JP4401703B2 - Installation method of offshore wind turbine generator - Google Patents

Installation method of offshore wind turbine generator Download PDF

Info

Publication number
JP4401703B2
JP4401703B2 JP2003208950A JP2003208950A JP4401703B2 JP 4401703 B2 JP4401703 B2 JP 4401703B2 JP 2003208950 A JP2003208950 A JP 2003208950A JP 2003208950 A JP2003208950 A JP 2003208950A JP 4401703 B2 JP4401703 B2 JP 4401703B2
Authority
JP
Japan
Prior art keywords
offshore wind
wind power
floating body
semi
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003208950A
Other languages
Japanese (ja)
Other versions
JP2005069025A (en
Inventor
達彦 杉本
健 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003208950A priority Critical patent/JP4401703B2/en
Publication of JP2005069025A publication Critical patent/JP2005069025A/en
Application granted granted Critical
Publication of JP4401703B2 publication Critical patent/JP4401703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Foundations (AREA)
  • Wind Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水深が比較的浅い(例えば、水深10m〜30m程度)、いわゆる浅水深域に設置する着底式の洋上風力発電装置の基礎構造と設置方法、及び比較的水深が深い、(例えば、水深30m〜1000m程度)、いわゆる大水深に設置する浮体式の洋上風力発電装置の基礎構造と設置方法に関するものである。
【0002】
【従来の技術】
近年、地球の環境問題が大きくクローズアップされ、クリーンな自然エネルギーとして、風力発電が世界的に注目され、ヨーロッパの国々を中心に実用化されている。
【0003】
一方、わが国においても、各地で風力発電が実用化されているが、今までは全て陸地に風車を設置したものである。しかし、わが国において、風力発電を拡大して行くためには、地理的条件などを考慮すると、必然的に陸地から洋上に移行すると思われる。
【0004】
ところで、洋上風力発電の設置位置として、沿岸域の比較的水深が浅い海域と、外洋の比較的水深が深い海域が考えられる。例えば、図20に示すように、浅水深向けの設置工法として、その内部中央に固定された支柱支持体7とを有し、着底後、ケーソン3及びその周囲に波消ブロック4を敷設することが知られている(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開2002−206474号公報(第2〜4頁、図5)
【0006】
【発明が解決しようとする課題】
ところが、上記の着底式の洋上風力発電装置は、その基礎を海底に着底後、ケーソン3の消波ブロック積載面及びその周囲に波消ブロック4を1個ずつ配置するために、現地(現場)での設置作業が長期化する恐れがある。
【0007】
また、大水深向けの設置工法として、浮体工法が考えられるが、現地での海象条件の厳しさや、陸から遠距離となるなどの理由により、現地での設置作業が更に長期化する恐れがある。
【0008】
本発明は、このような不都合を解消するためになされたものであり、その目的とするところは、現地での設置作業の短縮を計り、以て、現地での設置工事費などを低減することができる浅水深向け着底式洋上風力発電装置の基礎構造と設置方法及び大水深向け浮体式洋上風力発電装置の基礎構造と設置方法を提供することにある。
【0009】
【課題を解決するための手段】
上記の課題を達成するため、本発明は、次のように構成されている。
【0010】
すなわち、
本発明の浅水深向け着底式洋上風力発電装置の設置方法は、(a)陸上にて、箱形の浮体上に、筒状の風車基礎部を立設して基礎本体を形成する工程と、(b)前記基礎本体を海上に仮係留する工程と、(c)前記基礎本体の風車基礎部に、支柱と発電機及び風車よりなる風車本体を搭載して洋上風力発電装置を形成する工程と、(d)前記洋上風力発電装置を引き船で設置海域に曳航する工程と、(e)前記洋上風力発電装置をクレーン船で支持しながら前記浮体内に海底地盤の強度に見合ったバラストを注入する工程と、(f)前記洋上風力発電装置をクレーン船で吊り下げて前記基礎本体を海底地盤上に据え付ける工程よりなる浅水深向け着底式洋上風力発電装置の設置方法である
【0011】
ここで、本発明は、海底地盤の状況に応じて浮体内にコンクリートバラストを注入したり、浮体内に水バラストを注入する
【0012】
また、本発明の大水深向け浮体式洋上風力発電装置の設置方法は、(a)工場にて、箱形の下部浮力体上に、筒状の垂直浮力体を立設して半没水型浮体を形成する工程と、(b)前記半没水型浮体を海上に仮係留する工程と、(c)前記半没水型浮体に複数本の索条を搭載すると共に、各索条の下端部にアンカーを取り付ける工程と、(d)前記半没水型浮体の垂直浮力体に、支柱と発電機及び風車よりなる風車本体を搭載して洋上風力発電装置を形成する工程と、(e)該洋上風力発電装置を引き船で設置海域に曳航する工程と、(f)設置海域に到着後、前記索条を繰り出してアンカーを海底に着底させる工程と、(g)前記索条を、再度、所定の長さだけ引き揚げて前記半没水型浮体に固定する工程と、(h)前記下部浮力体内にバラストを注水して前記半没水型浮体を半没状態に保持する工程よりなる大水深向け浮体式洋上風力発電装置の設置方法である。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
(A)先ず、浅水深向け着底式洋上風力発電装置の基礎構造及び設置方法について説明する。
【0017】
図1(a)及び(b)に示すように、工場(図示せず)で鋼板や、コンクリートなどを用いて箱型の浮体21と、円筒状の風車基礎部22とを製作する。次に、図1(c)に示すように、この箱型の浮体21の上に円筒状の風車基礎部22を立設させて基礎本体20、即ち、浅水深向け着底式洋上風力発電装置の基礎構造を形成する。
【0018】
その後、箱型の浮体21と円筒状の風車基礎部22の間に必要に応じて支持部材23を斜めにあてがって円筒状の風車基礎部22の支持力を増強する。
【0019】
次に、図2に示すように、上記基礎本体20を艤装岸壁(図示せず)に仮係留する。
【0020】
次に、図3に示すように、艤装岸壁に仮係留されている基礎本体20の円筒状の風車基礎部22に、風車本体24を搭載して着底式の洋上風力発電装置25を形成する。
【0021】
風車本体24は、幹部(根元部)から先端部(上端部)に向かうにしたがって次第に径が小さくなるテーパー付きの中空状の支柱26と、この支柱26の頂部に設けられた発電機27と、この発電機27の回転軸28に装着された風車29により構成されている。この風車29は、図8に示すように、回転軸28に放射状に取り付けられた複数枚の翼体30から構成されている。
【0022】
次に、図4に示すように、上記洋上風力発電装置25を数隻の引き船31で設置海域に曳航する。
【0023】
次に、図5に示すように、所定の設置海域Dに到着後、数隻のクレーン船32によって箱型の浮体21を支持しながら、この箱型の浮体21の中にポンプを使って一時に水バラスト(海水)を注入する。
【0024】
その際、図6に示すように、上記クレーン船32のワイヤーロープ35を繰り出して、箱型の浮体21の安定性を確保し、海底Eに予め構築した海底地盤F上に据え付ける。しかる後に、箱型の浮体21からワイヤーロープ35を取り外し、図7及び図8に示すように、洋上風力発電装置25を海底地盤F上に自立させる。その後、内部の水バラストをコンクリートなどの固定バラストに置き換える。尚、配電ケーブル(図示せず)などは、予め、接続端子(図示せず)に接続させておく。
【0025】
この実施形態では、箱型の浮体21の中に最終的に全てコンクリートバラストを注入したが、内部のバラスト量などを調整し、地盤設置圧を調整することが可能である。例えば、海底が柔らかい砂地盤Gの場合には、図9(a)に示すように、箱型の浮体21の中に最終的にコンクリートバラストbを半分程度注入する。また、海底が軟弱地盤Hの場合には、図9(b)に示すように、箱型の浮体21の中に水バラストaを必要最小限注入する。
【0026】
尚、海底が柔らかい砂地盤Gや軟弱地盤Hの場合には、箱型の浮体21の下面に自重沈下するストッパ杭36を多数本、取り付けるとよい。
(B)次に、大水深向け浮体式洋上風力発電装置の基礎構造及び設置方法について説明する。
【0027】
図10に示すように、先ず、工場(図示せず)で半没水型(セミサブ型)の浮体41、即ち、大水深向け浮体式洋上風力発電装置の基礎構造を製作する。この浮体41は、多角形の箱型の下部浮力体42と、円筒形の垂直浮力体43により形成されている。これらの浮力体42,43は、鋼板などを用いて製作されている。
【0028】
次に、図11に示すように、この半没水型の浮体41を艤装岸壁(図示せず)に仮係留する。
【0029】
次に、図12に示すように、上記浮体の下部浮力体42の縁に沿って設けられている複数のガイドパイプ44にチェーンなどの索条45を挿通するとともに、その下端に無蓋箱形のシンカー型枠46を取り付ける。
【0030】
次に、図13に示すように、上記シンカー型枠46の中にコンクリートcを水中打設する。このコンクリートの水中打設は、上記艤装岸壁上に設置させたコンクリート打設機(図示せず)を用いて行なう。
【0031】
次に、図14に示すように、艤装岸壁に仮係留されている浮体41の垂直浮力体43に、風車本体24を搭載してセミサブ型の洋上風力発電装置47を形成する。
【0032】
上記風車本体24は、幹部(根元部)から先端部(上端部)に向かうにしたがって次第に径が小さくなるテーパー付きの中空状の支柱26と、この支柱26の頂部に設けられた発電機27と、この発電機27の回転軸28に装着された風車29により構成されている。この風車29は、図19に示すように、回転軸28に放射状に取り付けられた複数枚の翼体30から構成されている。
【0033】
次に、図15に示すように、セミサブ型の洋上風力発電装置47を数隻の引き船31で所定の設置海域に曳航する。
【0034】
次に、図16に示すように、所定の設置海域Dに到着後、セミサブ型の洋上風力発電装置47を数隻のクレーン船32で支持しながら、箱型の下部浮力体42の縁に搭載させたチェーンなどの索条45を繰り出してシンカー48を海底Eに接触させる。
【0035】
次に、図17に示すように、チェーンなどの索条45の弛みを取り除いた後、当該索条45を所定の長さだけ引き揚げて下部浮力体42に固定する。
【0036】
次に、図18及び図19に示すように、下部浮力体42の中に水バラスト(海水)を注水してシンカー48を海底Eに定着させるとともに、索条の張力調整を行なう。この時、浮体41の垂直浮力体43の一部(上部)は、海水面Jより上方に突き出すことから、浮体21は、半没水型、すなわち、セミサブ型となる。尚、配電ケーブル(図示せず)などは、予め、接続端子(図示せず)に接続させておく。
【0037】
【発明の効果】
上記のように、本発明の浅水深向け着底式洋上風力発電装置の基礎構造は、箱型の浮体上に、筒状の風車基礎部を立設して海底面に着底させたものであるから、現場の海底地盤に安定した状態で確実に設置することができる。その上、箱型浮体の下面にストッパ杭を多数本取り付けていることから、このストッパ杭を海底地盤に食い込ませることで、基礎構造の安定性が格段に向上する。
【0038】
また、本発明の浅水深向け着底式洋上風力発電装置の設置方法は、(a)陸上にて、箱型の浮体上に、筒状の風車基礎部を立設して基礎本体を形成する工程と、(b)前記基礎本体を海上に仮係留する工程と、(c)前記基礎本体の風車基礎部に、支柱と発電機及び風車によりなる風車本体を搭載して洋上風力発電装置を形成する工程と、(d)前記洋上風力発電装置を引き船で設置海域に曳航する工程と、(e)前記洋上風力発電装置をクレーン船で支持しながら前記浮体内に海底地盤の強度に見合ったバラストを注入する工程と、(f)前記洋上風力発電装置をクレーン船で吊り下げて前記基礎本体を海底地盤上に据え付ける工程により構成されている。
【0039】
従って、本発明によれば、工場で箱型浮体に筒状風車基礎部を立設して基礎本体を一体製作し、その後、仮係留中に工場内で風車本体の搭載を行う一方、現地では、浮体内に海底地盤の強度に見合ったバラストを注入することが主たる作業になることから、現地での工期が短縮でき、以て、工費の削減を計ることができる。また、この発明は、海底地盤の状況に応じて底面構造及びバラスト量を調整することができる。
【0040】
一方、本発明の大水深向け浮体式洋上風力発電装置の基礎構造は、上記のように、多角形箱型の下部浮力体上に、筒状の垂直浮力体を立設して半没水型浮体を緊張係留して、基礎本体を形成しているから、構造が非常にシンプルな上、水線面積が非常に小さいことから、波浪の影響を受け難いという利点がある。
【0041】
また、本発明の大水深向け浮体式洋上風力発電装置の設置方法は、(a)工場にて、箱型の下部浮力体上に、筒状の垂直浮力体を立設して半没水型浮体を形成する工程と、(b)前記半没水型浮体を海上に仮係留する工程と、(c)前記半没水型浮体に複数本の索条を搭載するとともに、各索条の下端部にアンカーを取り付ける工程と、(d)前記半没水型浮体の垂直浮力体に、支柱と発電機及び風車によりなる風車本体を搭載して洋上風力発電装置を形成する工程と、(e)該洋上風力発電装置を引き船で設置海域に曳航する工程と、(f)設置海域に到着後、前記索条を繰り出してアンカーを海底に着底させる工程と、(g)前記索条を、再度、所定の長さだけ引き揚げて前記半没水型浮体に固定する工程と、(h)前記下部浮力体内にバラストを注水して前記半没水型浮体を半没状態に保持する工程により構成されている。
【0042】
従って、本発明によれば、浮体の横揺れがほとんどないことから、風車性能の低下を抑えることができる。また、この発明は、浮体本体が単純な構造で、製作が容易であり、防食対策が計り易い。また、工場で半没水型浮体の一体製作及び風車本体の搭載を行なうので、現地工期が短縮でき、以て、工費を削減することができる。また、この発明は、海水バラストの調整により再浮上が可能であり、維持管理性に優れている。
【図面の簡単な説明】
【図1】(a)浮体の側面図、(b)基礎部の側面図、(c)基礎本体の側面図である。
【図2】仮係留中の基礎本体の側面図である。
【図3】基礎本体に風車を搭載したの側面図である。
【図4】曳航中の着底型の洋上風力発電装置の側面図である。
【図5】浮体に水バラスト(海水)を注入する説明図である。
【図6】洋上風力発電装置をクレーン船で保持して着底させる説明図である。
【図7】自立した着底式洋上風力発電装置の側面図である。
【図8】自立した着底式洋上風力発電装置の正面図である。
【図9】(a)、(b)地盤条件に合わせた底面構造及びバラスト調整の説明図である。
【図10】浮体の側面図である。
【図11】仮係留中の浮体の側面図である。
【図12】浮体にチェーンを搭載した側面図である。
【図13】シンカー枠にコンーリートを注入した説明図である。
【図14】仮係留中の基礎本体の側面図である。
【図15】曳航中のセミサブ型の洋上風力発電装置の側面図である。
【図16】シンカーを海底に着底させた説明図である。
【図17】シンカーを所定高さに引き揚げた説明図である。
【図18】シンカーを、再度、海底に着底させた説明図である。
【図19】自立したセミサブ型洋上風力発電装置の正面図である。
【図20】従来の洋上風力発電装置の説明図である。
【符号の説明】
D 設置海域
20 基礎本体
21 浮体
22 風車基礎部
25 風力発電装置
26 支柱
27 発電機
28 風車
29 風車本体
31 引き船
32 クレーン船
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a foundation structure and installation method for a bottomed offshore wind power generator installed in a so-called shallow water depth, and a relatively deep water depth (for example, a depth of about 10 to 30 m), and a relatively deep water depth (for example, In other words, the present invention relates to a foundation structure and an installation method of a floating offshore wind turbine generator installed at a so-called large water depth.
[0002]
[Prior art]
In recent years, environmental problems on the earth have been greatly highlighted, and wind power generation has attracted worldwide attention as a clean natural energy and has been put to practical use mainly in European countries.
[0003]
On the other hand, even in Japan, wind power generation has been put into practical use in various places, but until now all wind turbines have been installed on land. However, in order to expand wind power generation in Japan, it is inevitably necessary to move from land to offshore in consideration of geographical conditions.
[0004]
By the way, as the installation position of the offshore wind power generation, a sea area with a relatively shallow water depth in the coastal area and a sea area with a relatively deep water depth in the open sea are considered. For example, as shown in FIG. 20, as an installation method for shallow water depth, it has a column support 7 fixed in the center of the interior, and after the bottom is reached, the caisson 3 and the wave-dissipating block 4 are laid around it. It is known (for example, refer to Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-206474 (pages 2 to 4, FIG. 5)
[0006]
[Problems to be solved by the invention]
However, the above-described bottomed offshore wind power generator is installed on the ground (in order to place the wave-dissipating blocks 4 one by one on the surface of the caisson 3 where the wave-dissipating blocks are loaded, after landing on the seabed. Installation work at the site may be prolonged.
[0007]
In addition, the floating body construction method can be considered as an installation method for deep water, but there is a possibility that the installation work at the site may be further prolonged due to the severe sea conditions at the site and the distance from the land. .
[0008]
The present invention has been made to eliminate such inconveniences, and its purpose is to shorten the installation work at the site, thereby reducing the installation work cost at the site. The object is to provide a foundation structure and installation method of a bottomed offshore wind power generator for shallow water depth and a foundation structure and installation method of a floating offshore wind power generator for deep water.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
[0010]
That is,
The method of installing a bottomed offshore wind power generator for shallow water according to the present invention includes: (a) a step of standing a cylindrical windmill foundation on a box-shaped floating body on land to form a foundation body; , (B) a step of temporarily mooring the foundation body on the sea, and (c) a step of forming an offshore wind power generator by mounting a windmill body comprising a column, a generator and a windmill on the windmill base portion of the foundation body. And (d) a step of towing the offshore wind power generator to a marine installation area by a pulling ship; and And (f) a method of installing a bottomed offshore wind power generator for shallow water, comprising a step of suspending the offshore wind power generator with a crane ship and installing the foundation main body on the seabed ground .
[0011]
Here, according to the present invention, concrete ballast is injected into the floating body or water ballast is injected into the floating body according to the state of the seabed ground .
[0012]
Moreover, the installation method of the floating offshore wind power generator for deep water of the present invention is as follows: (a) A semi-submersible type in which a cylindrical vertical buoyant body is erected on a box-shaped lower buoyant body at a factory. A step of forming a floating body, (b) a step of temporarily mooring the semi-submersible floating body on the sea, and (c) mounting a plurality of ropes on the semi-submersible floating body, and a lower end of each rope Attaching an anchor to the section; (d) mounting a wind turbine body comprising a column, a generator and a wind turbine on the vertical buoyancy body of the semi-submersible floating body to form an offshore wind power generator; and (e) A step of towing the offshore wind power generation apparatus to a setting sea area by a tug; (f) a process of unwinding the rope after reaching the installation sea area and landing an anchor on the sea floor; and (g) the rope. A step of lifting again by a predetermined length and fixing it to the semi-submersible floating body; and (h) loosening in the lower buoyancy body. Wherein by injection bets a method of installing a semi submersible type floating consisting step of holding the half-death state deepwater for floating offshore wind turbine generator.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(A) First, the basic structure and installation method of the bottomed offshore wind power generator for shallow water will be described.
[0017]
As shown in FIGS. 1 (a) and 1 (b), a box-shaped floating body 21 and a cylindrical windmill base portion 22 are manufactured using a steel plate, concrete, or the like at a factory (not shown). Next, as shown in FIG.1 (c), the cylindrical windmill base part 22 is made to stand on this box-shaped floating body 21, and the bottom type offshore wind power generator for the foundation main body 20, ie, shallow water depth, is used. Form the foundation structure.
[0018]
Thereafter, the support member 23 is applied obliquely between the box-shaped floating body 21 and the cylindrical windmill base portion 22 as necessary to enhance the support force of the cylindrical windmill base portion 22.
[0019]
Next, as shown in FIG. 2, the foundation main body 20 is temporarily moored on an outfitting quay (not shown).
[0020]
Next, as shown in FIG. 3, a bottomed offshore wind power generator 25 is formed by mounting the windmill body 24 on the cylindrical windmill foundation portion 22 of the foundation body 20 temporarily moored on the quay. .
[0021]
The windmill body 24 has a tapered hollow column 26 whose diameter gradually decreases from the trunk (root) to the tip (upper end), and a generator 27 provided on the top of the column 26, The wind turbine 29 is mounted on the rotating shaft 28 of the generator 27. As shown in FIG. 8, the windmill 29 includes a plurality of wing bodies 30 that are radially attached to the rotary shaft 28.
[0022]
Next, as shown in FIG. 4, the offshore wind power generator 25 is towed to the installation sea area by several tugboats 31.
[0023]
Next, as shown in FIG. 5, after arriving at a predetermined installation area D, the box-shaped floating body 21 is supported by several crane ships 32, and a pump is used in the box-shaped floating body 21. Sometimes water ballast (seawater) is injected.
[0024]
At that time, as shown in FIG. 6, the wire rope 35 of the crane ship 32 is fed out to secure the stability of the box-shaped floating body 21 and is installed on the seabed ground F preliminarily constructed on the seabed E. Thereafter, the wire rope 35 is removed from the box-shaped floating body 21, and the offshore wind power generator 25 is made to stand on the seabed ground F as shown in FIGS. Thereafter, the internal water ballast is replaced with a fixed ballast such as concrete. Note that a power distribution cable (not shown) or the like is connected in advance to a connection terminal (not shown).
[0025]
In this embodiment, the concrete ballast is finally injected into the box-shaped floating body 21. However, it is possible to adjust the internal ballast amount and adjust the ground installation pressure. For example, in the case of sand ground G with a soft seabed, about half of the concrete ballast b is finally poured into the box-shaped floating body 21 as shown in FIG. When the seabed is soft ground H, the minimum required amount of water ballast a is injected into the box-shaped floating body 21 as shown in FIG.
[0026]
In addition, when the seabed is soft sand ground G or soft ground H, a large number of stopper piles 36 that sink under their own weight may be attached to the lower surface of the box-shaped floating body 21.
(B) Next, the basic structure and installation method of the floating offshore wind turbine generator for deep water will be described.
[0027]
As shown in FIG. 10, first, a semi-submersible (semi-sub) floating body 41, that is, a foundation structure of a floating offshore wind turbine for deep water is manufactured at a factory (not shown). The floating body 41 is formed by a polygonal box-shaped lower buoyancy body 42 and a cylindrical vertical buoyancy body 43. These buoyancy bodies 42 and 43 are manufactured using a steel plate or the like.
[0028]
Next, as shown in FIG. 11, this semi-submersible floating body 41 is temporarily moored on a quay quay (not shown).
[0029]
Next, as shown in FIG. 12, a rope 45 such as a chain is inserted into a plurality of guide pipes 44 provided along the edge of the lower buoyant body 42 of the floating body, and a lid-free box-like shape is formed at the lower end thereof. A sinker mold 46 is attached.
[0030]
Next, as shown in FIG. 13, concrete c is placed in the sinker mold 46 underwater. This underwater placement of concrete is performed using a concrete placement machine (not shown) installed on the above-mentioned quay wall.
[0031]
Next, as shown in FIG. 14, the semi-sub-type offshore wind power generator 47 is formed by mounting the windmill body 24 on the vertical buoyancy body 43 of the floating body 41 temporarily moored on the outfitting quay.
[0032]
The wind turbine body 24 includes a tapered hollow column 26 having a diameter that gradually decreases from the trunk (base) to the tip (upper end), and a generator 27 provided on the top of the column 26. The wind turbine 29 is mounted on the rotary shaft 28 of the generator 27. As shown in FIG. 19, the wind turbine 29 is composed of a plurality of wing bodies 30 that are radially attached to the rotary shaft 28.
[0033]
Next, as shown in FIG. 15, the semi-submersible offshore wind power generator 47 is towed to a predetermined installation area by several tugboats 31.
[0034]
Next, as shown in FIG. 16, after arriving at the predetermined installation sea area D, the semi-submersible offshore wind power generator 47 is mounted on the edge of the box-shaped lower buoyant body 42 while being supported by several crane ships 32. The rope 45 such as the chain that has been let out is fed out to bring the sinker 48 into contact with the seabed E.
[0035]
Next, as shown in FIG. 17, after the slack of the rope 45 such as a chain is removed, the rope 45 is lifted by a predetermined length and fixed to the lower buoyancy body 42.
[0036]
Next, as shown in FIGS. 18 and 19, water ballast (seawater) is poured into the lower buoyancy body 42 to fix the sinker 48 to the seabed E, and the tension of the rope is adjusted. At this time, since a part (upper part) of the vertical buoyancy body 43 of the floating body 41 protrudes upward from the sea level J, the floating body 21 is a semi-submersible type, that is, a semi-sub type. Note that a power distribution cable (not shown) or the like is connected in advance to a connection terminal (not shown).
[0037]
【The invention's effect】
As described above, the foundation structure of the bottomed offshore wind power generator for shallow water according to the present invention is a box-shaped floating body in which a cylindrical windmill foundation is erected and is attached to the bottom of the sea. Therefore, it can be reliably installed in a stable state on the seabed ground. In addition, since a large number of stopper piles are attached to the lower surface of the box-type floating body, the stability of the foundation structure is significantly improved by biting the stopper piles into the seabed ground.
[0038]
Moreover, the installation method of the bottomed offshore wind power generator for shallow water depth of this invention is (a) On the land, a cylindrical windmill base part is erected on a box-shaped floating body, and a foundation main body is formed. And (b) a step of temporarily mooring the foundation main body on the sea, and (c) an offshore wind power generator is formed by mounting a windmill main body comprising a prop, a generator and a windmill on the windmill base portion of the foundation main body. And (d) a step of towing the offshore wind power generation device to a marine installation area by a pulling ship, and (e) a strength of the seabed ground in the floating body while supporting the offshore wind power generation device by a crane ship. A step of injecting ballast; and (f) a step of suspending the offshore wind power generator with a crane ship and installing the foundation body on the submarine ground.
[0039]
Therefore, according to the present invention, a cylindrical windmill foundation is erected on a box-type floating body at a factory to integrally manufacture the foundation body, and then the windmill body is mounted in the factory during temporary mooring, The main task is to inject the ballast suitable for the strength of the seabed ground into the floating body, so the construction period at the site can be shortened and the construction cost can be reduced. Moreover, this invention can adjust a bottom face structure and the amount of ballasts according to the condition of a seabed ground.
[0040]
On the other hand, the basic structure of the floating offshore wind power generator for deep water according to the present invention is a semi-submersible type as described above in which a cylindrical vertical buoyant body is erected on a polygonal box-shaped lower buoyant body. Since the foundation body is formed by tensioning the floating body, the structure is very simple and the water line area is very small, so that there is an advantage that it is not easily affected by waves.
[0041]
Moreover, the installation method of the floating offshore wind turbine generator for deep water according to the present invention includes: (a) a semi-submersible type in which a cylindrical vertical buoyant body is erected on a box-shaped lower buoyant body at a factory; A step of forming a floating body, (b) a step of temporarily mooring the semi-submersible floating body on the sea, and (c) mounting a plurality of ropes on the semi-submersible floating body, and a lower end of each rope Attaching an anchor to the section; (d) forming an offshore wind power generator by mounting a windmill body comprising a support, a generator and a windmill on the vertical buoyancy body of the semi-submersible floating body; and (e) A step of towing the offshore wind power generation apparatus to a setting sea area by a tug; (f) a process of unwinding the rope after reaching the installation sea area and landing an anchor on the sea floor; and (g) the rope. A step of lifting again by a predetermined length and fixing to the semi-submersible floating body; and (h) in the lower buoyancy body. Is constituted by step by water injection to the last holding said semi-submersible-type floating semi death state.
[0042]
Therefore, according to this invention, since there is almost no rolling of a floating body, the fall of a windmill performance can be suppressed. In the present invention, the floating body has a simple structure, is easy to manufacture, and measures for anticorrosion are easy to measure. Moreover, since the semi-submersible floating body is integrally manufactured and the wind turbine body is mounted at the factory, the local construction period can be shortened, and the construction cost can be reduced. In addition, the present invention can re-float by adjusting the seawater ballast, and is excellent in maintainability.
[Brief description of the drawings]
1A is a side view of a floating body, FIG. 1B is a side view of a base portion, and FIG. 1C is a side view of a base body.
FIG. 2 is a side view of the foundation body during temporary mooring.
FIG. 3 is a side view of a wind turbine mounted on a basic body.
FIG. 4 is a side view of a bottomed offshore wind power generator during towing.
FIG. 5 is an explanatory diagram for injecting water ballast (seawater) into a floating body.
FIG. 6 is an explanatory view of holding an offshore wind power generator by a crane ship and bottoming it.
FIG. 7 is a side view of a self-supporting bottomed offshore wind power generator.
FIG. 8 is a front view of a self-supporting bottomed offshore wind power generator.
FIGS. 9A and 9B are explanatory views of a bottom structure and ballast adjustment according to ground conditions. FIGS.
FIG. 10 is a side view of a floating body.
FIG. 11 is a side view of a floating body during temporary mooring.
FIG. 12 is a side view in which a chain is mounted on a floating body.
FIG. 13 is an explanatory diagram in which a concrete is injected into a sinker frame.
FIG. 14 is a side view of the foundation body during temporary mooring.
FIG. 15 is a side view of a semi-sub-type offshore wind power generator during towing.
FIG. 16 is an explanatory diagram in which a sinker is attached to the seabed.
FIG. 17 is an explanatory diagram in which the sinker is lifted to a predetermined height.
FIG. 18 is an explanatory diagram in which the sinker is again bottomed on the seabed.
FIG. 19 is a front view of a self-supporting semi-subtype offshore wind power generator.
FIG. 20 is an explanatory diagram of a conventional offshore wind power generator.
[Explanation of symbols]
D Installation sea area 20 Foundation body 21 Floating body 22 Windmill foundation 25 Wind power generator 26 Prop 27 Generator 28 Windmill 29 Windmill body 31 Tug ship 32 Crane ship

Claims (4)

浅水深向け着底式洋上風力発電装置の設置方法であって、
(a)陸上にて、箱形の浮体上に、筒状の風車基礎部を立設して基礎本体を形成する工程と、
(b)前記基礎本体を海上に仮係留する工程と、
(c)前記基礎本体の風車基礎部に、支柱と発電機及び風車よりなる風車本体を搭載して洋上風力発電装置を形成する工程と、
(d)前記洋上風力発電装置を引き船で設置海域に曳航する工程と、
(e)前記洋上風力発電装置をクレーン船で支持しながら前記浮体内に海底地盤の強度に見合ったバラストを注入する工程と、
(f)前記洋上風力発電装置をクレーン船で吊り下げて前記基礎本体を海底地盤上に据え付ける工程よりなる浅水深向け着底式洋上風力発電装置の設置方法。
A method of installing a bottomed offshore wind power generator for shallow water,
(A) On land, a step of standing a cylindrical windmill foundation on a box-shaped floating body to form a foundation body;
(B) temporarily mooring the foundation body on the sea;
(C) a step of forming an offshore wind power generator by mounting a windmill body comprising a prop, a generator, and a windmill on the windmill foundation of the foundation body;
(D) a step of towing the offshore wind power generation device to an installation sea area by a tug;
(E) injecting ballast corresponding to the strength of the seabed ground into the floating body while supporting the offshore wind power generator with a crane ship;
(F) A method for installing a bottomed offshore wind power generator for shallow water, comprising a step of suspending the offshore wind power generator with a crane ship and installing the foundation body on the seabed ground.
前記浮体内にコンクリートバラストを注入することを特徴とする請求項記載の浅水深向け着底式洋上風力発電装置の設置方法。Installation of shallow depth for Chakusokoshiki offshore wind turbine generator according to claim 1, wherein the injecting concrete ballast the floating body within. 前記浮体内に水バラストを注入することを特徴とする請求項記載の浅水深向け着底式洋上風力発電装置の設置方法。Installation of shallow depth for Chakusokoshiki offshore wind turbine generator according to claim 1, wherein the injecting water ballast into the floating body within. 大水深向け浮体式洋上風力発電装置の設置方法であって、
(a)工場にて、箱形の下部浮力体上に、筒状の垂直浮力体を立設して半没水型浮体を形成する工程と、
(b)前記半没水型浮体を海上に仮係留する工程と、
(c)前記半没水型浮体に複数本の索条を搭載すると共に、各索条の下端部にアンカーを取り付ける工程と、
(d)前記半没水型浮体の垂直浮力体に、支柱と発電機及び風車よりなる風車本体を搭載して洋上風力発電装置を形成する工程と、
(e)該洋上風力発電装置を引き船で設置海域に曳航する工程と、
(f)設置海域に到着後、前記索条を繰り出してアンカーを海底に着底させる工程と、
(g)前記索条を、再度、所定の長さだけ引き揚げて前記半没水型浮体に固定する工程と、
(h)前記下部浮力体内にバラストを注水して前記半没水型浮体を半没状態に保持する工程よりなる大水深向け浮体式洋上風力発電装置の設置方法。
A method for installing a floating offshore wind turbine generator for deep water,
(A) a step of standing a cylindrical vertical buoyant body on a box-shaped lower buoyant body at a factory to form a semi-submersible floating body;
(B) temporarily mooring the semi-submersible float on the sea;
(C) mounting a plurality of ropes on the semi-submersible floating body, and attaching an anchor to the lower end of each rope;
(D) A step of forming an offshore wind power generator by mounting a windmill body comprising a column, a generator and a windmill on the vertical buoyancy body of the semi-submersible floating body;
(E) a step of towing the offshore wind power generation apparatus to a setting sea area by a tug;
(F) After arriving at the installation sea area, the step of extending the rope and landing the anchor on the seabed;
(G) a step of lifting the rope again by a predetermined length and fixing it to the semi-submersible floating body;
(H) A method for installing a floating offshore wind power generator for deep water, comprising a step of pouring ballast into the lower buoyancy body to hold the semi-submersible floating body in a semi-submerged state.
JP2003208950A 2003-08-27 2003-08-27 Installation method of offshore wind turbine generator Expired - Lifetime JP4401703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208950A JP4401703B2 (en) 2003-08-27 2003-08-27 Installation method of offshore wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208950A JP4401703B2 (en) 2003-08-27 2003-08-27 Installation method of offshore wind turbine generator

Publications (2)

Publication Number Publication Date
JP2005069025A JP2005069025A (en) 2005-03-17
JP4401703B2 true JP4401703B2 (en) 2010-01-20

Family

ID=34402034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208950A Expired - Lifetime JP4401703B2 (en) 2003-08-27 2003-08-27 Installation method of offshore wind turbine generator

Country Status (1)

Country Link
JP (1) JP4401703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286987A (en) * 2011-07-05 2011-12-21 天津大学 Gravity-type foundation structure for maritime equipment engineering and construction method thereof

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2394498B (en) 2002-10-23 2006-08-09 Engineering Business Ltd Mounting of offshore structures
US7984525B2 (en) 2004-08-03 2011-07-26 Ihc Engineering Business Limited Access method between marine structures and apparatus
GB2428656B (en) 2005-08-01 2009-08-05 Engineering Business Ltd Gangway apparatus
ES2316211B1 (en) * 2006-01-09 2009-12-03 Manuel Torres Martinez ASSEMBLY SYSTEM OF AQUATIC STRUCTURES ON AN ANCHORAGE FOUNDATION AND FOUNDATION INTENDED FOR SUCH ASSEMBLY.
GB0600942D0 (en) * 2006-01-18 2006-02-22 Marine Current Turbines Ltd Improvements in gravity foundations for tidal stream turbines
GB2434823A (en) 2006-02-06 2007-08-08 Engineering Business Ltd Transport and installation of offshore structures
EP1878913B1 (en) 2006-07-14 2013-03-13 OpenHydro Group Limited Bi-directional tidal flow hydroelectric turbine
EP1878911B1 (en) 2006-07-14 2008-09-24 OpenHydro Group Limited Turbines having a debris release chute
ATE538304T1 (en) 2006-07-14 2012-01-15 Openhydro Group Ltd UNDERWATER HYDROELECTRIC TURBINES WITH FLOATS
EP1879280B1 (en) 2006-07-14 2014-03-05 OpenHydro Group Limited A hydroelectric turbine
DE602007007294D1 (en) 2007-04-11 2010-08-05 Openhydro Group Ltd Method for installing hydroelectric turbines
EP1988219A1 (en) * 2007-05-04 2008-11-05 Anatoliusz Z. Jaroszewicz Monopile foundation
JP5297606B2 (en) * 2007-07-03 2013-09-25 五洋建設株式会社 Installation method of offshore wind turbine generator
EP2088311B1 (en) 2008-02-05 2015-10-14 OpenHydro Group Limited A hydroelectric turbine with floating rotor
JP5022976B2 (en) * 2008-04-08 2012-09-12 五洋建設株式会社 Spar-type floating structure for offshore wind power generation, its manufacturing method, and its installation method
KR101734004B1 (en) * 2008-04-11 2017-05-10 오스트렐리언 서스테인너블 에너지 코포레이션 피티와이 엘티디 A system for deploying a wave energy converter and a method of deploying a wave energy converter
EP2110910A1 (en) 2008-04-17 2009-10-21 OpenHydro Group Limited An improved turbine installation method
KR101713618B1 (en) * 2008-04-23 2017-03-08 프린시플 파워, 인코포레이티드 Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
EP2189576A1 (en) 2008-11-19 2010-05-26 Flota Proyectos Singulares, S.A. Foundation system for marine structures in deep water
EP2199598B1 (en) 2008-12-18 2012-05-02 OpenHydro IP Limited A hydroelectric turbine comprising a passive brake and method of operation
EP2209175B1 (en) 2008-12-19 2010-09-15 OpenHydro IP Limited A method of installing a hydroelectric turbine generator
GB0902289D0 (en) * 2009-02-12 2009-03-25 Marine Current Turbines Ltd Methods for installing pin-piled jacket type structures at sea
FR2943079B1 (en) * 2009-03-13 2011-04-29 Electricite De France SYSTEM AND METHOD FOR IMMERSION OF A HYDRAULIC TURBOMACHINE
ATE548562T1 (en) 2009-04-17 2012-03-15 Openhydro Ip Ltd IMPROVED METHOD FOR CONTROLLING THE OUTPUT OF A HYDROELECTRIC TURBINE GENERATOR
JP2010280301A (en) * 2009-06-04 2010-12-16 Shimizu Corp Floating structural for offshore facility and method of constructing offshore facility
EP2302766B1 (en) 2009-09-29 2013-03-13 OpenHydro IP Limited A hydroelectric turbine with coil cooling
EP2302204A1 (en) 2009-09-29 2011-03-30 OpenHydro IP Limited A hydroelectric turbine system
EP2302755B1 (en) 2009-09-29 2012-11-28 OpenHydro IP Limited An electrical power conversion system and method
JP5670128B2 (en) * 2010-09-03 2015-02-18 清水建設株式会社 Floating structure for offshore facilities and construction method of offshore facilities
KR101241005B1 (en) * 2010-09-30 2013-03-11 한국전력공사 Support member for offshore wind power generator
EP2450562B1 (en) 2010-11-09 2015-06-24 Openhydro IP Limited A hydroelectric turbine recovery system and a method therefore
EP2469257B1 (en) 2010-12-23 2014-02-26 Openhydro IP Limited A hydroelectric turbine testing method
CN102161375B (en) * 2011-01-31 2013-07-17 江苏道达海上风电工程科技有限公司 Boat for transporting and installing wind turbine generator system equipment and application of boat
WO2012121247A1 (en) * 2011-03-07 2012-09-13 株式会社アイ・エイチ・アイ マリンユナイテッド Spar type floating structure
JP5738643B2 (en) * 2011-03-25 2015-06-24 戸田建設株式会社 Installation method of offshore wind power generation equipment
CN102296623B (en) * 2011-06-27 2013-04-17 天津大学 Tripod type leveling offshore foundation structure and construction method thereof
JP2013035361A (en) * 2011-08-05 2013-02-21 Penta Ocean Construction Co Ltd Floating body type structure in floating body type offshore wind power generation device, method for manufacturing the same, and method for installing the same
CN103015387B (en) * 2011-09-23 2015-08-19 华锐风电科技(集团)股份有限公司 Protective device and marine brace table
CN103057672A (en) * 2011-10-21 2013-04-24 南通海纳德船舶设计有限公司 Platform for transportation and installation of offshore fan unit complete machine
JP5791540B2 (en) 2012-02-20 2015-10-07 三菱重工業株式会社 Offshore windmill installation ship and offshore windmill installation method
CN103362137A (en) * 2012-03-26 2013-10-23 刘红静 Offshore wind driven generator foundation with sunk base plate and supporting piles
EP3366567B1 (en) 2013-05-20 2019-12-18 Principle Power, Inc. System and method for controlling offshore floating wind turbine platforms
CN103332269B (en) * 2013-05-22 2016-06-15 江苏道达海上风电工程科技有限公司 Backpack complete offshore wind power machine transport installation ship
KR101399452B1 (en) * 2013-12-11 2014-05-28 (주)대우건설 Construction method for offshore structure
ES2555500B1 (en) * 2014-05-27 2016-12-13 Sea Wind Towers Sl Floating work and installation procedure
GB2530302A (en) * 2014-09-18 2016-03-23 Statoil Petroleum As Method and apparatus for transporting offshore floating wind turbines
PL3566941T3 (en) 2014-10-27 2022-01-17 Principle Power, Inc. Connection system for array cables of disconnectable offshore energy devices
KR101721077B1 (en) * 2014-11-04 2017-04-11 (주)평화엔지니어링 Construction method for offshore structure
EP3310647B1 (en) 2015-06-19 2021-03-24 Principle Power, Inc. Floating wind turbine platform structure with optimized transfer of wave and wind loads
JP6334479B2 (en) * 2015-08-26 2018-05-30 株式会社三井E&Sホールディングス Offshore wind turbine installation method
CN105402091A (en) * 2015-12-11 2016-03-16 新誉集团有限公司 Offshore floating type draught fan and draught fan foundation thereof
JP2018040224A (en) * 2016-09-09 2018-03-15 清水建設株式会社 Water bottom mound structure and storage method of floating body structure for offshore facility
KR102086155B1 (en) * 2018-11-29 2020-03-06 울산대학교 산학협력단 Offshore wind power equipment
JP7122265B2 (en) * 2019-01-29 2022-08-19 鹿島建設株式会社 FOUNDATION STRUCTURE FOR OFFSHORE WIND POWER GENERATION AND CONSTRUCTION METHOD OF FOUNDATION STRUCTURE FOR OFFSHORE WIND POWER GENERATION
US11225945B2 (en) 2019-05-30 2022-01-18 Principle Power, Inc. Floating wind turbine platform controlled to optimize power production and reduce loading
CN111779020A (en) * 2020-06-28 2020-10-16 中国电建集团华东勘测设计研究院有限公司 Novel all-steel cylindrical foundation structure for offshore wind power
CN111764395A (en) * 2020-07-06 2020-10-13 华电重工股份有限公司 Installation method of cylindrical foundation
CN112177033B (en) * 2020-11-04 2024-09-20 惠生清洁能源科技集团股份有限公司 Composite bearing type shallow water self-installation wind power foundation and manufacturing, draining and installing methods thereof
CN114179983A (en) * 2021-11-23 2022-03-15 大连船舶重工集团有限公司 Floating type fan platform installation method
CN115263674A (en) * 2022-06-29 2022-11-01 渤海石油航务建筑工程有限责任公司 Offshore installation method of floating type fan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286987A (en) * 2011-07-05 2011-12-21 天津大学 Gravity-type foundation structure for maritime equipment engineering and construction method thereof

Also Published As

Publication number Publication date
JP2005069025A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4401703B2 (en) Installation method of offshore wind turbine generator
JP5301929B2 (en) Towing and installation of tension mooring bodies and tension mooring bodies
JP6039097B2 (en) Floating transport and installation structure, and floating wind turbine
JP5670128B2 (en) Floating structure for offshore facilities and construction method of offshore facilities
US9592889B2 (en) Submersible active support structure for turbine towers and substations or similar elements, in offshore facilities
JP2021099021A (en) Floating body type structure and installation method for floating body type structure
JP5022976B2 (en) Spar-type floating structure for offshore wind power generation, its manufacturing method, and its installation method
JP5274329B2 (en) Offshore wind power generation facility and its construction method
KR101478397B1 (en) Method and apparatus for towing offshore wind turbines
US20120014752A1 (en) Submersible Platform With Blocked Thrust For Offshore Wind Plants In Open Sea In Concrete-Steel Hybrid Solution
JP2017516945A (en) Floating substructure for wind turbine and installation method thereof
JP5798227B2 (en) Floating body installation method
JP2010223114A5 (en)
JP2010115978A (en) Floating body for support for tension mooring floating body and towing method and installation method of tension mooring floating body using the same
US20230159141A1 (en) Method of Assembling and Deploying a Floating Offshore Wind Turbine Platform
JP2012201191A (en) Installation method, removal method and structure of floating body type offshore wind power generation facility
EP2171159A1 (en) Device and method for marine tower structure
JP2010234965A (en) Taut mooring floating body system, support system, and towing method and installing method of floating body using support system
CN111927716B (en) Floating type draught fan foundation mooring device and installation method
JP2023534859A (en) Method for positioning at least one mooring line of a floating device in a body of water and associated floating device
US4193714A (en) Method for erecting a deck on a marine structure
EP2898351A2 (en) Method and apparatus for shielding underwater noise
JP7495802B2 (en) Construction method of floating water structure and temporary mooring float used therefor
JP2669317B2 (en) Construction method of gravity type offshore structure and its structure
ES2650735T3 (en) Foundation Base

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Ref document number: 4401703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141106

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term