom organic maters deposits and deeppsea water
JPS5429788A (en) * 1977-08-06 1979-03-05 Seibu Polymer Kasei Kk Fish bank

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278689U (en) * 1975-12-05 1977-06-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52127889A (en) * 1976-04-17 1977-10-26 Yoshiki Maeda Process for propagation and growth stimulation of marine life with use of sea bottom organic maters deposits and deeppsea water
JPS5429788A (en) * 1977-08-06 1979-03-05 Seibu Polymer Kasei Kk Fish bank

Also Published As

Publication number Publication date
JPS63291517A (en) 1988-11-29

Similar Documents

Publication Publication Date Title
JP4401703B2 (en) Installation method of offshore wind turbine generator
US5438958A (en) Platform supported mariculture system
US20130287496A1 (en) Tidal Flow Power Generation
CN111661273B (en) Installation and construction method of deep and open sea semi-submersible fan
CN101881148B (en) Jacket riser mounting method and special riser component thereof
CN110169382B (en) Double-body type breeding platform
CN108626078B (en) Auxiliary transportation and erection process for offshore wind turbine Spar type floating foundation barge
JPS6238589B2 (en)
GB2205123A (en) Method of installing a buoyant body on a seabed
JP3551180B2 (en) Method and apparatus for dissolving water-soluble gas in the sea and isolating it in the deep sea, and laying method
CN100510282C (en) Sea-water spanning underslung flow type tunnel bridge
CN106704705B (en) overwater pipeline assembling operation method and system
JP2002356880A (en) Water intake equipment
JPH1098973A (en) Marine plankton culture unit
WO1995014374A2 (en) Platform supported mariculture system
JPH0331405B2 (en)
JPS63251394A (en) Sinking and floating method of underwater apparatus
JPH0445399B2 (en)
JPH0367917B2 (en)
CN112660318B (en) Pontoon system and process for overwater operation
KR20190033343A (en) Deep seawater intake method
US4387660A (en) Single point mooring
JP3110189B2 (en) Aeration system for moss using land-based power transmission marine aquaculture
JPS6229120Y2 (en)
JP2000245293A (en) Live box