JPH0331053B2 - - Google Patents

Info

Publication number
JPH0331053B2
JPH0331053B2 JP60045276A JP4527685A JPH0331053B2 JP H0331053 B2 JPH0331053 B2 JP H0331053B2 JP 60045276 A JP60045276 A JP 60045276A JP 4527685 A JP4527685 A JP 4527685A JP H0331053 B2 JPH0331053 B2 JP H0331053B2
Authority
JP
Japan
Prior art keywords
light
skin
blood
absorption
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60045276A
Other languages
Japanese (ja)
Other versions
JPS61203939A (en
Inventor
Bunji Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60045276A priority Critical patent/JPS61203939A/en
Publication of JPS61203939A publication Critical patent/JPS61203939A/en
Publication of JPH0331053B2 publication Critical patent/JPH0331053B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、患者の血液中に注入された臓器機
能診断用の指示薬色素の血中濃度の変化を、皮膚
の上においた光学センサーによつて測定する計測
技術に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention detects changes in the blood concentration of an indicator dye for organ function diagnosis injected into a patient's blood using an optical sensor placed on the skin. It is related to measurement technology for measuring

[従来の技術] 従来より、肝機能(肝臓の解毒機能)の測定
は、血液中に注入した指示薬色素の濃度変化を測
定して行つている。
[Prior Art] Conventionally, liver function (detoxification function of the liver) has been measured by measuring changes in the concentration of an indicator dye injected into the blood.

現在、肝機能の測定に最も良く用いられている
方法は、青色色素であるインドシアングリーン
(以下ICGという)を指示薬とする方法である。
この方法は、ICGを血液中に注入すると、ICGが
肝臓に吸収され、その血中濃度が減少していくの
で、その減少率(濃度消失率)を測定して肝機能
の良否を判定するものである。この方法には、簡
便法(15分停滞率測定法)と精密法(最大消失率
測定法)とがある。簡便法では、ICG注入後一定
時間(通常15分)を経てから採決して血球を遠心
分離で除いてから、上清(すなわち血漿)のICG
濃度を分光光度計で測定する。精密法では、ICG
を注入してから時間を追つて(例えば2,4,
6,9,12,15分の6回)採決を行い、ICG濃度
の測定を行う。そして、この測定を種々のICG投
与量で行つて、特殊な解析をするものである。い
ずれの場合も採決に手数がかかり患者に苦痛を与
えるだけでなく、採血に一定の時間を要するため
最も重要な注入初期(注入後1分以内)の消失速
度が測定できないという難点をもつ。また、血中
ICG濃度の減少速度の変化が速い場合には、上述
の様な採血法では正確な測定ができないという難
点もある。この2つの難点を解決するためには、
光学センサーを動脈内に留置するか、動脈から光
学センサー部に連続的に出血させ連続的に測定す
る方法もある。しかし、いずれも患者に対する侵
襲が著しく大きいので、実用的な測定を行うこと
ができなかつた。
Currently, the most commonly used method for measuring liver function is a method using a blue dye, indocyan green (hereinafter referred to as ICG), as an indicator.
In this method, when ICG is injected into the blood, it is absorbed by the liver and its blood concentration decreases, so the rate of decrease (concentration disappearance rate) is measured to determine the quality of liver function. It is. This method includes a simple method (15-minute stagnation rate measurement method) and a precise method (maximum disappearance rate measurement method). In the simple method, blood cells are collected after a certain period of time (usually 15 minutes) after ICG injection, blood cells are removed by centrifugation, and the supernatant (i.e., plasma) is collected with ICG.
The concentration is measured spectrophotometrically. In the precision method, ICG
(e.g. 2, 4,
6 times (6, 9, 12, and 15 minutes)) and measure the ICG concentration. This measurement is then performed at various ICG doses for special analysis. In either case, not only is the blood sampling time-consuming and painful for the patient, but it also takes a certain amount of time to collect blood, making it difficult to measure the rate of disappearance during the most important initial period of injection (within 1 minute after injection). Also, in the blood
When the rate of decrease in ICG concentration changes rapidly, there is also the drawback that accurate measurement cannot be made using the blood sampling method described above. In order to solve these two difficulties,
There is also a method of placing an optical sensor in the artery, or making continuous measurements by causing continuous bleeding from the artery to the optical sensor part. However, all of these methods are extremely invasive to the patient, making it impossible to perform practical measurements.

これらの問題点を解決するため、発明者はすで
に、次の発明を行つた。すなわち、特開昭54−
12586号(萩原文二、米田研)、特開昭59−189828
号(萩原文二)および特願昭60−4789号(萩原文
二)の発明である。これらの発明は、皮膚の上か
ら光を照射して血管等の組織内に入つた光の散乱
反射光を受光し、血中の指示薬色素の濃度変化も
しくはスペクトル変化を測定するものである。こ
れらには、次のような、2波長吸光度差測定法に
適したセンサーも開示されている。指示薬色素の
吸収が大きい波長の光(以下高吸収光という)
と、それに比べ吸収が十分に小さい波長の光(以
下低吸収光という)を2つの光源から交互に発
し、その散乱反射光を受光して、それぞれの散乱
反射光の強度の差をもつて、指示薬色素の濃度を
測定するセンサーが示されている。高吸収光の中
心波長は指示薬色素の吸収ピークの波長(例えば
ICGにおいて805nm)に一致するよう選ばれる。
低吸収光の中心波長は指示薬色素の吸収が0に近
い波長(例えばICGにおいて860nm)に一致する
よう選ばれる。そして、高吸収光と低吸収光を発
する光源として、2個の発光ダイオード等が用い
られている。
In order to solve these problems, the inventor has already made the following invention. In other words, Japanese Patent Publication No. 1973-
No. 12586 (Funji Hagiwara, Lab. Yoneda), JP-A-59-189828
No. (Funji Hagiwara) and patent application No. 1989-4789 (Funji Hagiwara). In these inventions, light is irradiated from above the skin, and the scattered reflected light of the light that enters tissues such as blood vessels is received, and changes in the concentration or spectrum of indicator pigments in blood are measured. These also disclose the following sensors suitable for two-wavelength absorbance difference measurement method. Light with a wavelength that is highly absorbed by the indicator dye (hereinafter referred to as high absorption light)
Then, two light sources alternately emit light with a wavelength that is sufficiently small in absorption (hereinafter referred to as low absorption light) compared to that, and the scattered reflected light is received, and the difference in intensity of each scattered reflected light is used. A sensor is shown that measures the concentration of an indicator dye. The center wavelength of the highly absorbing light is the wavelength of the absorption peak of the indicator dye (e.g.
805nm) in ICG.
The center wavelength of the low absorption light is chosen to correspond to the wavelength at which the absorption of the indicator dye is close to zero (eg 860 nm for ICG). Two light emitting diodes or the like are used as light sources that emit high absorption light and low absorption light.

[発明が解決しようとする問題点] 発明者による前述の先の発明は、指示薬色素注
入初期の濃度変化を測定できるばかりでなく、患
者に対する侵襲をなくするという大きな効果をも
つものであつた。しかしながら次のような問題点
を有することが発明者により明らかにされた。た
とえば、肝機能検査で通常用いられるICGの場
合、吸収ピークの波長が805nmであり、これに近
い所で吸収が0に近い波長は860nmである。すな
わち、両波長の差は55nmしかない。ところが、
光源に用いられる発光ダイオードはそのスペクト
ル幅が100nm程度もあるので、2つの光源の光
(高吸収光と低吸収光)のスペクトルが重なつて
測定精度が著しく悪くなるという問題点があつ
た。
[Problems to be Solved by the Invention] The above-mentioned previous invention by the inventor not only made it possible to measure the concentration change at the initial stage of indicator dye injection, but also had the great effect of eliminating the invasiveness to the patient. However, the inventor revealed that the following problems exist. For example, in the case of ICG, which is commonly used in liver function tests, the absorption peak wavelength is 805 nm, and the wavelength close to this, where absorption is close to 0, is 860 nm. In other words, the difference between both wavelengths is only 55 nm. However,
Since the light emitting diode used as the light source has a spectral width of about 100 nm, there was a problem in that the spectra of the light from the two light sources (high absorption light and low absorption light) overlapped, significantly reducing measurement accuracy.

[問題点を解決するための手段] この発明では、照射口から皮膚に向けて2個の
半導体レーザー光源による指示薬色素の高吸収波
長の光(以下、高吸収レーザー光という)ならび
に半導体レーザー光源による指示薬色素の低吸収
波長の光(以下、低吸収レーザー光という)を照
射し、その散乱反射光を受光するようにした。
[Means for Solving the Problems] In the present invention, light at a high absorption wavelength of an indicator dye (hereinafter referred to as high absorption laser light) is emitted from an irradiation port toward the skin by two semiconductor laser light sources, and a light emitted by a semiconductor laser light source is Light with a low absorption wavelength of the indicator dye (hereinafter referred to as low absorption laser light) was irradiated, and the scattered reflected light was received.

[作用] 半導体レーザー光のスペクトル幅はLED、フ
イルター付白色光あるいはフイルター付ガスレー
ザー光に較べて充分狭く、1nmよりもはるかに小
さな値である。したがつて、高吸収レーザー光は
ほぼ指示薬色素の吸収ピークの波長のみとなり、
低吸収レーザー光もほぼ指示薬色素の吸収が十分
に低い波長のみとなり、またスペクトル幅が狭い
ため総エネルギー量も小さい。すなわち、高吸収
レーザー光と低吸収レーザー光のスペクトルの据
部が重なり合うことがなく、指示薬色素の濃度情
報を十分に含んだ散乱反射光を得ることができ
る。
[Operation] The spectral width of semiconductor laser light is much narrower than that of LED, filtered white light, or filtered gas laser light, and is much smaller than 1 nm. Therefore, the high absorption laser light is almost only at the wavelength of the absorption peak of the indicator dye,
Low-absorption laser light also only has wavelengths that are sufficiently low for indicator dye absorption, and the total energy content is small because the spectral width is narrow. That is, the spectra of the high-absorption laser light and the low-absorption laser light do not overlap, and it is possible to obtain scattered reflected light that sufficiently contains concentration information of the indicator dye.

[実施例] 第1図に、この発明によるセンサーを用いた1
光検出器型の血中色素濃度の経皮的連続計測の概
要を示す。センサー2の内部構造の詳細は示され
ていないが、これは後述のように、(1)半導体レー
ザー4a・4bをセンサー2の筐体内に含むも
の、(2)外部からのレーザー光を光導体でセンサー
2に導くもの、(3)光検出器6をセンサー2の筐体
内に含むもの、(4)光導体で受光して外部の光検出
器6に導くもの、および(5)上記を組合せたものな
ど種々の実施例があるためである。
[Example] Fig. 1 shows an example using a sensor according to the present invention.
An overview of continuous transcutaneous measurement of blood pigment concentration using a photodetector is shown. Although the details of the internal structure of the sensor 2 are not shown, as will be described later, (1) semiconductor lasers 4a and 4b are included in the housing of the sensor 2, and (2) laser light from the outside is transmitted through a light guide. (3) containing the photodetector 6 within the housing of the sensor 2; (4) receiving light with a light guide and guiding it to the external photodetector 6; and (5) a combination of the above. This is because there are various embodiments such as those.

第1図に示す概念図に基づいて、この装置の動
作を説明する。パルス発振回路8の出力に基づき
レーザー駆動回路10は、第1・第2の半導体レ
ーザー4a・4bを交互に発光させる。第1・第
2の半導体レーザー4a・4bは、それぞれ指示
薬色素の高吸収レーザー光12a・低吸収レーザ
ー光12bを発する。この交互に発せられたレー
ザー光12a・12bはセンサー2の照射口14
から皮膚16に向けて照射される。表皮16aの
下の真皮16b、皮下組織16cには、毛細血管
16d、血管16eが分布している。高吸収レー
ザー光12aは血管16d・16e内の指示薬色
素に吸収されるので、低吸収レーザー光12bに
比べ受光口18で受光される散乱反射光20の量
が少ない。散乱反射光20は光検出器6によつて
電気信号に変換された後、信号分離回路22に入
力される信号分離回路22では、パルス発振回路
8の出力によつて、レーザー4a,4bの発光と
同期をとり、この電気信号を、高吸収レーザー光
12aに係るものと、低吸収レーザー光12bに
係るものとに分離して吸光度演算回路24に与え
る。吸光度演算回路24は、この出力に基づき、
高吸収レーザー光と低吸収レーザー光における吸
光度の差を演算するものである。なお、吸光度差
Aλa−Aλb(ここでAλaおよびAλbは波長anmお
よびbnmにおける吸光度)は、ベールの法則に従
い下式によつて算出される。
The operation of this device will be explained based on the conceptual diagram shown in FIG. Based on the output of the pulse oscillation circuit 8, the laser drive circuit 10 causes the first and second semiconductor lasers 4a and 4b to emit light alternately. The first and second semiconductor lasers 4a and 4b respectively emit high absorption laser beam 12a and low absorption laser beam 12b of indicator dye. These alternately emitted laser beams 12a and 12b are emitted from the irradiation port 14 of the sensor 2.
The light is irradiated from the source toward the skin 16. Capillaries 16d and blood vessels 16e are distributed in the dermis 16b and subcutaneous tissue 16c below the epidermis 16a. Since the high absorption laser beam 12a is absorbed by the indicator dye within the blood vessels 16d and 16e, the amount of scattered reflected light 20 received by the light receiving port 18 is smaller than the low absorption laser beam 12b. The scattered reflected light 20 is converted into an electric signal by the photodetector 6, and then inputted to the signal separation circuit 22. In the signal separation circuit 22, the output of the pulse oscillation circuit 8 is used to emit light from the lasers 4a and 4b. This electric signal is synchronized with , and is separated into one related to the high absorption laser beam 12a and one related to the low absorption laser beam 12b, and is applied to the absorbance calculation circuit 24. Based on this output, the absorbance calculation circuit 24 calculates
It calculates the difference in absorbance between high absorption laser light and low absorption laser light. In addition, the absorbance difference
Aλa−Aλb (where Aλa and Aλb are absorbances at wavelengths amm and bnm) is calculated by the following formula according to Beer's law.

Aλb−Aλa=logIb−logIa=log(Ib/Ia)…(1) ここで、Ia・Ibはそれぞれ高吸収レーザー光及び
低吸収レーザー光に対応する散乱反射光の光量で
ある。このIaとIbは血液に指示薬色素を注入する
直前に同じ値をとるように調整しておく。算出さ
れた吸光度差の時間的変化は、表示手段26で表
示される。
Aλb−Aλa=logIb−logIa=log(Ib/Ia) (1) Here, Ia and Ib are the amounts of scattered reflected light corresponding to the high absorption laser beam and the low absorption laser beam, respectively. Ia and Ib are adjusted to have the same value immediately before injecting the indicator dye into the blood. The calculated temporal change in absorbance difference is displayed on the display means 26.

この実施例によれば、高吸収レーザー光、低吸
収レーザー光のためにそれぞれ別個に光検出器を
設ける必要がなく、光検出器は1つでよい。すな
わち、構造が簡素でかつ安価である。
According to this embodiment, there is no need to provide separate photodetectors for high absorption laser light and low absorption laser light, and only one photodetector is required. That is, the structure is simple and inexpensive.

第2図に、2個の光検出器を用いて測定する同
様の装置の概念図を示す。第1・第2の半導体レ
ーザー4a・4bは連続的に高吸収レーザー光1
2a・低吸収レーザー光12bを発する。その散
乱反射光20は、第1のフイルター28aを通過
した光と、第2のフイルター28bを通過した光
に分離される。第1のフイルター28a(干渉フ
イルターなど)は高吸収光のみを通過させ、第2
のフイルター28bは低吸収光のみを通過させる
ものである。両フイルター28a,28bの通過
光は、それぞれ第1・第2の光検出器6a・6b
で電気信号に変換され、吸光度演算回路24に入
力される。以下第1図の装置と同様にして、吸光
度差の時間的変化が表示手段26に表示される。
FIG. 2 shows a conceptual diagram of a similar device measuring with two photodetectors. The first and second semiconductor lasers 4a and 4b continuously emit high absorption laser beam 1.
2a and emits a low absorption laser beam 12b. The scattered reflected light 20 is separated into light that has passed through the first filter 28a and light that has passed through the second filter 28b. The first filter 28a (such as an interference filter) allows only highly absorbed light to pass through, and the second
The filter 28b allows only low absorption light to pass through. The light passing through both filters 28a and 28b is transmitted to first and second photodetectors 6a and 6b, respectively.
The signal is converted into an electrical signal and input to the absorbance calculation circuit 24. Thereafter, the temporal change in absorbance difference is displayed on the display means 26 in the same manner as in the apparatus shown in FIG.

この実施例によれば、低吸収レーザー光、高吸
収レーザー光による散乱反射光を連続的に測定で
き、ノイズの影響も少なく、高精度の測定を行う
ことができる。
According to this embodiment, it is possible to continuously measure the scattered reflected light caused by the low absorption laser beam and the high absorption laser beam, and the influence of noise is small, making it possible to perform highly accurate measurement.

第3図A及び第3図Bに、第1図に示す濃度測
定に用いられるセンサーの実施例を示す。
FIGS. 3A and 3B show examples of the sensor used to measure the concentration shown in FIG. 1.

第3図A及び第3図Bに、第1図に示す濃度測
定に用いられるセンサーの実施例を示す。
FIGS. 3A and 3B show examples of the sensor used to measure the concentration shown in FIG. 1.

第3図A及び第3図Bは、第1・第2の半導体
レーザー4a・4bならびに半導体光検出器6を
センサー2の筐体内に収納したものである。半導
体光検出器6としては光導電セル、フオトダイオ
ード、フオトトランジスタ、アバランシエフオト
ダイオードなどを用いることができる。第3図A
は縦断面図、第3図Bは底面図である。照射口1
4は照射窓14aと照射窓14bからなりそれぞ
れには半導体レーザー4a・4bを保護するため
に透明体80a・80b(ガラス、アクリル樹脂
など)がはめられている。受光口18にも透明体
82がはめられ、半導体光検出器6を保護してい
る。皮膚と接触される接触面3は接触に都合のよ
い平面状またはこれに近い形状に形成されてい
る。熱伝導性光不透過性の材質(金属等)よりな
る隔壁34の内部には、加温手段たる微少ヒータ
ー36および測温手段たるサーミスタ38が設け
られている。ヒーター36の加温はサーミスタ3
8によつて制御され、隔壁34は43℃ないし45℃
(通常約44℃)に保持される。これにより、皮膚
16を加熱し、その中の血管16d・16eを拡
張して皮内の血液量を増加させる(加熱による充
血現象)。その結果、血中のICGの吸光度が増大
して測定の感度及び精度が著しく増大する。この
実施例によれば、湾曲しにくいフアイバー束(多
数のフアイバーを束ねたもの)による拘束から解
放され、センサー2の自由度が高くなる。すなわ
ち、皮膚に軽く、勝つ一様にセンサー2を接触す
ることができるので、外部光の影響や血管圧迫に
よる血流阻害という問題を生じることなく、精度
の高い測定を行うことができる。
3A and 3B show that the first and second semiconductor lasers 4a and 4b and the semiconductor photodetector 6 are housed in the housing of the sensor 2. In FIGS. As the semiconductor photodetector 6, a photoconductive cell, a photodiode, a phototransistor, an avalanche photodiode, etc. can be used. Figure 3A
is a vertical sectional view, and FIG. 3B is a bottom view. Irradiation port 1
4 consists of an irradiation window 14a and an irradiation window 14b, each of which is fitted with transparent bodies 80a and 80b (glass, acrylic resin, etc.) to protect the semiconductor lasers 4a and 4b. A transparent body 82 is also fitted in the light receiving port 18 to protect the semiconductor photodetector 6. The contact surface 3 that comes into contact with the skin is formed into a planar shape or a shape close to this which is convenient for contact. A micro heater 36 as a heating means and a thermistor 38 as a temperature measuring means are provided inside the partition wall 34 made of a thermally conductive and light-opaque material (metal, etc.). Heater 36 is heated by thermistor 3
8, and the partition wall 34 is 43°C to 45°C.
(usually about 44°C). This heats the skin 16, expands the blood vessels 16d and 16e therein, and increases the amount of blood within the skin (hyperemia phenomenon due to heating). As a result, the absorbance of ICG in the blood increases, significantly increasing the sensitivity and accuracy of measurement. According to this embodiment, the sensor 2 is freed from restraint by a fiber bundle (a bundle of many fibers) that is difficult to bend, and the sensor 2 has a high degree of freedom. That is, since the sensor 2 can be brought into light and uniform contact with the skin, highly accurate measurements can be performed without the influence of external light or the problem of blood flow obstruction due to blood vessel compression.

以上第1図に示す濃度測定装置に用いられるセ
ンサーの実施例を示したが、次に第2図に示す濃
度測定装置に用いられるセンサーの実施例を第4
図A及び第4図Bに示す。
The embodiment of the sensor used in the concentration measuring device shown in FIG. 1 has been shown above.
This is shown in Figure A and Figure 4B.

第4図A及び第4図Bは、第1・第2の半導体
光検出器6a・6bをセンサー2に内蔵したもの
である。第4図Aは縦断面図、第4図Bは底面図
を示す。第1・第2のフイルター28a・28b
(干渉フイルター等)を、第1・第2の受光窓1
8a・18bにはめ込んでいる。
In FIGS. 4A and 4B, first and second semiconductor photodetectors 6a and 6b are built into the sensor 2. FIG. 4A shows a longitudinal sectional view, and FIG. 4B shows a bottom view. First and second filters 28a and 28b
(interference filter, etc.) to the first and second light receiving windows 1
It is fitted in 8a and 18b.

[発明の効果] この発明は、光源としてスペクトル幅の極めて
狭い半導体レーザーを用いているので、高吸収光
と低吸収光の波長が接近している場合でも、両者
のスペクトルが重なり合うことがなく精度の高い
測定を行うことができる。
[Effect of the invention] This invention uses a semiconductor laser with an extremely narrow spectral width as a light source, so even when the wavelengths of high absorption light and low absorption light are close to each other, the spectra of the two do not overlap and accuracy is improved. It is possible to perform high-level measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のセンサーを用いた1光検出
器型の血中色素濃度の連続測定装置を示す図、第
2図は2個の光検出器を用いた同様の測定装置を
示す図、第3図A及び第3図Bは第1図に示す測
定装置に適したセンサーの実施例を示す図、第4
図A及び第4図Bは第2図に示す測定装置に適し
たセンサーの実施例を示す図である。 2…センサー、4a…第1の半導体レーザー、
4b…第2の半導体レーザー、6…光検出器、6
a…第1の光検出器、6b…第2の光検出器、1
4…照射口、18…受光口、なお、各図中同一符
号は同一又は相当部分を示す。
FIG. 1 is a diagram showing a single photodetector type blood pigment concentration continuous measuring device using the sensor of the present invention, and FIG. 2 is a diagram showing a similar measuring device using two photodetectors. 3A and 3B are diagrams showing an embodiment of a sensor suitable for the measuring device shown in FIG.
Figures A and 4B are diagrams showing an embodiment of a sensor suitable for the measuring device shown in Figure 2. 2...Sensor, 4a...First semiconductor laser,
4b...Second semiconductor laser, 6...Photodetector, 6
a...First photodetector, 6b...Second photodetector, 1
4... Irradiation port, 18... Light receiving port. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 皮膚に接触される接触面、 接触面に設けられた照射口を有し、該照射口か
ら皮膚に向けて血中の肝機能検査用指示薬色素で
あるインドシアングリーンの吸収が大きい実質的
に805nmの波長の高吸収レーザー光ならびに吸収
が小さい実質的に860nmの波長の低吸収レーザー
光を照射するための2個の半導体レーザー、 前記照射口から皮膚へ照射された前記レーザー
光の散乱反射光を受光するため接触面に設けられ
た受光口を有するフオトトランジスタ、 照射口と受光口を分離する隔壁、 前記接触面を43℃ないし45℃に加熱するための
ヒータ、 上記各要素を収納する小寸法の容器、 上記半導体レーザーへの給電を行う給電線と上
記フオトトランジスタの出力信号を伝送する電線
とを収納した柔軟なコード、 を備えたことを特徴とする肝機能検査用皮膚半導
体レーザーセンサー。
[Claims] 1. A contact surface that comes into contact with the skin, an irradiation port provided on the contact surface, and indocyan green, which is an indicator dye for liver function tests in blood, directed from the irradiation port toward the skin. two semiconductor lasers for irradiating high absorption laser light with a wavelength of substantially 805 nm with high absorption and low absorption laser light with a wavelength of substantially 860 nm with low absorption; a phototransistor having a light receiving aperture provided on a contact surface for receiving scattered reflected laser light; a partition separating the irradiation aperture and the light receiving aperture; a heater for heating the contact surface to 43°C to 45°C; A liver function test characterized by comprising: a small-sized container that stores each element; a flexible cord that stores a power supply line that supplies power to the semiconductor laser and an electric wire that transmits the output signal of the phototransistor. skin semiconductor laser sensor.
JP60045276A 1985-03-07 1985-03-07 Skin laser sensor for examination liver function Granted JPS61203939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60045276A JPS61203939A (en) 1985-03-07 1985-03-07 Skin laser sensor for examination liver function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60045276A JPS61203939A (en) 1985-03-07 1985-03-07 Skin laser sensor for examination liver function

Publications (2)

Publication Number Publication Date
JPS61203939A JPS61203939A (en) 1986-09-09
JPH0331053B2 true JPH0331053B2 (en) 1991-05-02

Family

ID=12714787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60045276A Granted JPS61203939A (en) 1985-03-07 1985-03-07 Skin laser sensor for examination liver function

Country Status (1)

Country Link
JP (1) JPS61203939A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL84356A (en) * 1986-11-05 1991-08-16 Sumitomo Electric Industries Liver function testing apparatus
JPS63177834A (en) * 1987-01-16 1988-07-22 熊谷 博彰 Diagnostic remedy apparatus for tissue of organism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124239A (en) * 1981-01-26 1982-08-03 Aloka Co Ltd Biochemical component analysis apparatus by laser beam
JPS59189828A (en) * 1983-04-08 1984-10-27 萩原 文二 Subcateneous measuring sensor and apparatus of blood coloring matter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124239A (en) * 1981-01-26 1982-08-03 Aloka Co Ltd Biochemical component analysis apparatus by laser beam
JPS59189828A (en) * 1983-04-08 1984-10-27 萩原 文二 Subcateneous measuring sensor and apparatus of blood coloring matter

Also Published As

Publication number Publication date
JPS61203939A (en) 1986-09-09

Similar Documents

Publication Publication Date Title
EP0577684B1 (en) Method and apparatus for glucose concentration monitoring
Peterson et al. Fiber-optic sensors for biomedical applications
US5372135A (en) Blood constituent determination based on differential spectral analysis
Fantini et al. Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry
US8143605B2 (en) System and method for non-invasively monitoring conditions of a object
US4509522A (en) Infrared optical measurement of blood gas concentrations and fiber optic catheter
US5692504A (en) Method and apparatus for the analysis of glucose in a biological matrix
US6049081A (en) Subsurface thermal gradient spectrometry
TW408219B (en) Method and apparatus for noninvasive measurement of blood glucose by photoacoustics
JP3212996B2 (en) Apparatus for measuring blood glucose level in a living body
EP0160768A1 (en) Spectrophotometric apparatus for the non-invasive determination of glucose in body tissues
WO1991015991A1 (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
JPH07506987A (en) Non-invasive blood chemistry measurement using infrared stimulated relaxed emission
CA2216641A1 (en) Apparatus and methods of raman spectroscopy for analysis of blood gases and analytes
JPS61162934A (en) Percateneous measuring sensor and apparatus of blood coloring matter
JPH0155010B2 (en)
JP2017140159A (en) Non-invasive blood glucose level measuring method using infrared spectroscopy
JPH0331053B2 (en)
JPS6157774B2 (en)
JPH0113852B2 (en)
KR100300960B1 (en) Method and device for noninvasive determination of the concentrations of blood components
KR100883153B1 (en) Instrument for noninvasively measuring blood sugar level
CN209899401U (en) Four-wavelength combined noninvasive glucometer
JPH03173535A (en) Glucose non-invasive measuring method
JPH0218851B2 (en)