【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
本発明は寸法安定性、耐久性、耐熱性、離型性
に優れたゴムホース製造用の可撓性マンドレルに
関する。
〔従来技術〕
散水ホースやラジエターホースあるいはヒータ
ーホースといつた加硫ゴムホースを製造するに
は、
〔〕 目的とする製品ゴムホースの口径と同一径
を有するマンドレル上に、未加硫の原料ゴムを
溶融被覆するかまたは該マンドレル上に未加硫
ゴムシートを巻き付けることによつて未加硫の
ゴムホースを製造する工程、
〔〕 〔〕のマンドレルと一体になつている未
加硫のゴムホース上に鉛を被覆する工程、
〔〕 被覆が行われた未加硫ゴムホースをマンド
レルと共に巻き取る工程、
〔〕 巻き取つた未加硫ゴムホースを加硫窯など
の加硫装置に入れて加硫する工程、
〔〕 加硫終了後、ゴムホース上の鉛などの被覆
を剥ぎ取る工程、
〔〕 マンドレルとゴムホースとの間に加圧した
気体や流体を流してマンドレルとゴムホースと
を分離し、マンドレルを抜き取る工程、
を通ることによつて製造されている。この場合、
ゴムホースの芯材として利用されるマンドレル
は、巻き取りが容易なように可撓性を有していな
ければならないし、加硫工程での高温度に耐えら
れるだけの耐熱性を有していなければならない。
またゴムホースを分離するさい簡単にゴムホース
が剥がれかつ剥がれ面も綺麗であるような優れた
離型性を有することも要求される。さらに前述の
ような要求を満たしたうえに、被覆工程と加硫工
程の過酷なヒートサイクル及び原料ゴムから滲出
する油類によつて収縮や伸びを生じて口径寸法を
狂わさないような寸法安定性ならびに何度でも繰
り返して使用できるだけの耐久性を有していなけ
ればならない。しかし従来から使用されているナ
イロン製マンドレルは、可撓性が不充分なうえ
に、数回繰り返して使用していると伸びや収縮を
生じて寸法安定性に問題があるほか、機械的強度
の低下も生じて耐久性に劣り、せいぜい2回また
は3回程度にしか繰り返し使用できないという問
題がある。
〔解決しようとする問題点〕
本発明者らはこのような実状に鑑みて、何とか
耐熱性、離型性、寸法安定性、耐久性に優れた可
撓性マンドレルが得られないか研究を重ねた結
果、4−メチル−1−ペンテン重合体に特定の種
類の化合物を配合したものを用いてマンドレルを
製造すると前記目的が満足できることを見い出し
た。
〔発明の構成及び概要〕
すなわち本発明は、n300〜5000のエーテル
化合物の群から選ばれる少なくとも1種を2〜70
重量%含有した4−メチル−1−ペンテン重合体
からなることを特徴とするゴムホース製造用マン
ドレルに関する。
4−メチル−1−ペンンテン重合体に低分子量
の炭化水素化合物やエーテル化合物を配合して低
温可撓性や誘電特性を改善できることは、既に特
公昭58−46142号公報において知られている。し
かし該公報に開示された組成物の目的とするとこ
ろは、主に電気絶縁材料としての使用である。し
かるに本発明者らは、該公報に具体的に全く記載
も示唆もされておらず、しかも該公報の目的とす
る電気的に改良された性質及び低温での改良され
た可撓性には全く関係のないゴムホース製造用の
マンドレル用途に前記組成物を利用すると、驚く
べきことに従来知られている各種のマンドレルに
比べて飛躍的に優れた性能を示すことを見い出し
たのである。
すなわちより具体的には、
初期弾性率が小さく可撓性に富んでいるの
で、複雑形状のゴムホースの製造も容易にでき
る。
加硫工程の高温雰囲気に耐える。
離型性に著しく優れ、従来のマンドレルに比
べ極めて簡単に製品ゴムホースを剥がすことが
できる。換言すれば加圧気体や流体を用いなく
てもゴムホースからマンドレルを抜き去ること
が可能である。
過酷なヒートサイクルを長期間行なうにもか
かわらず、収縮や伸びを発生しなく、極めて寸
法安定性に優れており、長期間の使用でも製品
ゴムホース口径を安定して再現し続ける。
長期間続く過酷なヒートサイクルにもかかわ
らず、初期機械的物性及び離型性を持続き続け
る耐久性を有している。
従来知られているマンドレルのうち最良のも
のと言われているナンロン製のものに比べ使用
可能寿命が数十倍の長期になる。
といつた全く予想し難い作用効果を示すのであ
る。
エーテル化合物
本発明のマンドレルを構成する成分であるエー
テル化合物は、n300〜5000の公知の種々のエ
ーテル化合物が例示できる。具体的には、脂肪族
エーテル類、脂環族エーテル類、芳香族エーテル
類、オレフイン族エーテル類、あるいはそれらの
混合エーテル類、ヘテロサイクリツクエーテル類
等のモノエーテル類、ポリオキシアルキレン類、
ポリオキシアリーレン類、ポリオキシアルキレン
アリーレン類、多価フエノール又は多価アルコー
ルのエーテル誘導体類、エポキシ類等の環状エー
テル類、アセタール及びケタール類等のジ乃至ポ
リエーテル類等である。上記のモノ乃至ポリエー
テ類は、アルキル基、アリール基、アラルキル
基、アルコキシ基、アシル基、カルボニル基等の
置換基を少くとも1個有するものも使用し得る。
更に、本発明で使用するエーテル化合物は、ハロ
ゲン、窒素、硫黄、リン等の異種元素を分子中に
少量、具体的には10重量%以下含有するものも含
まれる。
本発明においては、上記のエーテル化合物とし
てn(数平均分子量)が300〜5000、好ましくは
300〜2000、とくに500〜1000の範囲のものを使用
する。この範囲外のものを使用する場合、たとえ
ば低分子量側では揮発し易く、加硫工程を繰り返
すうちにマンドレルとして望ましき物性の低下を
生じ長期間の使用に耐えられないし、逆に高分子
量側では4−メチル−1−ペンテン重合体との相
溶性が悪くなつたり、マンドレル用途として好ま
しい物性付与が難かしくなつたりする。
4−メチル−1−ペンテン重合体
本発明のマンドレルを構成する他の成分である
4−メチル−1−ペンテン重合体とは4−メチル
−1−ペンテンの単独重合体もしくは4−メチル
−1−ペンテンと他のα−オレフイン、例えばエ
チレン、プロピレン、1−ブテン、1−ヘキセ
ン、1−オクテン、1−デセン、1−テトラデセ
ン、1−オクタデセン等の炭素数2ないし20のα
−オレフインとの共重合体で通常4−メチル−1
−ペンテンを85モル%以上含む4−メチル−1−
ペンテンを主体とした重合体である。またこれら
の重合体に前記炭素数2ないし20のα−オレフイ
ン重合体を5重量%以下配合したものであつても
かまわない。
マンドレルを構成する組成物
エーテル化合物の群から選ばれる少なくとも1
種と4−メチル−1−ペンテン重合体との配合割
合は、前者の群より選ばれる化合物を2〜70重量
%、好ましくは5〜60重量%、より好ましくは5
〜50重量%配合する。配合量が2重量%未満では
耐衝撃性が悪く、可撓性も悪いのでマンドレルと
して使用できない。70重量%を越えるものは耐熱
性、離型性、寸法安定性、耐久性に劣ることとな
る。
〔マンドレルの製造〕
前記のエーテル化合物と4−メチル−1−ペン
テン重合体とを混合するには、前記範囲で種々公
知の方法、例えばV−ブレンダー、リボンブレン
ダー、ヘンシエルミキサー、タンブラーブレンダ
ーで混合する方法、あるいは前記ブレンダーで混
合後、押出機で造粒する方法、単軸押出機、複軸
押出機、ニーダー、バンバリーミキサー等で溶融
混練し、造粒あるいは粉砕する方法等を用いるこ
とができる。また4−メチル−1−ペンテン重合
体組成物には耐候安定剤、耐熱安定剤、スリツプ
剤、核材、顔料等通常ポリオレフインに添加して
使用される各種配合剤を本発明の目的を損わない
範囲で添加してもよい。
本発明のマンドレルを製造するには、前記の組
成物を公知の押出成形法により容易に製造するこ
とができる。製造するマンドレルの形状は目的と
するゴムホースの形状によつて左右されるが、一
般的にはパイプ状またはロツド状である。
〔実施例〕
以下実施例を用いて本本明の内容を詳細に記す
が、本発明は何らこれの例に限定されるものでは
ない。
尚実施例、比較例における各種試験方法は以下
のとおりである。
初期弾性率(Kg/cm)(FM):ASTM D638、1
mm厚プレスシート
プリードアウト性(BL):1mm厚プレスシートを
50℃オーブン中に48時間放置後、触感で判定。
〇…粘度感またはぬめり感無し
×…粘着感があるかまたはぬめり感がある
引張破断伸び(%)(EL):ASTM D638、2mm
厚プレスシート
耐久性:2mm厚プレスシートを下記組成の未加硫
ゴムのシートの間にはさみ込み、160℃で30分
間ゴムを加硫せる。
加硫終了後シートを取り出し、ゴムを剥離
し、プレスシースの外観、寸法変化、引張破断
伸び、ゴムシートとの離型性を測定した。この
操作は同一プレスシートで15回繰り返して1回
目、4回目、10回、15回目で上記の測定を行つ
た。
(未加硫ゴムシート組成)
エチレン・プロピレン・ターポリマー 100部
パラフイン系オイル 〃 部
カーボン 150部
脱泡剤 5部
亜鉛華 〃部
ステアリン酸 1部
加硫促進剤 2.5部
硫 黄 0.5部
寸法安定性(%)(L):2mm厚プレスシートの収縮
率
離型性:加硫ゴムシートとの剥離時の感覚を触感
および目視で判定した。
〇…抵抗なく綺麗に剥がれる。
△…少々抵抗があつて剥ぎとりにくい
×…粘着して綺麗に剥がれない
実施例 1〜4
密度0.835g/cm2(ASTM D1505)、〔η〕6.2
dl/g(135℃、デカリン)、1−デセン含有量6
モル%の4−メチル−1−ペンテン重合体のパウ
ダーに表1に示す化合物を配合し、ヘンシエルミ
キサーで混合した。混合した組成物をN2気流下
80℃のオーブン中に20時間放置後、20mmφ押出機
にて280℃で溶融混練後、プレス成形機により270
℃、加圧5分で1mm厚及び2mm厚シートを成形し
た。このシートを用いて行つた試験結果を表1に
示す。
比較例 1
ナイロン6(東レ社製CM1011)により250℃、
加圧5分で1mm厚及び2mm厚プレスシートを成形
し、各種試験を行なつた。結果を表1に示す。
比較例 2
配合物を配合しないほかは実施例1と同様に行
なつた。結果を第1表に示す。
[Industrial Application Field] The present invention relates to a flexible mandrel for manufacturing rubber hoses that has excellent dimensional stability, durability, heat resistance, and mold releasability. [Prior art] To manufacture vulcanized rubber hoses such as sprinkler hoses, radiator hoses, or heater hoses, [] unvulcanized raw rubber is melted onto a mandrel having the same diameter as the intended product rubber hose. The process of manufacturing an unvulcanized rubber hose by coating or wrapping an unvulcanized rubber sheet over the mandrel; Coating step, [] Winding up the coated unvulcanized rubber hose together with a mandrel, [] Putting the wound unvulcanized rubber hose into a vulcanizing device such as a vulcanization kiln, and vulcanizing it. After completion of vulcanization, the rubber hose undergoes the following steps: stripping away the coating such as lead on the rubber hose, and separating the mandrel and rubber hose by flowing pressurized gas or fluid between the mandrel and the rubber hose, and removing the mandrel. It is manufactured by. in this case,
The mandrel used as the core material for rubber hoses must be flexible so that it can be easily rolled up, and it must be heat resistant enough to withstand the high temperatures during the vulcanization process. No.
It is also required to have excellent mold releasability so that the rubber hose can be easily peeled off and the peeled surface is clean when the rubber hose is separated. Furthermore, in addition to meeting the above-mentioned requirements, the dimensional stability is such that the diameter will not be distorted due to shrinkage or elongation caused by the harsh heat cycles of the coating and vulcanization processes and oils exuding from the raw rubber. It must also be durable enough to be used over and over again. However, the conventionally used nylon mandrels have insufficient flexibility, and when used repeatedly, they elongate and contract, resulting in problems with dimensional stability and poor mechanical strength. There is also a problem that the durability is poor due to deterioration, and that it can be used repeatedly only about two or three times at most. [Problems to be Solved] In view of the above-mentioned circumstances, the present inventors have conducted repeated research to see if it is possible to somehow obtain a flexible mandrel with excellent heat resistance, mold releasability, dimensional stability, and durability. As a result, it was found that the above object could be achieved by manufacturing a mandrel using a 4-methyl-1-pentene polymer blended with a specific type of compound. [Structure and outline of the invention] That is, the present invention provides at least one selected from the group of ether compounds having n300 to 5000 to 2 to 70
The present invention relates to a mandrel for manufacturing a rubber hose, characterized in that it is made of a 4-methyl-1-pentene polymer containing 4-methyl-1-pentene in an amount of % by weight. It is already known from Japanese Patent Publication No. 58-46142 that low-temperature flexibility and dielectric properties can be improved by blending a low molecular weight hydrocarbon compound or an ether compound with a 4-methyl-1-pentene polymer. However, the composition disclosed in this publication is primarily intended for use as an electrically insulating material. However, the inventors of the present invention found that the publication did not specifically describe or suggest anything, and furthermore, the inventors found that the publication had no specific description or suggestion of the improved electrical properties and improved flexibility at low temperatures. Surprisingly, it has been found that when the composition is used in an unrelated mandrel application for manufacturing rubber hoses, it exhibits dramatically superior performance compared to various previously known mandrels. More specifically, since it has a small initial elastic modulus and is highly flexible, it is easy to manufacture rubber hoses with complicated shapes. Withstands the high temperature atmosphere of the vulcanization process. It has excellent mold releasability and allows product rubber hoses to be peeled off much more easily than conventional mandrels. In other words, it is possible to remove the mandrel from the rubber hose without using pressurized gas or fluid. Despite being subjected to harsh heat cycles for long periods of time, it does not shrink or elongate, and has excellent dimensional stability, allowing the product rubber hose diameter to remain stable even after long-term use. It has the durability to maintain its initial mechanical properties and mold releasability despite severe heat cycles that last for a long period of time. The usable life is several tens of times longer than that of Nanlon mandrels, which are said to be the best of the conventionally known mandrels. It exhibits effects that are completely unpredictable. Ether Compound Examples of the ether compound which is a component constituting the mandrel of the present invention include various known ether compounds having n300 to 5000. Specifically, aliphatic ethers, alicyclic ethers, aromatic ethers, olefinic ethers, or mixed ethers thereof, monoethers such as heterocyclic ethers, polyoxyalkylenes,
These include polyoxyarylenes, polyoxyalkylenearylenes, ether derivatives of polyhydric phenols or polyhydric alcohols, cyclic ethers such as epoxies, and di- to polyethers such as acetals and ketals. Among the above mono- to polyethers, those having at least one substituent such as an alkyl group, an aryl group, an aralkyl group, an alkoxy group, an acyl group, or a carbonyl group may also be used.
Furthermore, the ether compounds used in the present invention include those containing a small amount of a foreign element such as halogen, nitrogen, sulfur, or phosphorus in the molecule, specifically, 10% by weight or less. In the present invention, the above ether compound has n (number average molecular weight) of 300 to 5000, preferably
Use a range of 300-2000, especially 500-1000. If a material outside this range is used, for example, if it is on the low molecular weight side, it will easily volatilize, and as the vulcanization process is repeated, the physical properties desired as a mandrel will deteriorate and it will not be able to withstand long-term use. In this case, the compatibility with the 4-methyl-1-pentene polymer becomes poor, and it becomes difficult to impart desirable physical properties for use in mandrels. 4-Methyl-1-pentene polymer The 4-methyl-1-pentene polymer, which is another component constituting the mandrel of the present invention, is a homopolymer of 4-methyl-1-pentene or 4-methyl-1-pentene polymer. Pentene and other α-olefins having 2 to 20 carbon atoms, such as ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 1-tetradecene, 1-octadecene, etc.
- Copolymer with olefin, usually 4-methyl-1
-4-methyl-1- containing 85 mol% or more of pentene
It is a polymer mainly composed of pentene. Further, 5% by weight or less of the above-mentioned α-olefin polymer having 2 to 20 carbon atoms may be blended with these polymers. Composition constituting the mandrel At least one selected from the group of ether compounds
The compounding ratio of the seeds and the 4-methyl-1-pentene polymer is 2 to 70% by weight, preferably 5 to 60% by weight, more preferably 5 to 60% by weight of the compound selected from the former group.
~50% by weight is blended. If the amount is less than 2% by weight, the impact resistance and flexibility will be poor and it cannot be used as a mandrel. If it exceeds 70% by weight, heat resistance, mold releasability, dimensional stability, and durability will be poor. [Production of mandrel] The ether compound and the 4-methyl-1-pentene polymer can be mixed using various known methods within the above range, such as a V-blender, a ribbon blender, a Henschel mixer, or a tumbler blender. Alternatively, after mixing with the blender, granulating with an extruder, melt-kneading with a single-screw extruder, double-screw extruder, kneader, Banbury mixer, etc., followed by granulation or pulverization. . In addition, the 4-methyl-1-pentene polymer composition contains various compounding agents such as weather-resistant stabilizers, heat-resistant stabilizers, slip agents, core materials, pigments, etc., which are usually added to polyolefin. It may be added within a certain range. In order to manufacture the mandrel of the present invention, the above composition can be easily manufactured by a known extrusion molding method. The shape of the mandrel to be manufactured depends on the shape of the intended rubber hose, but is generally pipe-shaped or rod-shaped. [Example] The present invention will be described in detail below using Examples, but the present invention is not limited to these examples in any way. The various test methods used in Examples and Comparative Examples are as follows. Initial modulus (Kg/cm) (FM): ASTM D638, 1
mm thick press sheet pull-out property (BL): 1 mm thick press sheet
Determined by touch after being left in a 50℃ oven for 48 hours. 〇…No viscosity or slimy feeling ×…Tensile or slimy feeling Tensile elongation at break (%) (EL): ASTM D638, 2mm
Durability of thick press sheet: A 2 mm thick press sheet is sandwiched between sheets of unvulcanized rubber having the composition shown below, and the rubber is vulcanized at 160°C for 30 minutes. After completion of vulcanization, the sheet was taken out, the rubber was peeled off, and the appearance of the press sheath, dimensional change, tensile elongation at break, and mold releasability from the rubber sheet were measured. This operation was repeated 15 times using the same press sheet, and the above measurements were performed at the 1st, 4th, 10th, and 15th times. (Unvulcanized rubber sheet composition) Ethylene-propylene terpolymer 100 parts Paraffin oil 〃 Part Carbon 150 parts Defoaming agent 5 parts Zinc white 〃 Part Stearic acid 1 part Vulcanization accelerator 2.5 parts Sulfur Yellow 0.5 parts Dimensional stability (%) (L): Shrinkage rate of 2 mm thick press sheet Release property: The feeling when peeling from the vulcanized rubber sheet was evaluated by touch and visual observation. 〇…Removes cleanly without resistance. △…There is some resistance and it is difficult to remove ×…Examples 1 to 4 that are sticky and cannot be peeled off cleanly Density 0.835g/cm 2 (ASTM D1505), [η] 6.2
dl/g (135℃, decalin), 1-decene content 6
The compounds shown in Table 1 were blended with mol% of 4-methyl-1-pentene polymer powder and mixed using a Henschel mixer. Mixed composition under N2 stream
After leaving it in an oven at 80℃ for 20 hours, melt-kneading it at 280℃ with a 20mmφ extruder, and then using a press molding machine to
1 mm thick and 2 mm thick sheets were formed under pressure at ℃ for 5 minutes. Table 1 shows the test results conducted using this sheet. Comparative Example 1 Nylon 6 (CM1011 manufactured by Toray Industries) at 250℃,
Press sheets with a thickness of 1 mm and 2 mm were formed by applying pressure for 5 minutes, and various tests were conducted. The results are shown in Table 1. Comparative Example 2 The same procedure as in Example 1 was carried out except that the compound was not added. The results are shown in Table 1.
【表】【table】
【表】【table】