JP2017140159A - Non-invasive blood glucose level measuring method using infrared spectroscopy - Google Patents

Non-invasive blood glucose level measuring method using infrared spectroscopy Download PDF

Info

Publication number
JP2017140159A
JP2017140159A JP2016022711A JP2016022711A JP2017140159A JP 2017140159 A JP2017140159 A JP 2017140159A JP 2016022711 A JP2016022711 A JP 2016022711A JP 2016022711 A JP2016022711 A JP 2016022711A JP 2017140159 A JP2017140159 A JP 2017140159A
Authority
JP
Japan
Prior art keywords
blood glucose
glucose level
absorption
measuring
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016022711A
Other languages
Japanese (ja)
Inventor
松浦 祐司
Yuji Matsuura
祐司 松浦
彩子 木野
Ayako Kino
彩子 木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016022711A priority Critical patent/JP2017140159A/en
Publication of JP2017140159A publication Critical patent/JP2017140159A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-invasive blood glucose level measuring method using infrared spectroscopy capable of measuring accurately a blood glucose level with little load on a subject without blood sampling.SOLUTION: In a non-invasive blood glucose level measuring method using infrared spectroscopy, a measuring method using an optical fiber and a multiplex reflection prism is provided, and an absorption spectrum including a wavenumber range of 990-1,150 cmin which an absorption peak group of glucose appears is measured, and a blood glucose level is measured based on an integral value of absorption intensity in the wavenumber range.SELECTED DRAWING: Figure 8

Description

本発明は,血糖値測定方法に関するものであり,特に赤外分光法を用いて血液もしくは体液中のグルコースの吸収スペクトル測定を行い,その結果をもとに血糖値を測定する方法に関する.   The present invention relates to a blood glucose level measurement method, and more particularly to a method for measuring an absorption spectrum of glucose in blood or body fluid using infrared spectroscopy and measuring the blood glucose level based on the result.

非侵襲に血糖値を測定する手法としては,おもに波長が800〜1500nm程度の近赤外光を用いた測定法の研究が進められてきた.この波長域の光は水に吸収されにくいために,人体の深くまで浸透することから,人体に光を照射して非侵襲で体内の状態を測定するのに適しているうえ,光通信に用いられる安価な半導体レーザや光検出器を利用したシステムの構築が可能で,血糖測定装置として製品化がなされたものも存在している.しかし,市場に普及するような決定的なものは実現されていない.この主な理由は,近赤外領域の血中糖分(グルコース)の吸収は非常に弱いため,その検出精度や再現性に問題があるためである.グルコースの分子振動に起因する吸収ピークの基本波は,波長が10ミクロン程度の中赤外域に存在し,近赤外域に現れるのはその8〜10倍音の振動であるために吸収は非常に微弱となってしまう.さらにこの領域には,水やヘモグロビン,たんぱく質といった生体を構成する物質の吸収ピークも多数存在しており,グルコースのみを検出することは極めて困難である.   As a technique for non-invasively measuring blood glucose levels, research has been conducted on measurement methods using near-infrared light having a wavelength of about 800-1500 nm. Because light in this wavelength range is not easily absorbed by water, it penetrates deep into the human body. Therefore, it is suitable for non-invasive measurement of the state of the body by irradiating light to the human body, and for optical communications. It is possible to construct a system that uses inexpensive semiconductor lasers and photodetectors, and some blood glucose measuring devices have been commercialized. However, the decisive thing that spreads to the market has not been realized. The main reason for this is that the absorption of blood sugar (glucose) in the near-infrared region is so weak that there are problems with its detection accuracy and reproducibility. The fundamental wave of the absorption peak caused by the molecular vibration of glucose exists in the mid-infrared region with a wavelength of about 10 microns, and its absorption is very weak because it appears in the near-infrared region as its 8-10th harmonic vibration. It becomes. Furthermore, in this region, there are many absorption peaks of substances constituting the living body such as water, hemoglobin, and protein, and it is extremely difficult to detect only glucose.

そこで中赤外域に存在するグルコースの基本振動ピークを検出することにより,非侵襲で高精度に血糖値測定を行うシステムの提案もされてきた.これはおもにフーリエ赤外分光器と減衰全反射プリズム(以下ATRプリズムと呼ぶ)との組み合わせにより,体表から赤外光を照射し,体液もしくは血液中のグルコース濃度を測定するものである.
特開2014−18478公報 再表2006/011487公報
Therefore, a non-invasive system for measuring blood glucose level with high accuracy by detecting the fundamental vibration peak of glucose in the mid-infrared region has been proposed. This is a combination of a Fourier infrared spectrometer and an attenuated total reflection prism (hereinafter referred to as ATR prism), which irradiates infrared light from the body surface and measures the glucose concentration in body fluids or blood.
JP 2014-18478 A Table 2006/011487

中赤外域に存在するグルコース吸収ピーク強度に基づいて血糖値を測定する方法については,これまでは十分な測定精度は得られていない.この理由のひとつは.中赤外光は体組織のごく表面で吸収されてしまうため,検出されるグルコース吸収強度が小さく,グルコースの吸収ピーク群のうち,強度が大きく検出が比較的容易な波数1080cm−1もしくは1035cm−1付近の吸収ピークの強度に基づいて血糖値測定を行っていたためである.これらのピークは水溶液中のグルコース分子のC−H,もしくはC−OHの元素間の結合エネルギーに起因するものであるが,体液中のリン酸や食物から取り込んだ成分に含まれるC−HやC−OHの構造によっても上記の波数付近に吸収があらわれるため,これらが外乱となり測定精度が低下してしまう. For the method of measuring blood glucose level based on the glucose absorption peak intensity existing in the mid-infrared region, sufficient measurement accuracy has not been obtained so far. One reason for this is: Since mid-infrared light is absorbed on the very surface of the body tissue, the detected glucose absorption intensity is small, and the wave number 1080 cm −1 or 1035 cm , which is large and relatively easy to detect among the absorption peak groups of glucose. This is because the blood glucose level was measured based on the intensity of the absorption peak near 1 . These peaks are attributed to the binding energy between CH or C-OH elements of glucose molecules in aqueous solution. However, C-H and C contained in components taken from phosphoric acid and food in body fluids. Absorption occurs in the vicinity of the above wave number even with the structure of C-OH, which becomes a disturbance and the measurement accuracy decreases.

本発明は従来の赤外分光法を用いた非侵襲血糖値測定方法がもつ上記の問題点を解決するために考案されたものであり,非侵襲で血糖値を正確に測定することが可能なため,採血なしで被験者に負担の少ない診断を可能とする血糖値測定法を実現することを目的としている.   The present invention has been devised in order to solve the above-mentioned problems of the conventional non-invasive blood glucose level measurement method using infrared spectroscopy, and can accurately measure the blood glucose level non-invasively. Therefore, the purpose of this study is to realize a blood glucose level measurement method that enables diagnosis with less burden on the subject without blood collection.

上記課題を解決するために,赤外分光法を用いた非侵襲血糖値測定方法において,光ファイバとその光ファイバに接続された多重反射プリズムを用いて血糖値を測定する方法を提供する.   In order to solve the above problems, a noninvasive blood glucose level measurement method using infrared spectroscopy provides a method for measuring blood glucose level using an optical fiber and a multiple reflection prism connected to the optical fiber.

また,前記光ファイバが中空光ファイバであることを特徴とする血糖値測定方法であってもよい.   The blood glucose level measuring method may be characterized in that the optical fiber is a hollow optical fiber.

また前記多重反射プリズムが硫化亜鉛で構成されていることを特徴とする血糖値測定方法であってもよい.   Further, the blood glucose level measuring method may be characterized in that the multiple reflection prism is made of zinc sulfide.

また,赤外分光法を用いた非侵襲血糖値測定方法において,グルコースの5つの異なる吸収ピークを包含する990〜1150cm−1の波数範囲全体を含む吸収スペクトルを測定し,前記波数範囲の吸収強度の積分値に基づいて血糖値を測定する方法であってもよい. In the noninvasive blood sugar level measuring method using infrared spectroscopy, an absorption spectrum including the entire wave number range of 990 to 1150 cm −1 including five different absorption peaks of glucose is measured, and the absorption intensity in the wave number range is measured. The blood glucose level may be measured based on the integral value of.

また,赤外分光法を用いた非侵襲血糖値測定方法において,1140〜1170cm−1の波数範囲に現れるに現れるグルコースの吸収ピークの強度,もしくは吸収ピークの強度の積分値に基づいて血糖値を測定する方法であってもよい. Further, in the noninvasive blood sugar level measuring method using infrared spectroscopy, the blood sugar level is calculated based on the intensity of the absorption peak of glucose appearing in the wave number range of 1140 to 1170 cm −1 or the integrated value of the intensity of the absorption peak. It may be a measurement method.

また,赤外分光法を用いた非侵襲血糖値測定方法において,1100〜1140cm−1の波数範囲に現れるに現れるグルコースの吸収ピークの強度,もしくは吸収ピークの強度の積分値に基づいて血糖値を測定する方法であってもよい. Further, in the noninvasive blood sugar level measurement method using infrared spectroscopy, the blood sugar level is determined based on the intensity of the absorption peak of glucose appearing in the wave number range of 1100 to 1140 cm −1 or the integrated value of the intensity of the absorption peak. It may be a measurement method.

また,赤外分光法を用いた非侵襲血糖値測定方法において,1000〜980cm−1の波数範囲に現れるに現れるグルコースの吸収ピークの強度,もしくは吸収ピークの強度の積分値に基づいて血糖値を測定する方法であってもよい. Further, in the noninvasive blood sugar level measuring method using infrared spectroscopy, the blood sugar level is calculated based on the intensity of the absorption peak of glucose appearing in the wave number range of 1000 to 980 cm −1 or the integrated value of the intensity of the absorption peak. It may be a measurement method.

また,前記のいずれかの血糖値測定方法において,量子カスケードレーザを光源として用いる血糖値測定方法であってもよい.   In any one of the blood glucose level measurement methods described above, the blood glucose level measurement method may use a quantum cascade laser as a light source.

以下,図面に基づいて本発明の実施の形態を説明する.図1は,本発明の実施の形態の一例を示す血糖値測定装置の構成図である.フーリエ赤外分光器1から出射された凹面鏡2で集光されて光ファイバ3に導入される.光ファイバ3の先端には対象試料4に接触したATRプリズム5が取り付けられており,ATRプリズム5の透過光を光ファイバ6で受光しレンズ7および赤外検出器8からなる検出装置へ導かれる.   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a blood sugar level measuring apparatus showing an example of an embodiment of the present invention. The light is collected by the concave mirror 2 emitted from the Fourier infrared spectrometer 1 and introduced into the optical fiber 3. An ATR prism 5 in contact with the target sample 4 is attached to the tip of the optical fiber 3, and the light transmitted through the ATR prism 5 is received by the optical fiber 6 and guided to a detection device including a lens 7 and an infrared detector 8. .

フーリエ赤外分光器1は波数800〜5000cm−1の広い領域を測定可能なものが望ましいが,特定の波数の光のみを発生するレーザー光源であってもよい.特に比較的小型で大きな出力が得られる量子カスケードレーザーは本測定装置の光源として好適である.その場合は,波数990〜1150cm−1の領域に現れるグルコースの吸収ピーク群のいずれか,もしくは複数のピークの波数に一致する波数と,バックグラウンドとして利用するグルコースの吸収に影響されない波数を含む複数の波数を発生する単一のレーザー装置もしくは,それぞれの波数を発生する複数のレーザー装置を用いることが望ましい.また,発振波長を変化させることが可能な波長可変赤外レーザーも本装置の光源として好適である.
The Fourier infrared spectrometer 1 is preferably one that can measure a wide region having a wave number of 800 to 5000 cm −1 , but may be a laser light source that generates only light of a specific wave number. In particular, a quantum cascade laser that is relatively small and can provide a large output is suitable as a light source for this measurement device. In that case, any one of the absorption peak groups of glucose appearing in the region of wave numbers 990 to 1150 cm −1 , or a plurality of wave numbers that match the wave numbers of a plurality of peaks and a wave number that is not affected by the absorption of glucose used as the background It is desirable to use a single laser device that generates a wave number of 1 or multiple laser devices that generate each wave number. A tunable infrared laser that can change the oscillation wavelength is also suitable as the light source of this device.

光ファイバ3および6は,赤外光を低損失で伝送することが可能で,かつ柔軟な中空光ファイバであることが望ましい.またフーリエ赤外分光器などに利用されている広帯域光源は,微少な点に集光することが困難なため,中空光ファイバの直径は1ミリ以上であることが望ましい.   Optical fibers 3 and 6 are preferably hollow optical fibers that can transmit infrared light with low loss and are flexible. In addition, broadband light sources used in Fourier infrared spectrometers and the like are difficult to focus on minute points, so the diameter of the hollow optical fiber should be 1 mm or more.

図2はATRプリズム5の拡大図である.このプリズムは直径2ミリの中空光ファイバに接続して使用することを想定した一例であり,台形状のプリズムの上底及び下底で合計9回反射が生じる.通常のATRプリズムにおける反射回数は1〜2回程度であるのに対して,反射回数を増加させることにより,プリズムに接触するサンプルの吸収をより高感度に検出することが可能であるため,反射回数は5回以上であることが望ましい.また,台形状のプリズムはサンプルへの接触面積を大きくとれるため,プリズムの押付圧力の変化による検出値の変動を小さく抑えることが可能である.そして,台形状プリズムを柔軟な光ファイバに接続することにより,口唇にはさんだ形での測定が可能となる.厚い角質層に覆われた皮膚とは異なり,口唇などの粘膜には,ごく薄い角質層しか存在しないため,体液もしくは血液中のグルコースをより高い感度で検出することが可能である.   FIG. 2 is an enlarged view of the ATR prism 5. This prism is an example assuming that it is connected to a hollow optical fiber with a diameter of 2 mm, and reflection occurs nine times in total at the upper and lower bases of the trapezoidal prism. The number of reflections in a normal ATR prism is about 1 to 2 times, but by increasing the number of reflections, it is possible to detect the absorption of the sample contacting the prism with higher sensitivity. The number of times is desirably 5 times or more. In addition, since the trapezoidal prism has a large contact area with the sample, it is possible to minimize fluctuations in the detection value due to changes in the pressing pressure of the prism. By connecting the trapezoidal prism to a flexible optical fiber, it is possible to measure in the shape of the lip. Unlike the skin covered with a thick stratum corneum, the mucous membrane such as the lips has only a very thin stratum corneum, so it is possible to detect glucose in body fluids or blood with higher sensitivity.

またATRプリズム5の材料としては人体に対して毒性がなく,測定対象のグルコースの吸収帯である波数1000cm−1付近で高い透過率を示すことが必要である.これらの条件を満たす材料としては,ダイアモンド,ゲルマニウム,シリコン,硫化亜鉛などが挙げられる.これらのうち,プリズムから光のしみ出しが大きく,より深部までの検出が可能な低屈折率な材料としては,ダイアモンドもしくは硫化亜鉛が好適だが,より低コストな硫化亜鉛がプリズム材料として望ましい.硫化亜鉛は赤外材料として一般的に利用されているセレン化亜鉛とは異なり,発がん性が無いことが示されており,無毒な染料(リトポン)として歯科材料にも利用されている. Further, the material of the ATR prism 5 is not toxic to the human body and needs to exhibit a high transmittance in the vicinity of a wave number of 1000 cm −1, which is the glucose absorption band to be measured. Materials that satisfy these conditions include diamond, germanium, silicon, and zinc sulfide. Of these, diamond or zinc sulfide is the preferred low-refractive index material that has a large light oozing from the prism and can be detected deeper, but a lower-cost zinc sulfide is preferred as the prism material. Unlike zinc selenide, which is commonly used as an infrared material, zinc sulfide has been shown to be non-carcinogenic and is also used in dental materials as a non-toxic dye (lithopon).

図3は,濃度0〜1%のグルコースゲルを多重反射型ATRプリズムの上下底面に接触させて測定したグルコース水溶液ゲルの赤外吸収スペクトルである.なおこのスペクトルはグルコースの吸収ピーク群が存在する波数領域の両端である1175cm−1と980cm−1の2波数においてベース間補正をして得られたものである.図3にはグルコースの5つの吸収ピークが,波数1155,1100,1080,1035,990cm−1付近に現れている.これらのうち,1080および1035cm−1のピークはグルコース分子を形成するC−OHもしくはC−Hの元素間の結合エネルギーに起因するものであり,それ以外のピークは主に水水溶液中のグルコースが形成するピラノース環構造のC−C結合に起因するものである.どのピークも濃度が高くなるにつれ大きくなることが確認される. FIG. 3 is an infrared absorption spectrum of a glucose aqueous solution gel measured by bringing glucose gel having a concentration of 0 to 1% into contact with the upper and lower bottom surfaces of the multiple reflection type ATR prism. Note The spectra were obtained by the base correction between the 2 wave number of 1175cm -1 and 980 cm -1 which is both ends of a wave number region present absorption peaks of glucose. In FIG. 3, five absorption peaks of glucose appear in the vicinity of wave numbers 1155, 1100, 1080, 1035, and 990 cm −1 . Among these, the peaks at 1080 and 1035 cm −1 are due to the binding energy between the C—OH or C—H elements forming the glucose molecule, and the other peaks are mainly due to glucose in the aqueous solution. This is due to the C—C bond of the pyranose ring structure to be formed. It is confirmed that every peak increases as the concentration increases.

図4はATRプリズム5の上下面を口唇に挟んだ状態で測定した,ヒト口唇粘膜の吸収スペクトルの一例である.3300cm−1付近に水のOーH結合,1150cm−1付近にたんぱく質に起因する複数の吸収ピークが現れている.また微弱ではあるが,1000cm−1付近にグルコースの吸収ピーク群が見て取れる. FIG. 4 shows an example of the absorption spectrum of the human lip mucosa measured with the upper and lower surfaces of the ATR prism 5 sandwiched between the lips. 3300 cm -1 O over H bond of water in the vicinity, a plurality of absorption peaks due to protein appears in the vicinity of 1150 cm -1. Moreover, although it is weak, the absorption peak group of glucose can be seen around 1000 cm- 1 .

図5は図4に示したスペクトルの1000cm−1付近のグルコースの吸収領域を拡大したものである.1035cm−1や1080cm−1付近の吸収ピークが観察されるが,図3の水溶液の吸収スペクトルほどは明確にピークが現れていない.これは,口唇粘膜に含まれるグルコース以外のリン酸やたんぱく質などの成分に起因する吸収ピークが重畳して現れているためと思われる. FIG. 5 is an enlarged view of the absorption region of glucose near 1000 cm −1 in the spectrum shown in FIG. Although absorption peaks near 1035 cm −1 and 1080 cm −1 are observed, the peaks do not appear as clearly as the absorption spectrum of the aqueous solution in FIG. This seems to be due to the superposition of absorption peaks caused by components such as phosphate and protein other than glucose contained in the lip mucosa.

図6はヒト経口ブドウ糖負荷試験を行った際に測定した吸収スペクトルのうち,血糖値が上昇した際の吸収スペクトルと空腹時(血糖値72mg/dl)の吸収スペクトルの差分を計算したものである.吸収スペクトルの差分をとることにより,たんぱく質などの組織の吸収の影響が排除され,体液もしくは血液中のグルコース濃度増加分のみの影響が現れ,図3のグルコース水溶液と同様に5つの吸収ピークが見て取れる.またこれらのピーク強度は血糖値の上昇に応じて増大している.   FIG. 6 shows the difference between the absorption spectrum when the blood glucose level rises and the absorption spectrum when fasting (blood glucose level 72 mg / dl) among the absorption spectra measured when the human oral glucose tolerance test was performed. . By taking the difference in absorption spectrum, the influence of tissue absorption such as protein is eliminated, and only the increase in glucose concentration in body fluids or blood appears, and five absorption peaks can be seen like the glucose aqueous solution in FIG. . These peak intensities increase with increasing blood glucose level.

図7はさまざまな血糖値において,図6と同様に差分スペクトルを測定した際の,1035cm−1のピーク強度と採血により測定した血糖値との相関図である.血糖値とピーク高さに相関はあるものの,相関係数Rは0.6程度とあまり良好な相関は得られていない.また1080cm−1のピーク強度に基づいて評価を行ったところほぼ同様の結果が得られた.これらのピークは水溶液中のグルコース分子のC−H,もしくはC−OHの元素間の結合エネルギーに起因するものであるが,体液中のリン酸や食物から取り込んだ成分に含まれるC−HやC−OHの構造によっても上記の波数付近に吸収があらわれるため,これらが外乱となり測定精度が低下してしまうためと考えられる. FIG. 7 is a correlation diagram between the peak intensity of 1035 cm −1 and the blood glucose level measured by blood collection when the difference spectrum is measured in the same manner as in FIG. 6 at various blood glucose levels. Although the blood glucose and peak height correlation is the correlation coefficient R 2 is not obtained very good correlation to about 0.6. When the evaluation was performed based on the peak intensity of 1080 cm −1 , almost the same result was obtained. These peaks are attributed to the binding energy between CH or C-OH elements of glucose molecules in aqueous solution. However, C-H and C contained in components taken from phosphoric acid and food in body fluids. It is thought that absorption is also observed in the vicinity of the above wavenumbers depending on the structure of C-OH, and these become disturbances and the measurement accuracy decreases.

これらのピーク強度の変動の大きさはピーク間には相関がないものと考えらえるため,その影響はグルコースの吸収ピーク群を含む波数範囲の積分値を利用することによって抑制することが可能である.図8はグルコースの吸収ピーク群を含む波数範囲を含む領域の積分値を求める方法を示した模式図である.スペクトル上の波数980cm−1から1170cm−1の2点でベースライン補正を行い,その結果得られる吸収スペクトルを積分している.図9は上記の積分値から得られる推定血糖値と採血により測定した血糖値との相関図である.相関係数Rで0.82程度と良好な相関が得られている. The magnitude of these peak intensity fluctuations is considered to have no correlation between the peaks, so the effect can be suppressed by using the integrated value in the wavenumber range including the glucose absorption peaks. is there. FIG. 8 is a schematic diagram showing a method for obtaining an integral value of a region including a wave number range including a glucose absorption peak group. It performs baseline correction at two points 1170Cm -1 wave number 980 cm -1 on the spectrum, and integrating the absorption spectrum obtained as a result. FIG. 9 is a correlation diagram between the estimated blood glucose level obtained from the above integrated value and the blood glucose level measured by blood sampling. Good correlation with 0.82 degree correlation coefficient R 2 is obtained.

また体液中のリン酸や食物から取り込んだ成分に含まれるC−HやC−OHの影響を受けない,波数1155,1100,990cm−1付近のピーク強度もしくは面積に基づいて評価を行うことによっても,精度の高い測定が可能となる.図10は1155cm−1付近の吸収ピーク強度の血糖値による変化を示したものであり,血糖値の上昇に応じて強度が増大している.図11は波数1155cm−1付近のピーク面積をもとに推定した血糖値と採血により測定した血糖値との相関図であり,相関係数Rで0.78程度と良好な相関が得られている.また他の1100,990cm−1付近のピーク強度もしくは面積に基づいて推定した値においても,同様に採血により測定した血糖値と良好な相関が得られた. In addition, by performing evaluation based on the peak intensity or area around wave numbers 1155, 1100, and 990 cm −1 that are not affected by C—H or C—OH contained in components taken from phosphoric acid or food in body fluids. However, highly accurate measurement is possible. FIG. 10 shows the change in the absorption peak intensity around 1155 cm −1 depending on the blood glucose level, and the intensity increases as the blood glucose level increases. FIG. 11 is a correlation diagram between a blood glucose level estimated based on a peak area near a wave number of 1155 cm −1 and a blood glucose level measured by blood collection, and a good correlation of about 0.78 is obtained with a correlation coefficient R 2. ing. In addition, other values estimated based on the peak intensity or area near 1100,990 cm −1 also showed good correlation with blood glucose levels measured by blood sampling.

本発明の実施の形態の一例を示す血糖値測定装置の構成図である.It is a block diagram of the blood glucose level measuring apparatus which shows an example of embodiment of this invention. ATRプリズムの拡大図である.It is an enlarged view of the ATR prism. 濃度0〜1%のグルコースゲルをATRプリズムの上下底面に接触させて測定したグルコース水溶液ゲルの赤外吸収スペクトルである.It is an infrared absorption spectrum of a glucose aqueous solution gel measured by bringing a glucose gel having a concentration of 0 to 1% into contact with the upper and lower bottom surfaces of the ATR prism. ATRプリズム5の上下面を口唇に挟んだ状態で測定した,ヒト口唇粘膜の吸収スペクトルの一例である.It is an example of the absorption spectrum of the human lip mucosa, measured with the upper and lower surfaces of the ATR prism 5 sandwiched between the lips. 図4に示した吸収スペクトルの波数1000cm−1付近のグルコースの吸収領域の拡大図である.It is an enlarged view of the absorption region of glucose in the vicinity of the wave number of 1000 cm −1 of the absorption spectrum shown in FIG. ヒト経口ブドウ糖負荷試験を行った際に測定した吸収スペクトルのうち,血糖値が上昇した際の吸収スペクトルと空腹時(血糖値72mg/dl)の吸収スペクトルの差分を計算したものである.This is the difference between the absorption spectrum measured when the blood glucose level increased and the absorption spectrum during fasting (blood glucose level 72 mg / dl) among the absorption spectra measured during the human oral glucose tolerance test. さまざまな血糖値において,図6と同様に差分スペクトルを測定した際の,波数1035cm−1のピーク強度と採血により測定した血糖値との相関図である.FIG. 7 is a correlation diagram between the peak intensity at a wave number of 1035 cm −1 and the blood sugar level measured by blood collection when the difference spectrum was measured in the same manner as in FIG. 6 at various blood sugar levels. グルコースの吸収ピーク群を含む波数範囲を含む領域の積分値を求める方法を示した模式図である.It is the schematic diagram which showed the method of calculating | requiring the integral value of the area | region containing the wave number range containing the absorption peak group of glucose. グルコースの吸収ピーク群を含む波数範囲を含む領域の積分値から得られる推定血糖値と採血により測定した血糖値との相関図である.It is a correlation diagram between the estimated blood glucose level obtained from the integral value of the region including the wave number range including the glucose absorption peak group and the blood glucose level measured by blood sampling. 波数1155cm−1付近の吸収ピーク強度の血糖値による変化を示したグラフである.It is the graph which showed the change by the blood glucose level of the absorption peak intensity of wave number around 1155cm- 1 . 波数1155cm−1付近のピーク面積をもとに推定した血糖値と採血により測定した血糖値との相関図である.It is a correlation diagram between the blood sugar level estimated based on the peak area near the wave number of 1155 cm −1 and the blood sugar level measured by blood sampling.

1 フーリエ赤外分光器
2 凹面鏡
3 光ファイバ
4 被測定対象試料
5 ATRプリズム
6 光ファイバ
7 受光レンズ
8 赤外検出器
DESCRIPTION OF SYMBOLS 1 Fourier infrared spectrometer 2 Concave mirror 3 Optical fiber 4 Sample to be measured 5 ATR prism 6 Optical fiber 7 Receiving lens 8 Infrared detector

Claims (8)

赤外分光法を用いた非侵襲血糖値測定方法において,
光ファイバと前記光ファイバに接続された多重反射プリズムを用いて血糖値を測定する方法.
In non-invasive blood glucose level measurement method using infrared spectroscopy,
A method for measuring a blood glucose level using an optical fiber and a multiple reflection prism connected to the optical fiber.
前記光ファイバが中空光ファイバであることを特徴とする請求項1に記載の血糖値測定方法.   The blood glucose level measuring method according to claim 1, wherein the optical fiber is a hollow optical fiber. 前記多重反射プリズムが硫化亜鉛で構成されていることを特徴とする請求項1に記載の血糖値測定方法.   The blood sugar level measuring method according to claim 1, wherein the multiple reflection prism is made of zinc sulfide. 赤外分光法を用いた非侵襲血糖値測定方法において,
グルコースの5つの異なる吸収ピークを包含する
990〜1150cm−1の波数範囲全体を含む吸収スペクトルを測定し
前記波数範囲の吸収強度の積分値に基づいて血糖値を測定する方法.
In non-invasive blood glucose level measurement method using infrared spectroscopy,
A method of measuring an absorption spectrum including the entire wave number range of 990 to 1150 cm −1 including five different absorption peaks of glucose and measuring a blood glucose level based on an integrated value of the absorption intensity in the wave number range.
赤外分光法を用いた非侵襲血糖値測定方法において,
1140〜1170cm−1の波数範囲に現れるグルコースの吸収ピークの強度,もしくは
吸収ピークの強度の積分値に基づいて血糖値を測定する方法.
In non-invasive blood glucose level measurement method using infrared spectroscopy,
A method of measuring a blood glucose level based on an intensity of an absorption peak of glucose appearing in a wave number range of 1140 to 1170 cm −1 or an integrated value of the intensity of the absorption peak.
赤外分光法を用いた非侵襲血糖値測定方法において,
1100〜1140cm−1の波数範囲に現れるグルコースの吸収ピークの強度,もしくは
吸収ピークの強度の積分値に基づいて血糖値を測定する方法.
In non-invasive blood glucose level measurement method using infrared spectroscopy,
A method for measuring a blood glucose level based on an intensity of an absorption peak of glucose appearing in a wave number range of 1100 to 1140 cm −1 or an integrated value of the intensity of the absorption peak.
赤外分光法を用いた非侵襲血糖値測定方法において,
1000〜980cm−1の波数範囲に現れるグルコースの吸収ピークの強度,もしくは
吸収ピークの強度の積分値に基づいて血糖値を測定する方法.
In non-invasive blood glucose level measurement method using infrared spectroscopy,
A method of measuring a blood glucose level based on an intensity of an absorption peak of glucose appearing in a wave number range of 1000 to 980 cm −1 or an integrated value of the intensity of the absorption peak.
前記血糖値測定方法において,量子カスケードレーザを光源として用いる請求項1〜7のいずれか一項に記載の血糖値測定方法.   The blood sugar level measuring method according to any one of claims 1 to 7, wherein a quantum cascade laser is used as a light source in the blood sugar level measuring method.
JP2016022711A 2016-02-09 2016-02-09 Non-invasive blood glucose level measuring method using infrared spectroscopy Pending JP2017140159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016022711A JP2017140159A (en) 2016-02-09 2016-02-09 Non-invasive blood glucose level measuring method using infrared spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016022711A JP2017140159A (en) 2016-02-09 2016-02-09 Non-invasive blood glucose level measuring method using infrared spectroscopy

Publications (1)

Publication Number Publication Date
JP2017140159A true JP2017140159A (en) 2017-08-17

Family

ID=59628914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016022711A Pending JP2017140159A (en) 2016-02-09 2016-02-09 Non-invasive blood glucose level measuring method using infrared spectroscopy

Country Status (1)

Country Link
JP (1) JP2017140159A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019037752A (en) * 2017-08-23 2019-03-14 株式会社リコー Measuring apparatus and measuring method
WO2020158348A1 (en) * 2019-01-31 2020-08-06 国立大学法人東北大学 Device and method for measuring blood sugar level
US11304635B2 (en) 2016-12-26 2022-04-19 Mitsubishi Electric Corporation Biological material measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11304635B2 (en) 2016-12-26 2022-04-19 Mitsubishi Electric Corporation Biological material measuring apparatus
JP2019037752A (en) * 2017-08-23 2019-03-14 株式会社リコー Measuring apparatus and measuring method
WO2020158348A1 (en) * 2019-01-31 2020-08-06 国立大学法人東北大学 Device and method for measuring blood sugar level
CN113260849A (en) * 2019-01-31 2021-08-13 国立大学法人东北大学 Blood sugar level measuring device and blood sugar level measuring method
JPWO2020158348A1 (en) * 2019-01-31 2021-12-02 国立大学法人東北大学 Blood glucose measuring device and blood glucose measuring method

Similar Documents

Publication Publication Date Title
US20210038125A1 (en) Method for measuring concentration of substance in blood
Yamakoshi et al. Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry
RU2655518C2 (en) Noninvasive blood analysis
Fantini et al. Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry
US5372135A (en) Blood constituent determination based on differential spectral analysis
US11147482B2 (en) Method and system for non-invasive blood glucose measurement using signal change of the non-glucose components induced by the presence of glucose
CN101947115B (en) Implantable human blood glucose concentration continuous monitoring system based on optical fiber attenuation total reflection
US20140268163A1 (en) Methods and Apparatus Related to Multi Wavelength Photothermal Optical Coherence Tomography
JP2000037355A (en) Method for measuring glucose concentration and apparatus therefor
RU2007147839A (en) GLUCOSE SENSOR
CA2216641A1 (en) Apparatus and methods of raman spectroscopy for analysis of blood gases and analytes
US11363973B2 (en) Non-invasive blood analysis
KR100464324B1 (en) Method and apparatus for measuring concentration of constituents in body fluids
JP2007083028A (en) Noninvasive inspecting apparatus
JP2017140159A (en) Non-invasive blood glucose level measuring method using infrared spectroscopy
US10779755B2 (en) Non-invasive blood sugar measurement method and device using optical reflectometry
KR20090036996A (en) Non-prick based glucose sensor combining transmittance and reflectance using single wavelength with diverse light sources
WO2012134515A1 (en) Method and apparatus for in vivo optical measurement of blood glucose concentration
JPH11188007A (en) Method and device for determing glucose concentration
RU2633494C2 (en) Biosensor for non-invasive optical monitoring of biological tissues pathology
JP2010281747A (en) Component concentration analyzer and component concentration analysis method
JP2015125090A (en) Scattering absorber measuring device and scattering absorber measuring method
CN209899401U (en) Four-wavelength combined noninvasive glucometer
EP4175538A1 (en) Device for non-invasive blood glucose concentration measurement
John et al. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm