JP2015125090A - Scattering absorber measuring device and scattering absorber measuring method - Google Patents

Scattering absorber measuring device and scattering absorber measuring method Download PDF

Info

Publication number
JP2015125090A
JP2015125090A JP2013270885A JP2013270885A JP2015125090A JP 2015125090 A JP2015125090 A JP 2015125090A JP 2013270885 A JP2013270885 A JP 2013270885A JP 2013270885 A JP2013270885 A JP 2013270885A JP 2015125090 A JP2015125090 A JP 2015125090A
Authority
JP
Japan
Prior art keywords
scattering
light
coefficient
scattering coefficient
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013270885A
Other languages
Japanese (ja)
Other versions
JP2015125090A5 (en
JP6043276B2 (en
Inventor
裕昭 鈴木
Hiroaki Suzuki
裕昭 鈴木
元樹 小田
Motoki Oda
元樹 小田
鈴木 俊彦
Toshihiko Suzuki
俊彦 鈴木
悦子 矢巻
Etsuko Yamaki
悦子 矢巻
秀 本間
Shu Homma
秀 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2013270885A priority Critical patent/JP6043276B2/en
Publication of JP2015125090A publication Critical patent/JP2015125090A/en
Publication of JP2015125090A5 publication Critical patent/JP2015125090A5/ja
Application granted granted Critical
Publication of JP6043276B2 publication Critical patent/JP6043276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method that enable precise calculation of a conversion scattering coefficient and an absorption coefficient.SOLUTION: A scattering absorber measuring device 1A comprises: a light source part 31 that emits multiple light pulses P(n) mutually differing in wavelength to a scattering absorber B; a light detection part 41 that detects the respective light pulses P(n) propagating through the inside of the scattering absorber B; and an operation part 5 that calculates a conversion scattering coefficient and an absorption coefficient by a time-resolved spectroscopic measurement method. The calculation part 5 preliminarily has data D2 about a conversion scattering coefficient ratio between the wavelengths of the light pulses P(n), and calculates the conversion scattering coefficient and the absorption coefficient by collectively fitting time-resolved measurement profiles of multiple wavelengths to a solution for a light diffusion equation, on the assumption that the conversion scattering coefficient for each wavelength is subjected to the conversion scattering coefficient ratio.

Description

本発明は、散乱吸収体測定装置及び散乱吸収体測定方法に関するものである。   The present invention relates to a scattering medium measuring apparatus and a scattering medium measuring method.

特許文献1には、散乱吸収体の内部情報の計測方法及び装置が記載されている。この文献に記載された方法及び装置では、複数の波長の光パルスが散乱吸収体に入射され、出力光が光検出器により検出され、その検出結果に基づいて散乱吸収体の内部情報が算出される。内部情報の算出の際には、光路長平均と分散、或いはそれらに相当する物理量を利用する分光計測方法(MVS法)により、MBL則に基づく時間分解積分計測法(TIS法)及び位相変調計測法(PMS法)を用いて吸収係数差を算出することによって散乱吸収体の内部情報が算出される。   Patent Document 1 describes a method and apparatus for measuring internal information of a scattering medium. In the method and apparatus described in this document, light pulses having a plurality of wavelengths are incident on a scattering medium, output light is detected by a photodetector, and internal information of the scattering medium is calculated based on the detection result. The When calculating the internal information, the time-resolved integral measurement method (TIS method) and phase modulation measurement based on the MBL rule are performed by the spectroscopic measurement method (MVS method) using the optical path length average and dispersion, or the physical quantities corresponding to them. The internal information of the scattering medium is calculated by calculating the absorption coefficient difference using the method (PMS method).

非特許文献1には、近赤外時間分解分光法を用いて酸素化ヘモグロビン及び脱酸素化ヘモグロビンの濃度を測定する方法が記載されている。この文献に記載された方法では、Mie散乱近似を適用して換算散乱係数を波長の関数とし、各波長値に基づいて濃度を算出している。   Non-Patent Document 1 describes a method of measuring the concentration of oxygenated hemoglobin and deoxygenated hemoglobin using near infrared time-resolved spectroscopy. In the method described in this document, the Mie scattering approximation is applied, the converted scattering coefficient is used as a function of wavelength, and the concentration is calculated based on each wavelength value.

特開2000−146828号公報JP 2000-146828 A

C. D’Andrea et al., “Time-resolved spectrally constrained method for the quantificationof chromophore concentrations and scattering parameters in diffusing media”, OPTICS EXPRESS, Vol.14, No. 5, pp.1888-1898, 6 March 2006C. D’ Andrea et al., “Time-resolved spectrally constrained method for the quantificationof chromophore concentrations and scattering parameters in diffusing media”, OPTICS EXPRESS, Vol.14, No. 5, pp.1888-1898, 6 March 2006 M.S. Patterson et. al., “Time resolved reflectance and transmittance for non-invasivemeasurement of tissue”, Optical Properties, Appl Optics 28, pp. 2331-2336, 1989M.S.Patterson et.al., “Time resolved reflectance and transmittance for non-invasive measurement of tissue”, Optical Properties, Appl Optics 28, pp. 2331-2336, 1989

散乱吸収体の内部情報を光を用いて非侵襲的に測定する際に、複数の波長における換算散乱係数を用いて該内部情報を算出する場合がある。例えば、内部情報として光吸収物質の濃度情報を算出する場合には、各波長における吸収係数及び換算散乱係数を算出し、これらの値に基づいて濃度情報を算出する。このような場合、従来の一般的な方法では、各波長毎の検出結果に基づいて、光拡散理論を用いて換算散乱係数及び吸収係数を各波長毎に算出した上で、内部情報を算出する。   When measuring the internal information of the scattering medium non-invasively using light, the internal information may be calculated using reduced scattering coefficients at a plurality of wavelengths. For example, when calculating the concentration information of the light-absorbing substance as the internal information, the absorption coefficient and the converted scattering coefficient at each wavelength are calculated, and the concentration information is calculated based on these values. In such a case, the conventional general method calculates the internal information after calculating the converted scattering coefficient and the absorption coefficient for each wavelength using the light diffusion theory based on the detection result for each wavelength. .

しかしながら、上記の方法では、例えば光の入射位置と検出位置との距離が長いときや、光吸収物質の濃度が大きく上昇したとき等に検出信号のS/N比が低下すると、換算散乱係数の精度に大きく影響し、ひいては内部情報の算出精度が低下してしまうという問題がある。なお、非特許文献1では換算散乱係数の波長依存性を考慮した手法が提案されているが、この換算散乱係数の波長依存性にはMie散乱近似が利用されている。Mie散乱は均一媒質内の任意材質の均一な球(波長と同程度の直径)を想定した理論であるため、例えば生体組織といった現実の散乱吸収体では誤差が大きくなってしまう。   However, in the above method, when the S / N ratio of the detection signal decreases, for example, when the distance between the light incident position and the detection position is long, or when the concentration of the light-absorbing substance is greatly increased, the converted scattering coefficient is reduced. There is a problem that the accuracy is greatly affected and the calculation accuracy of internal information is lowered. Non-Patent Document 1 proposes a method that considers the wavelength dependence of the converted scattering coefficient, but Mie scattering approximation is used for the wavelength dependence of the converted scattering coefficient. Since Mie scattering is a theory that assumes a uniform sphere (diameter approximately equal to the wavelength) of an arbitrary material in a uniform medium, an error becomes large in an actual scattering absorber such as a biological tissue.

本発明は、このような問題点に鑑みてなされたものであり、換算散乱係数及び吸収係数を精度良く算出することができる装置及び方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide an apparatus and a method that can accurately calculate a reduced scattering coefficient and an absorption coefficient.

上述した課題を解決するために、本発明による散乱吸収体測定装置は、互いに波長が異なる複数の光パルスを散乱吸収体に入射する光入射部と、散乱吸収体の内部を伝搬した各光パルスを検出する光検出部と、光検出部での検出結果に基づいて、時間分解分光計測法により換算散乱係数及び吸収係数を算出する演算部と、を備え、演算部は、複数の光パルスの波長間での換算散乱係数の比に関するデータを予め有しており、各波長毎の換算散乱係数が換算散乱係数の比に従うものとして、検出結果に基づく複数波長の時間分解計測プロファイルを光拡散方程式の解にまとめてフィッティングすることにより換算散乱係数及び吸収係数を算出することを特徴とする。   In order to solve the above-described problems, a scattering medium measuring apparatus according to the present invention includes a light incident part that makes a plurality of light pulses having different wavelengths incident on the scattering medium, and each light pulse that has propagated inside the scattering medium. And a calculation unit that calculates a reduced scattering coefficient and an absorption coefficient by a time-resolved spectroscopic measurement method based on a detection result of the light detection unit, and the calculation unit includes a plurality of light pulses. We have data on the ratio of converted scattering coefficients between wavelengths in advance, and assume that the converted scattering coefficient for each wavelength follows the ratio of the converted scattering coefficient. The reduced scattering coefficient and the absorption coefficient are calculated by fitting together to the solution.

また、本発明による散乱吸収体測定方法は、互いに波長が異なる複数の光パルスを散乱吸収体に入射し、散乱吸収体の内部を伝搬した各光パルスを検出する光検出ステップと、光検出ステップでの検出結果に基づいて、時間分解分光計測法により換算散乱係数及び吸収係数を算出する演算ステップと、を備え、演算ステップでは、複数の光パルスの波長間での換算散乱係数の比に関するデータが予め用意されており、各波長毎の換算散乱係数が換算散乱係数の比に従うものとして、検出結果に基づく複数波長の時間分解計測プロファイルを光拡散方程式の解にまとめてフィッティングすることにより換算散乱係数及び吸収係数を算出することを特徴とする。   Further, the scattering absorber measuring method according to the present invention includes a light detection step of entering a plurality of light pulses having different wavelengths into the scattering absorber and detecting each light pulse propagating through the scattering absorber, and a light detection step. A calculation step of calculating a converted scattering coefficient and an absorption coefficient by a time-resolved spectroscopic measurement method based on a detection result in, and in the calculating step, data relating to a ratio of the converted scattering coefficient between wavelengths of a plurality of light pulses Is prepared in advance, and the converted scattering coefficient for each wavelength is assumed to follow the ratio of the converted scattering coefficient. A coefficient and an absorption coefficient are calculated.

上記の散乱吸収体測定装置及び散乱吸収体測定方法では、複数の光パルスの波長間での換算散乱係数の比に関するデータが予め用意される。換算散乱係数は波長と一定の相関があるので、複数波長間での換算散乱係数の比は、複数回の測定を通じてほぼ一定とみなされるからである。そして、演算部(演算ステップ)において、各波長毎の換算散乱係数が換算散乱係数の比に従うものとして、検出結果に基づく複数波長の時間分解計測プロファイルを光拡散方程式の解にまとめてフィッティングすることにより、換算散乱係数及び吸収係数を算出する。このような方式によれば、予め換算散乱係数の比に関するデータを好条件下で精度良く測定しておくことができ、また複数の値を同時にフィッティングするのでフィッティング精度も高まる。従って、各波長毎に光拡散理論を適用して換算散乱係数及び吸収係数を算出する方法と比較して、換算散乱係数及び吸収係数の算出精度を高めることができる。   In the above scattering absorber measuring apparatus and scattering absorber measuring method, data relating to the ratio of the converted scattering coefficient between wavelengths of a plurality of light pulses is prepared in advance. This is because the converted scattering coefficient has a certain correlation with the wavelength, and the ratio of the converted scattering coefficient between a plurality of wavelengths is considered to be substantially constant through a plurality of measurements. Then, in the calculation unit (calculation step), assuming that the converted scattering coefficient for each wavelength follows the ratio of the converted scattering coefficient, fitting the time-resolved measurement profiles of multiple wavelengths based on the detection results to the solution of the light diffusion equation. Thus, the reduced scattering coefficient and the absorption coefficient are calculated. According to such a method, data related to the ratio of the converted scattering coefficient can be measured in advance with good accuracy under favorable conditions, and a plurality of values are simultaneously fitted, so that fitting accuracy is also improved. Therefore, the calculation accuracy of the converted scattering coefficient and the absorption coefficient can be increased as compared with the method of calculating the converted scattering coefficient and the absorption coefficient by applying the light diffusion theory for each wavelength.

また、上記の散乱吸収体測定装置では、演算部が、各波長毎の検出結果の信頼性に基づく重み付けを、フィッティングに用いられる各波長毎の換算散乱係数に対して行ってもよい。同様に、上記の散乱吸収体測定方法では、演算ステップにおいて、各波長毎の検出結果の信頼性に基づく重み付けが、フィッティングに用いられる各波長毎の換算散乱係数に対して行われてもよい。光検出部(光検出ステップ)において光パルスが検出される際には、検出されたフォトン数やS/N比などによって、各波長間で検出結果の信頼性にばらつきが生じることがある。そのような場合であっても、信頼性を考慮した重み付けがなされることにより、換算散乱係数及び吸収係数の算出精度を更に高めることができる。   In the scattering medium measuring apparatus, the calculation unit may weight the converted scattering coefficient for each wavelength used for fitting, based on the reliability of the detection result for each wavelength. Similarly, in the above scattering absorber measurement method, in the calculation step, weighting based on the reliability of the detection result for each wavelength may be performed on the converted scattering coefficient for each wavelength used for fitting. When a light pulse is detected in the light detection unit (light detection step), the reliability of the detection result may vary between wavelengths depending on the number of detected photons, the S / N ratio, and the like. Even in such a case, the calculation accuracy of the converted scattering coefficient and the absorption coefficient can be further increased by weighting in consideration of the reliability.

本発明による散乱吸収体測定装置及び散乱吸収体測定方法によれば、換算散乱係数及び吸収係数を精度良く算出することができる。   According to the scattering medium measuring apparatus and the scattering medium measuring method according to the present invention, the reduced scattering coefficient and the absorption coefficient can be calculated with high accuracy.

本発明による測定装置の一実施形態の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of one Embodiment of the measuring apparatus by this invention. 光源部から出射される光パルス、及び光検出部において検出される検出光の各光強度の時間変化の一例を示すグラフである。It is a graph which shows an example of the time change of each light intensity of the light pulse radiate | emitted from a light source part, and the detection light detected in a light detection part. 換算散乱係数と波長との関係を表すグラフである。It is a graph showing the relationship between a conversion scattering coefficient and a wavelength. 測定装置の動作及び散乱吸収体測定方法を示すフローチャートである。It is a flowchart which shows operation | movement of a measuring apparatus, and a scattering absorber measuring method. 図3に示される換算散乱係数の波長依存性のうち、波長λ1=759nm、波長λ2=793nm、波長λ3=834nmにおいて確認された換算散乱係数比R1:R2:R3=1.0366:1.0000:0.9595)を用い、散乱吸収体であるヒト前額部を測定して得られた換算散乱係数を示す図表である。Of the wavelength dependence of the converted scattering coefficient shown in FIG. 3, the converted scattering coefficient ratios R 1 : R 2 : R 3 = 1 confirmed at wavelength λ 1 = 759 nm, wavelength λ 2 = 793 nm, and wavelength λ 3 = 834 nm. .0366: 1.0000: 0.9595), and is a chart showing the converted scattering coefficient obtained by measuring the human forehead part which is a scattering medium. (a)(b)各波長毎の吸収係数及び換算散乱係数と、従来の方法によって測定された比較例としての各波長毎の吸収係数及び換算散乱係数とを示す図表である。(c)酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度、総ヘモグロビン濃度、及び組織酸素飽和度を示す図表である。(A) (b) It is a graph which shows the absorption coefficient and conversion scattering coefficient for each wavelength, and the absorption coefficient and conversion scattering coefficient for each wavelength as a comparative example measured by the conventional method. (C) is a chart showing oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, total hemoglobin concentration, and tissue oxygen saturation. 前額部測定時の計測時間を変化させて得られた、吸収係数、換算散乱係数、及びヘモグロビン量の変動係数値を示す図表である。It is a graph which shows the variation coefficient value of the absorption coefficient, conversion scattering coefficient, and hemoglobin amount obtained by changing the measurement time at the time of measuring the forehead part. 前額部測定時の計測時間を変化させて得られた、吸収係数、換算散乱係数、及びヘモグロビン量の変動係数値を示す図表である。It is a graph which shows the variation coefficient value of the absorption coefficient, conversion scattering coefficient, and hemoglobin amount obtained by changing the measurement time at the time of measuring the forehead part. 血液ファントムを用いて各波長毎の吸収係数及び換算散乱係数を測定した結果を示すグラフである。It is a graph which shows the result of having measured the absorption coefficient and conversion scattering coefficient for every wavelength using the blood phantom. 血液ファントムを用いて各波長毎の吸収係数及び換算散乱係数を測定した結果を示すグラフである。It is a graph which shows the result of having measured the absorption coefficient and conversion scattering coefficient for every wavelength using the blood phantom. ヒト前腕部の各波長毎の吸収係数及び換算散乱係数を測定した結果を示すグラフである。It is a graph which shows the result of having measured the absorption coefficient and conversion scattering coefficient for every wavelength of a human forearm part. ヒト前腕部の各波長毎の吸収係数及び換算散乱係数を測定した結果を示すグラフである。It is a graph which shows the result of having measured the absorption coefficient and conversion scattering coefficient for every wavelength of a human forearm part.

以下、添付図面を参照しながら本発明による散乱吸収体測定装置及び散乱吸収体測定方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a scattering medium measuring apparatus and a scattering medium measuring method according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

(実施の形態)
図1は、本発明による測定装置の第1実施形態の構成を概略的に示すブロック図である。この測定装置1Aは、近赤外光を用いた時間分解分光計測法によって散乱吸収体Bの内部情報を測定する装置である。散乱吸収体Bは例えば生体の一部位であり、内部情報は例えば酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度、総ヘモグロビン濃度、及び酸素飽和度等である。この測定装置1Aによれば、非侵襲的かつ簡易的にヘモグロビン動態を定量的に計測することが可能なため、術中における脳酸素代謝モニターや運動時の筋肉評価などに応用可能である。
(Embodiment)
FIG. 1 is a block diagram schematically showing the configuration of a first embodiment of a measuring apparatus according to the present invention. This measuring apparatus 1A is an apparatus that measures internal information of the scattering medium B by time-resolved spectroscopic measurement using near infrared light. The scattering medium B is, for example, a part of a living body, and the internal information includes, for example, oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, total hemoglobin concentration, oxygen saturation, and the like. According to this measuring apparatus 1A, hemoglobin dynamics can be quantitatively measured in a non-invasive and simple manner, and therefore can be applied to intracerebral oxygen metabolism monitoring and muscle evaluation during exercise.

図1に示されるように、測定装置1Aは、光源部31と、光照射用ファイバ32と、光検出部41と、光検出用ファイバ42と、演算部5と、表示部9と、これらの制御を行う制御部10とを備えている。   As shown in FIG. 1, the measuring apparatus 1A includes a light source unit 31, a light irradiation fiber 32, a light detection unit 41, a light detection fiber 42, a calculation unit 5, a display unit 9, and these components. And a control unit 10 that performs control.

光源部31及び光照射用ファイバ32は、本実施形態における光入射部であって、互いに波長が異なる複数の光を散乱吸収体Bに入射する。例えば、光源部31は、N個(Nは2以上の整数)の光パルスP(1)〜P(N)を発生する。N個の光パルスP(1)〜P(N)の中心波長は互いに異なっており、各光パルスP(n)(但し、n=1,・・・,N)の半値全幅は例えば10ps〜数nsである。光照射用ファイバ32の一端は光源部31に接続され、光照射用ファイバ32の他端(光入射端)は、散乱吸収体Bの表面における所定の光入射位置Sに配置される。光源部31から出力された各光パルスP(n)は、光照射用ファイバ32の一端に入力され、光照射用ファイバ32の他端から散乱吸収体Bの内部へ照射される。また、光源部31は、演算部5の信号処理部51(後述)に接続されており、光源部31における光パルスP(1)〜P(N)の発光タイミングを示すトリガ信号S1を、信号処理部51へ出力する。なお、光パルスP(1)〜P(N)の発光タイミングは、制御部10によって制御される。   The light source unit 31 and the light irradiation fiber 32 are light incident units in the present embodiment, and a plurality of lights having different wavelengths are incident on the scattering medium B. For example, the light source unit 31 generates N (N is an integer of 2 or more) light pulses P (1) to P (N). The center wavelengths of the N optical pulses P (1) to P (N) are different from each other, and the full width at half maximum of each optical pulse P (n) (where n = 1,..., N) is, for example, 10 ps to A few ns. One end of the light irradiation fiber 32 is connected to the light source unit 31, and the other end (light incident end) of the light irradiation fiber 32 is disposed at a predetermined light incident position S on the surface of the scattering medium B. Each light pulse P (n) output from the light source unit 31 is input to one end of the light irradiation fiber 32 and irradiated to the inside of the scattering medium B from the other end of the light irradiation fiber 32. The light source unit 31 is connected to a signal processing unit 51 (described later) of the calculation unit 5, and a trigger signal S <b> 1 indicating the light emission timing of the light pulses P (1) to P (N) in the light source unit 31 is a signal. The data is output to the processing unit 51. The light emission timing of the light pulses P (1) to P (N) is controlled by the control unit 10.

光源部31としては、発光ダイオード、レーザーダイオード、各種パルスレーザ装置など、様々なものが用いられる。光源部31において発生する光パルスP(n)としては、散乱吸収体Bの吸収係数の変化量を測定できる程度にパルスの時間幅が短く、且つ、被測定物質の光吸収特性において光吸収率が低い波長を中心波長とする近赤外光パルスが用いられる。一実施例では、n=3であり、光パルスP(1)〜P(3)の波長はそれぞれ760nm、800nm、830nmである。   As the light source part 31, various things, such as a light emitting diode, a laser diode, various pulse laser apparatuses, are used. The light pulse P (n) generated in the light source unit 31 has a short pulse width to the extent that the amount of change in the absorption coefficient of the scattering medium B can be measured, and the light absorption rate in the light absorption characteristics of the substance to be measured. A near-infrared light pulse having a center wavelength at a low wavelength is used. In one example, n = 3 and the wavelengths of the light pulses P (1) to P (3) are 760 nm, 800 nm, and 830 nm, respectively.

光検出部41及び光検出用ファイバ42は、散乱吸収体Bの内部を伝搬した各光を検出する。光検出用ファイバ42の一端(光検出端)は、散乱吸収体Bの表面における所定の光検出位置Dに配置され、光検出用ファイバ42の他端は光検出部41に接続されている。光検出部41は、光パルスP(n)が散乱吸収体Bの内部を伝搬して生じる検出光を、光検出用ファイバ42を介して検出する。光検出部41の信号出力端は演算部5の信号処理部51(後述)に接続されており、光検出部41は、検出された光(フォトン)の検出タイミングを示す光検出信号S2を信号処理部51へ出力する。   The light detection unit 41 and the light detection fiber 42 detect each light propagated through the scattering medium B. One end (light detection end) of the light detection fiber 42 is disposed at a predetermined light detection position D on the surface of the scattering medium B, and the other end of the light detection fiber 42 is connected to the light detection unit 41. The light detection unit 41 detects the detection light generated by the light pulse P (n) propagating through the scattering medium B through the light detection fiber 42. The signal output terminal of the light detection unit 41 is connected to a signal processing unit 51 (described later) of the calculation unit 5, and the light detection unit 41 outputs a light detection signal S2 indicating the detection timing of the detected light (photon). The data is output to the processing unit 51.

光検出部41としては、光電子増倍管(Photomultiplier Tube;PMT)、アバランシェフォトダイオード、PINフォトダイオード、MPPC(Multi-Pixel Photon Counter)といった様々なものが用いられる。また、光検出部41としては、光パルスP(1)〜P(N)の各波長を十分に検出可能な分光感度特性を有するものが望ましい。また、検出光が微弱であるときは、高感度あるいは高利得の光検出器が用いられてもよい。   As the light detection unit 41, various devices such as a photomultiplier tube (PMT), an avalanche photodiode, a PIN photodiode, and an MPPC (Multi-Pixel Photon Counter) are used. Moreover, as the light detection part 41, what has the spectral sensitivity characteristic which can fully detect each wavelength of the light pulses P (1) -P (N) is desirable. When the detection light is weak, a high sensitivity or high gain photodetector may be used.

一例では、光照射用ファイバ32の光入射端と、光検出用ファイバ42の光検出端とは、散乱吸収体Bの表面上に配置される光ファイバ保持具2に固定されている。光ファイバ保持具2は、例えば柔軟性があり散乱吸収体Bの表面に沿って変形が可能な部材により構成されるとよい。   In one example, the light incident end of the light irradiation fiber 32 and the light detection end of the light detection fiber 42 are fixed to the optical fiber holder 2 arranged on the surface of the scattering medium B. The optical fiber holder 2 may be formed of a flexible member that can be deformed along the surface of the scattering medium B, for example.

なお、光ファイバ保持具2は省かれることもできる。また、光源部31から出射される光パルスP(n)は、光照射用ファイバ32を介さずに、別の方式によって散乱吸収体Bに直接入力されてもよい。また、散乱吸収体Bから出射する検出光は、光検出用ファイバ42を介さずに、散乱吸収体Bの表面に配置された光検出部41に直接入力されてもよい。   The optical fiber holder 2 can be omitted. Further, the light pulse P (n) emitted from the light source unit 31 may be directly input to the scattering medium B by another method without using the light irradiation fiber 32. The detection light emitted from the scattering medium B may be directly input to the light detection unit 41 disposed on the surface of the scattering medium B without passing through the light detection fiber 42.

図2は、光源部31から出射される光パルスP(n)、及び光検出部41において検出される検出光の各光強度の時間変化の一例を示すグラフである。図2において、縦軸は光量(対数目盛)を示し、横軸は時間を示している。グラフG11は、時刻tに光源部31から散乱吸収体Bへ入射される光パルス強度の時間波形(入射波形)である。グラフG12は、時刻tに入射された光パルスに対応する検出光強度の時間波形(検出波形)である。散乱吸収体Bの内部を伝搬した光が光検出位置Dに達する時間は、その伝搬状況によって一様ではなく、また、散乱吸収体Bでの散乱や吸収によって減衰を受ける。従って、図2のグラフG12に示されるように、検出波形は或る一定の分布曲線となる。 FIG. 2 is a graph showing an example of the temporal change of each light intensity of the light pulse P (n) emitted from the light source unit 31 and the detection light detected by the light detection unit 41. In FIG. 2, the vertical axis indicates the light amount (logarithmic scale), and the horizontal axis indicates time. Graph G11 is the time waveform of the optical pulse intensity incident from the light source unit 31 into the scattering medium B at time t 0 (the incident wave). Graph G12 is the time waveform of the detected light intensity corresponding to the incident light pulse at time t 0 (detection waveform). The time that the light propagated inside the scattering medium B reaches the light detection position D is not uniform depending on the propagation state, and is attenuated by scattering and absorption in the scattering medium B. Therefore, as shown in the graph G12 of FIG. 2, the detected waveform is a certain distribution curve.

再び図1を参照する。演算部5は、光検出部41での検出結果に基づいて、散乱吸収体Bの内部における換算散乱係数及び吸収係数を算出し、更に内部情報を算出する。演算部5は、信号処理部51、光学特性計測部52、換算散乱係数データベース53及び演算処理部54を有する。   Refer to FIG. 1 again. The calculation unit 5 calculates a converted scattering coefficient and an absorption coefficient inside the scattering medium B based on the detection result of the light detection unit 41, and further calculates internal information. The calculation unit 5 includes a signal processing unit 51, an optical characteristic measurement unit 52, a converted scattering coefficient database 53, and a calculation processing unit 54.

信号処理部51は、光源部31に接続されており、光源部31における光パルスP(1)〜P(N)の発光タイミングを示すトリガ信号S1を受ける。また、信号処理部51は、光検出部41に接続されており、検出された光(フォトン)の検出タイミングを示す光検出信号S2を受ける。信号処理部51は、これらのトリガ信号S1及び光検出信号S2に基づいて、時間相関単一光子計数法(Time-correlated single photon counting method)により複数(N個)の時間分解計測波形を取得する。信号処理部51は、こうして得られたN個の時間分解計測波形に関するデータD1を、光学特性計測部52へ出力する。   The signal processing unit 51 is connected to the light source unit 31 and receives a trigger signal S1 indicating the light emission timing of the light pulses P (1) to P (N) in the light source unit 31. The signal processing unit 51 is connected to the light detection unit 41 and receives a light detection signal S2 indicating the detection timing of the detected light (photon). Based on the trigger signal S1 and the light detection signal S2, the signal processing unit 51 acquires a plurality (N) of time-resolved measurement waveforms by a time-correlated single photon counting method. . The signal processing unit 51 outputs the data D1 related to the N time-resolved measurement waveforms thus obtained to the optical characteristic measurement unit 52.

光学特性計測部52は、信号処理部51から提供されたN個の時間分解計測波形に関するデータD1を用い、光拡散方程式(Photon Diffusion Theory)に基づいて、吸収係数及び換算散乱係数を算出する。本実施形態の光学特性計測部52は、不揮発性の記憶手段である換算散乱係数データベース53に予め記憶されているデータD2を読み出し、このデータD2を使用して換算散乱係数を算出する。データD2には、複数の光パルスP(1)〜P(N)の波長(λ1,λ2,・・・,λN)間での換算散乱係数の比率(R1:R2:・・・:RN)に関する情報が含まれている。この情報は、測定装置1Aの使用前(例えば測定装置1Aの製造時)に、好適な条件下において、基準となる散乱吸収体の波長毎の換算散乱係数が予め測定されることによって得られた数値である。 The optical characteristic measurement unit 52 uses the data D1 regarding the N time-resolved measurement waveforms provided from the signal processing unit 51, and calculates an absorption coefficient and a converted scattering coefficient based on a light diffusion equation (Photon Diffusion Theory). The optical characteristic measurement unit 52 of the present embodiment reads data D2 stored in advance in a converted scattering coefficient database 53, which is a nonvolatile storage unit, and calculates a converted scattering coefficient using the data D2. The data D2 includes a ratio (R 1 : R 2 : ·) of the converted scattering coefficient between the wavelengths (λ 1 , λ 2 ,..., Λ N ) of the plurality of light pulses P (1) to P (N).・ ・: Information on R N ) is included. This information was obtained by preliminarily measuring the converted scattering coefficient for each wavelength of the reference scattering absorber before use of the measuring apparatus 1A (for example, when manufacturing the measuring apparatus 1A) under suitable conditions. It is a numerical value.

ここで、図3は、本発明者が成人男女50名の左右前額部を対象に換算散乱係数を測定して得られた、換算散乱係数と波長との関係を表すグラフである。同図には、690nmから840nmまでの波長域内に含まれる6つの波長それぞれにおいて測定された換算散乱係数の標準偏差(図中のI印)及び平均値(図中の黒丸)が示されている。同図に示されるように、換算散乱係数と波長との間には有意の相関があり、概ね、波長が大きいほど換算散乱係数が小さくなる。また、換算散乱係数が各波長間で一定の比率に従っていることがわかる。   Here, FIG. 3 is a graph showing the relationship between the converted scattering coefficient and the wavelength obtained by the inventors measuring the converted scattering coefficient for the left and right forehead portions of 50 adult men and women. In the figure, the standard deviation (I mark in the figure) and the average value (black circle in the figure) of the converted scattering coefficient measured at each of the six wavelengths included in the wavelength range from 690 nm to 840 nm are shown. . As shown in the figure, there is a significant correlation between the converted scattering coefficient and the wavelength. In general, the converted scattering coefficient decreases as the wavelength increases. Moreover, it turns out that the conversion scattering coefficient follows a fixed ratio between each wavelength.

光学特性計測部52は、換算散乱係数データベース53からデータD2を読み出し、各波長毎の換算散乱係数が比率(R1:R2:・・・:RN)に従うものと仮定する。言い換えれば、光学特性計測部52は、各波長毎の換算散乱係数をR1・μ’s,R、R2・μ’s,R、・・・、RN・μ’s,R(但し、μ’s,Rは基本となる換算散乱係数)と仮定する。そして、光学特性計測部52は、データD1に基づく複数波長λ1,λ2,・・・,λNでの時間分解計測プロファイルを光拡散方程式の解にまとめてフィッティングすることにより、基本換算散乱係数μ’s,R及び各波長毎の吸収係数μa,λ(λ=λ1,・・・,λN)を算出する。なお、この基本換算散乱係数μ’s,Rに各比率(R1:R2:・・・:RN)を乗算すると、各波長毎の換算散乱係数を算出することができる。 The optical characteristic measurement unit 52 reads the data D2 from the converted scattering coefficient database 53, and assumes that the converted scattering coefficient for each wavelength follows a ratio (R 1 : R 2 :... R N ). In other words, the optical characteristic measurement unit 52 calculates the converted scattering coefficient for each wavelength as R 1 · μ ' s, R , R 2 · μ' s, R , ..., R N · μ ' s, R (however, , Μ ′ s, R is assumed to be a basic conversion scattering coefficient). Then, the optical characteristic measurement unit 52 fits the time-resolved measurement profiles at a plurality of wavelengths λ 1 , λ 2 ,..., Λ N based on the data D1 to the solution of the light diffusion equation, thereby performing basic conversion scattering. The coefficient μ ′ s, R and the absorption coefficient μ a, λ (λ = λ 1 ,..., Λ N ) for each wavelength are calculated. Note that, when this basic conversion scattering coefficient μ ′ s, R is multiplied by each ratio (R 1 : R 2 :... R N ), a conversion scattering coefficient for each wavelength can be calculated.

より好適な形態としては、光学特性計測部52は、各波長毎の検出結果の信頼性に基づく重み付けを、各波長毎の換算散乱係数に対して更に行うとよい。一例としては、光学特性計測部52は、データD1に含まれるN個の時間分解計測波形のS/N比、及び/又は各光パルスP(1)〜P(N)に対応する検出光の強度(検出フォトン数)から各波長の測定信頼度を判断し、各波長毎の換算散乱係数を光拡散方程式に適用する際に、測定信頼度から算出される重み配分を与えるとよい。   As a more preferred form, the optical characteristic measurement unit 52 may further weight the converted scattering coefficient for each wavelength based on the reliability of the detection result for each wavelength. As an example, the optical characteristic measurement unit 52 has an S / N ratio of N time-resolved measurement waveforms included in the data D1 and / or detection light corresponding to each of the light pulses P (1) to P (N). When determining the measurement reliability of each wavelength from the intensity (number of detected photons) and applying the converted scattering coefficient for each wavelength to the light diffusion equation, a weight distribution calculated from the measurement reliability may be given.

フィッティングに用いられる光拡散方程式の解としては、例えば上述した非特許文献2に開示されているものが挙げられる。一例として、半無限スラブにおける反射型計測時(境界条件:Zero Boundary Condition)の解に換算散乱係数R1・μ’s,R、R2・μ’s,R、・・・、RN・μ’s,Rを適用すると、各波長に関して以下の式(1)が得られる。但し、F(ρ,t)、・・・、F(ρ,t)は、それぞれ波長λ1,・・・,λNにおける反射型の時間応答関数である。また、ρは光軸間距離であり、tは応答時間、cは散乱吸収体中の光速である。

Figure 2015125090
Examples of the solution of the light diffusion equation used for fitting include those disclosed in Non-Patent Document 2 described above. As an example, the reduced scattering coefficients R 1 · μ ' s, R , R 2 · μ' s, R , ..., R N · When μ ′ s, R is applied, the following equation (1) is obtained for each wavelength. However, F 1 (ρ, t) , ···, F N (ρ, t) are respectively the wavelength lambda 1, · · ·, the time response function of the reflection type in lambda N. Ρ is the distance between the optical axes, t is the response time, and c is the speed of light in the scattering medium.
Figure 2015125090

なお、本実施形態では換算散乱係数比(R1:R2:・・・:RN)が換算散乱係数データベース53に予め記憶されているが、図示しない入力装置を介して換算散乱係数比(R1:R2:・・・:RN)が測定装置1Aの外部から入力されてもよい。また、換算散乱係数比(R1:R2:・・・:RN)は、例えば、散乱吸収体B(例えば生体組織)内の構造や水分量を計測できるMRIや超音波データの利用、十分な測定精度を実現した状態での時間分解分光装置による様々な測定部位、ファイバ間距離、年代、及び性別ごとの換算散乱係数データの収集により、データベースとして好適に構築される。 In the present embodiment, the converted scattering coefficient ratio (R 1 : R 2 :...: R N ) is stored in advance in the converted scattering coefficient database 53, but the converted scattering coefficient ratio ( R 1 : R 2 :...: R N ) may be input from outside the measuring apparatus 1A. The converted scattering coefficient ratio (R 1 : R 2 :... R N ) is, for example, the use of MRI or ultrasonic data capable of measuring the structure and water content in the scattering medium B (for example, biological tissue), It is suitably constructed as a database by collecting various measurement sites, interfiber distance, age, and converted scattering coefficient data for each sex by a time-resolved spectroscopic device in a state where sufficient measurement accuracy is realized.

また、フィッティングの際には、N個の時間分解計測波形と上式(1)との差が最小に近づくように、Levenberg-Marquardt法による非線形最小二乗法などを併用して、各波長の吸収係数及び基本換算散乱係数μ’s,Rを決定する。その後、光学特性計測部52は、決定した基本換算散乱係数μ’s,R若しくは各波長の換算散乱係数R1・μ’s,R、R2・μ’s,R、・・・、RN・μ’s,Rと、各波長の吸収係数μa,λ(λ=λ1,・・・,λN)とを演算処理部54へ出力する。 Also, when fitting, the absorption of each wavelength is combined with the nonlinear least square method using the Levenberg-Marquardt method so that the difference between the N time-resolved measurement waveforms and the above equation (1) approaches the minimum. The coefficient and the basic equivalent scattering coefficient μ ′ s, R are determined. Thereafter, the optical characteristic measurement unit 52 determines the determined basic conversion scattering coefficient μ ′ s, R or the converted scattering coefficient R 1 · μ ′ s, R , R 2 · μ ′ s, R ,. N · μ ′ s, R and the absorption coefficient μ a, λ (λ = λ 1 ,..., Λ N ) of each wavelength are output to the arithmetic processing unit 54.

演算処理部54は、散乱吸収体B内部の内部情報、例えば吸収物質濃度を算出する。一例として、本実施形態の演算処理部54は、光学特性計測部52から提供された各波長の吸収係数μa,λ(λ=λ1,・・・,λN)を以下の式(2)に適用し、N個の連立方程式を解くことによって、酸素化ヘモグロビン濃度CHbO2および脱酸素化ヘモグロビン濃度CHbを算出する。なお、εHbO2,λは波長λでの酸素化ヘモグロビンのモル吸光係数であり、εHb,λは波長λでの脱酸素化ヘモグロビンのモル吸光係数である。

Figure 2015125090

更に、演算処理部54は、算出された酸素化ヘモグロビン濃度CHbO2および脱酸素化ヘモグロビン濃度CHbに基づいて、以下の式(3)より組織酸素飽和度SO2を算出してもよい。
Figure 2015125090
The arithmetic processing unit 54 calculates internal information inside the scattering medium B, for example, an absorbent concentration. As an example, the arithmetic processing unit 54 of the present embodiment calculates the absorption coefficient μ a, λ (λ = λ 1 ,..., Λ N ) of each wavelength provided from the optical characteristic measurement unit 52 by the following formula (2 ) And solve the N simultaneous equations to calculate the oxygenated hemoglobin concentration C HbO2 and the deoxygenated hemoglobin concentration C Hb . Ε HbO2, λ is the molar extinction coefficient of oxygenated hemoglobin at wavelength λ, and ε Hb, λ is the molar extinction coefficient of deoxygenated hemoglobin at wavelength λ.
Figure 2015125090

Further, the arithmetic processing unit 54 may calculate the tissue oxygen saturation SO 2 from the following equation (3) based on the calculated oxygenated hemoglobin concentration C HbO2 and deoxygenated hemoglobin concentration C Hb .
Figure 2015125090

表示部9は、光学特性計測部52及び演算処理部54において算出されたパラメータのうち任意のもの(例えば、酸素化ヘモグロビン濃度CHbO2、脱酸素化ヘモグロビン濃度CHb)が表示される。測定をする者及び被験者は、この表示部9によってパラメータの値を認識する。 The display unit 9 displays arbitrary parameters (for example, oxygenated hemoglobin concentration C HbO2 , deoxygenated hemoglobin concentration C Hb ) among the parameters calculated by the optical property measuring unit 52 and the arithmetic processing unit 54. The person who performs the measurement and the subject recognize the parameter value by the display unit 9.

以上の構成を備える測定装置1Aの動作を、本実施形態による散乱吸収体の測定方法とともに説明する。図4は、測定装置1Aの動作及び散乱吸収体測定方法を示すフローチャートである。   Operation | movement of 1 A of measuring apparatuses provided with the above structure is demonstrated with the measuring method of the scattering medium by this embodiment. FIG. 4 is a flowchart showing the operation of the measuring apparatus 1A and the scattering medium measuring method.

図4に示されるように、まず、高いS/N比が得られる安定した条件下にて複数の散乱吸収体B(例えば生体組織)を測定することにより、換算散乱係数比(R1:R2:・・・:RN)を決定する(ステップS10)。このとき、例えばMRIや超音波データを用いて、換算散乱係数比を精度良く測定するとよい。また、換算散乱係数は散乱吸収体内の構造や水分量に大きく依存するので、時間分解分光計測法を用いて様々な被験者の年齢、性別、測定部位、並びに、光入射位置Sと光検出位置Dとの距離等に応じた換算散乱係数データを収集し、複数組の換算散乱係数比を決定しておくとよい。決定された換算散乱係数比(R1:R2:・・・:RN)は、換算散乱係数データベース53に記憶されてもよく、或いは、後述する測定の際に手動で設定されてもよい。 As shown in FIG. 4, first, a reduced scattering coefficient ratio (R 1 : R) is measured by measuring a plurality of scattering absorbers B (for example, biological tissues) under stable conditions in which a high S / N ratio is obtained. 2 :...: R N ) is determined (step S10). At this time, for example, the converted scattering coefficient ratio may be accurately measured by using MRI or ultrasonic data. In addition, since the converted scattering coefficient greatly depends on the structure and water content in the scattering medium, the age, sex, measurement site, light incident position S and light detection position D of various subjects using time-resolved spectroscopic measurement method. It is preferable to collect converted scattering coefficient data corresponding to the distance to the other and determine a plurality of sets of converted scattering coefficient ratios. The determined converted scattering coefficient ratio (R 1 : R 2 :...: R N ) may be stored in the converted scattering coefficient database 53 or may be manually set during the measurement described later. .

次に、測定装置1Aの暖機運転を行い(ステップS11)、測定対象となる散乱吸収体Bの表面に、光照射用ファイバ32及び光検出用ファイバ42が取り付けられた光ファイバ保持具2を配置する(ステップS12)。   Next, warm-up operation of the measuring apparatus 1A is performed (step S11), and the optical fiber holder 2 in which the light irradiation fiber 32 and the light detection fiber 42 are attached to the surface of the scattering medium B to be measured. Arrange (step S12).

そして、複数組の換算散乱係数比の中から測定対象に適合する換算散乱係数比を選択する。このとき、換算散乱係数比の選択に換算散乱係数データベース53を利用するか否かを決定する(ステップS13)。換算散乱係数データベース53を利用する場合(ステップS13;YES)、測定対象に適合する換算散乱係数比を換算散乱係数データベース53から選択する(ステップS14)。また、換算散乱係数データベース53を利用しない場合(ステップS13;NO)、測定対象に適合する換算散乱係数比を手動にて設定する(ステップS15)。   Then, a converted scattering coefficient ratio suitable for the measurement target is selected from a plurality of sets of converted scattering coefficient ratios. At this time, it is determined whether to use the converted scattering coefficient database 53 for selection of the converted scattering coefficient ratio (step S13). When the converted scattering coefficient database 53 is used (step S13; YES), a converted scattering coefficient ratio suitable for the measurement target is selected from the converted scattering coefficient database 53 (step S14). When the converted scattering coefficient database 53 is not used (step S13; NO), a converted scattering coefficient ratio suitable for the measurement target is manually set (step S15).

続いて、互いに波長が異なる複数の光パルスP(n)を、光源部31から光照射用ファイバ32を介して散乱吸収体Bの光入射位置Sに順次入射するとともに、散乱吸収体Bの内部を伝搬した各光パルスP(n)を、光検出用ファイバ42を介して光検出部41へ導き、検出する(光検出ステップS16)。次に、光検出ステップS13での検出結果に基づいて、信号処理部51が、N個の時間分解計測波形に関するデータD1を生成する。データD1は、光学特性計測部52に提供される。   Subsequently, a plurality of light pulses P (n) having different wavelengths from each other are sequentially incident on the light incident position S of the scattering medium B from the light source unit 31 via the light irradiation fiber 32 and the inside of the scattering medium B. Each of the light pulses P (n) propagated through the light is guided to the light detection unit 41 via the light detection fiber 42 and detected (light detection step S16). Next, based on the detection result in the light detection step S13, the signal processing unit 51 generates data D1 related to N time-resolved measurement waveforms. The data D1 is provided to the optical property measurement unit 52.

続いて、光学特性計測部52は、各波長(λ1,・・・,λN)毎の換算散乱係数を、比(R1:R2:・・・:RN)に従うものとしてR1・μ’s,R、R2・μ’s,R、・・・、RN・μ’s,R(但し、μ’s,Rは基本換算散乱係数)とおく。このとき、光学特性計測部52は、各波長毎の検出結果(N個の時間分解計測波形)の信頼性に基づく重み付けを、各波長毎の換算散乱係数に対して行う(ステップS17)。一例としては、光学特性計測部52は、データD1に含まれるN個の時間分解計測波形のS/N比、及び/又は各光パルスP(1)〜P(N)に対応する検出光の強度(検出フォトン数)から各波長の測定信頼度を判断し、測定信頼度から算出される重み配分を与えるとよい。 Subsequently, the optical property measuring unit 52, the wavelengths (λ 1, ···, λ N ) the reduced scattering coefficient for each, a ratio (R 1: R 2: ··· : R N) R 1 as conforming to the • μ ′ s, R , R 2 • μ ′ s, R ,..., R N · μ ′ s, R (where μ ′ s, R is the basic conversion scattering coefficient). At this time, the optical characteristic measurement unit 52 performs weighting on the converted scattering coefficient for each wavelength based on the reliability of the detection result (N time-resolved measurement waveforms) for each wavelength (step S17). As an example, the optical characteristic measurement unit 52 has an S / N ratio of N time-resolved measurement waveforms included in the data D1 and / or detection light corresponding to each of the light pulses P (1) to P (N). It is preferable to determine the measurement reliability of each wavelength from the intensity (the number of detected photons) and give a weight distribution calculated from the measurement reliability.

続いて、光学特性計測部52は、時間分解分光計測法により基本換算散乱係数μ’s,R及び各波長毎の吸収係数μa,λ(λ=λ1,・・・,λN)を算出する(演算ステップS18)。このとき、光学特性計測部52は、データD1に基づく複数波長の時間分解計測プロファイルを光拡散方程式の解にまとめてフィッティングすることにより、基本換算散乱係数μ’s,R及び各波長毎の吸収係数μa,λ(λ=λ1,・・・,λN)を算出する。 Subsequently, the optical characteristic measurement unit 52 calculates the basic conversion scattering coefficient μ ′ s, R and the absorption coefficient μ a, λ (λ = λ 1 ,..., Λ N ) for each wavelength by time-resolved spectroscopic measurement. Calculate (calculation step S18). At this time, the optical characteristic measurement unit 52 fits the basic conversion scattering coefficient μ ′ s, R and the absorption for each wavelength by fitting the time-resolved measurement profiles of a plurality of wavelengths based on the data D1 to the solution of the light diffusion equation. The coefficients μ a, λ (λ = λ 1 ,..., Λ N ) are calculated.

続いて、演算処理部54は、散乱吸収体B内部の内部情報、例えば吸収物質濃度を算出する(ステップS19)。一例として、本実施形態の演算処理部54は、光学特性計測部52から提供された各波長の吸収係数μa,λ(λ=λ1,・・・,λN)を上記の式(2)に適用し、N個の連立方程式を解くことによって、酸素化ヘモグロビン濃度CHbO2および脱酸素化ヘモグロビン濃度CHbを算出する。また、これらの数値から、総ヘモグロビン濃度(CtHb=CHbO2+CHb)や組織酸素飽和度等を算出することもできる。 Subsequently, the arithmetic processing unit 54 calculates internal information inside the scattering medium B, for example, an absorbing substance concentration (step S19). As an example, the arithmetic processing unit 54 of the present embodiment calculates the absorption coefficient μ a, λ (λ = λ 1 ,..., Λ N ) of each wavelength provided from the optical characteristic measurement unit 52 from the above equation (2). ) And solve the N simultaneous equations to calculate the oxygenated hemoglobin concentration C HbO2 and the deoxygenated hemoglobin concentration C Hb . From these numerical values, the total hemoglobin concentration (C tHb = C HbO 2 + C Hb ), tissue oxygen saturation, etc. can also be calculated.

以上に説明した本実施形態の測定装置1A及び測定方法によって得られる効果について説明する。前述したように、本実施形態では、複数の光パルスP(n)の波長間での換算散乱係数比(R1:R2:・・・:RN)に関するデータD2が予め用意される。図3に示されたように、換算散乱係数は波長と一定の相関があるので、複数波長間での換算散乱係数比(R1:R2:・・・:RN)は、複数回の測定を通じてほぼ一定とみなされるからである。そして、光学特性計測部52及び演算ステップS18において、各波長毎の換算散乱係数が換算散乱係数比(R1:R2:・・・:RN)に従うものとして、データD1に基づく複数波長の時間分解計測プロファイルを光拡散方程式の解にまとめてフィッティングすることにより、基本換算散乱係数μ’s,R及び波長毎の吸収係数μa,λ(λ=λ1,・・・,λN)を算出する。このような方式によれば、予め換算散乱係数比(R1:R2:・・・:RN)に関するデータを好条件下で精度良く測定しておくことができ、また複数の値を同時にフィッティングするのでフィッティング精度も高まる。従って、各波長毎に光拡散理論を適用して換算散乱係数及び吸収係数を算出する方法と比較して、換算散乱係数及び吸収係数の算出精度を高めることができる。 The effects obtained by the measurement apparatus 1A and the measurement method of the present embodiment described above will be described. As described above, in the present embodiment, data D2 relating to the reduced scattering coefficient ratio (R 1 : R 2 :... RN ) between wavelengths of the plurality of light pulses P (n) is prepared in advance. As shown in FIG. 3, since the converted scattering coefficient has a certain correlation with the wavelength, the converted scattering coefficient ratio (R 1 : R 2 :... R N ) between a plurality of wavelengths is a plurality of times. This is because it is considered almost constant throughout the measurement. Then, the optical characteristic measuring section 52 and the calculation step S18, the reduced scattering coefficient for each wavelength is reduced scattering coefficient ratio (R 1: R 2: ··· : R N) as conforming to, a plurality of wavelengths based on the data D1 By fitting the time-resolved measurement profile together with the solution of the light diffusion equation, the basic conversion scattering coefficient μ ' s, R and the absorption coefficient for each wavelength μ a, λ (λ = λ 1 , ..., λ N ) Is calculated. According to such a method, it is possible to accurately measure data relating to the reduced scattering coefficient ratio (R 1 : R 2 :...: R N ) in advance under favorable conditions, and to simultaneously calculate a plurality of values. Since fitting is performed, fitting accuracy is also increased. Therefore, the calculation accuracy of the converted scattering coefficient and the absorption coefficient can be increased as compared with the method of calculating the converted scattering coefficient and the absorption coefficient by applying the light diffusion theory for each wavelength.

更に、本実施形態の測定装置1A及び測定方法によれば、光入射位置Sと光検出位置Dとの間の正確な距離が不明であるような場合においても、換算散乱係数比(R1:R2:・・・:RN)を利用することで、従来よりも吸収係数μa,λ(λ=λ1,・・・,λN)を正確に測定することができ、さらに酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度、総ヘモグロビン濃度、及び組織酸素飽和度を正確に測定することができる。 Furthermore, according to the measurement apparatus 1A and the measurement method of the present embodiment, even when the exact distance between the light incident position S and the light detection position D is unknown, the converted scattering coefficient ratio (R 1 : R 2: ···: by using R N), the absorption coefficient than the conventional μ a, λ (λ = λ 1, ···, λ N) can be accurately measured, further oxygenation Hemoglobin concentration, deoxygenated hemoglobin concentration, total hemoglobin concentration, and tissue oxygen saturation can be accurately measured.

また、本実施形態のように、N個の時間分解計測波形の信頼性に基づく重み付けが、フィッティングに用いられる各波長毎の換算散乱係数に対して行われてもよい。光検出部41(光検出ステップS16)において光が検出される際には、検出されたフォトン数やS/N比などによって、N個の時間分解計測波形の信頼性にばらつきが生じることがある。そのような場合であっても、信頼性を考慮した重み付けがなされることにより、S/N比が低い波長の影響を抑え、換算散乱係数及び吸収係数の算出精度を更に高めることができる。   Further, as in the present embodiment, weighting based on the reliability of N time-resolved measurement waveforms may be performed on the converted scattering coefficient for each wavelength used for fitting. When light is detected by the light detection unit 41 (light detection step S16), the reliability of the N time-resolved measurement waveforms may vary depending on the number of detected photons, the S / N ratio, and the like. . Even in such a case, weighting in consideration of reliability can suppress the influence of a wavelength having a low S / N ratio, and can further increase the calculation accuracy of the converted scattering coefficient and the absorption coefficient.

ここで、本実施形態の測定装置1A及び測定方法を用いて、複数の被験者の換算散乱係数、酸素化ヘモグロビン濃度、脱酸素化ヘモグロビン濃度、組織酸素飽和度等を測定した結果について説明する。   Here, the results of measuring the conversion scattering coefficient, oxygenated hemoglobin concentration, deoxygenated hemoglobin concentration, tissue oxygen saturation, etc. of a plurality of subjects using the measurement apparatus 1A and the measurement method of the present embodiment will be described.

図5は、図3に示される換算散乱係数の波長依存性のうち、波長λ1=759nm、波長λ2=793nm、波長λ3=834nmにおいて確認された換算散乱係数比R1:R2:R3=1.0366:1.0000:0.9595)を用い、散乱吸収体であるヒト前額部を測定して得られた換算散乱係数を示す図表である。なお、図5には、比較例として、従来の測定方法(各波長毎に換算散乱係数を決定)によって得られた数値も併せて示されている。図5を参照すると、本実施形態によって得られる換算散乱係数の比は、上記した換算散乱係数比(R1:R2:R3)に従っていることがわかる。 FIG. 5 shows the converted scattering coefficient ratios R 1 : R 2 confirmed at the wavelength λ 1 = 759 nm, the wavelength λ 2 = 793 nm, and the wavelength λ 3 = 834 nm among the wavelength dependence of the converted scattering coefficient shown in FIG. R 3 = 1.0366: 1.0000: 0.9595), and is a graph showing the converted scattering coefficient obtained by measuring the human forehead part which is a scattering medium. In addition, in FIG. 5, the numerical value obtained by the conventional measuring method (The conversion scattering coefficient is determined for every wavelength) is also shown as a comparative example. Referring to FIG. 5, it can be seen that the ratio of the converted scattering coefficient obtained by the present embodiment follows the above-described converted scattering coefficient ratio (R 1 : R 2 : R 3 ).

また、図6(a)及び図6(b)は、本実施形態の測定装置1A及び測定方法によって測定された各波長毎の吸収係数及び換算散乱係数と、従来の方法によって測定された比較例としての各波長毎の吸収係数及び換算散乱係数とを示す図表である。更に、図6(c)は、図6(a)及び図6(b)の結果から算出された、酸素化ヘモグロビン濃度CHbO2、脱酸素化ヘモグロビン濃度CHb、総ヘモグロビン濃度CtHb、及び組織酸素飽和度SO2を示す図表である。なお、図6に記載された各数値は(平均値)±(標準偏差)を表している。 6A and 6B show an absorption coefficient and a converted scattering coefficient for each wavelength measured by the measuring apparatus 1A and the measuring method of the present embodiment, and a comparative example measured by a conventional method. It is a graph which shows the absorption coefficient and conversion scattering coefficient for each wavelength as. Further, FIG. 6C shows oxygenated hemoglobin concentration C HbO2 , deoxygenated hemoglobin concentration C Hb , total hemoglobin concentration C tHb , and tissue calculated from the results of FIGS. 6A and 6B. is a table showing the oxygen saturation SO 2. In addition, each numerical value described in FIG. 6 represents (average value) ± (standard deviation).

図6を参照すると、本実施形態の測定装置1A及び測定方法によって得られた数値の標準偏差は、比較例の数値の標準偏差よりも格段に小さいことがわかる。このことから、本実施形態の測定装置1A及び測定方法によれば、換算散乱係数及び吸収係数の算出精度が高められることがわかる。   Referring to FIG. 6, it can be seen that the standard deviation of the numerical values obtained by the measuring apparatus 1A and the measuring method of this embodiment is much smaller than the standard deviation of the numerical values of the comparative example. From this, it can be seen that according to the measurement apparatus 1A and the measurement method of the present embodiment, the calculation accuracy of the converted scattering coefficient and the absorption coefficient can be improved.

図7及び図8は、前額部測定時の計測時間を100msから5000msまで変化させて得られた、吸収係数、換算散乱係数、及びヘモグロビン量(総ヘモグロビン濃度CtHb及び組織酸素飽和度SO2)の変動係数値を示す図表である。図7は従来の方法により得られた変動係数値を示しており、図8は本実施形態の測定装置1A及び測定方法によって得られた変動係数値を示している。なお、換算散乱係数比R1:R2:R3は上記と同一である。通常、変動係数値は計測時間を長くするほど小さくなる(すなわち測定精度が高まる)が、図7と図8とを比較すると明らかなように、本実施形態の測定装置1A及び測定方法では、同じ計測時間で比較した場合、従来の方法よりも変動係数値が小さくなっている。言い換えれば、或る測定精度を得るための計測時間を、本実施形態の測定装置1A及び測定方法により短縮することができる。 7 and 8 show the absorption coefficient, the converted scattering coefficient, and the amount of hemoglobin (total hemoglobin concentration C tHb and tissue oxygen saturation SO 2) obtained by changing the measurement time during the measurement of the forehead from 100 ms to 5000 ms. It is a graph which shows the variation coefficient value of). FIG. 7 shows variation coefficient values obtained by the conventional method, and FIG. 8 shows variation coefficient values obtained by the measuring apparatus 1A and the measurement method of the present embodiment. Note that the reduced scattering coefficient ratio R 1 : R 2 : R 3 is the same as described above. Normally, the coefficient of variation value decreases as the measurement time increases (that is, the measurement accuracy increases). As is apparent from a comparison between FIG. 7 and FIG. 8, the measurement apparatus 1A and measurement method of the present embodiment are the same. When compared by measurement time, the coefficient of variation value is smaller than that of the conventional method. In other words, the measurement time for obtaining a certain measurement accuracy can be shortened by the measurement apparatus 1A and the measurement method of the present embodiment.

図9及び図10は、血液ファントムを用いて各波長(689nm、732nm、759nm)毎の吸収係数及び換算散乱係数を測定した結果を示すグラフである。図9及び図10において、横軸は時間を表し、縦軸は吸収係数(単位:cm-1)及び換算散乱係数(単位:cm-1)を表している。また、図9は従来の方法による結果を示しており、図10は本実施形態の測定装置1A及び測定方法による結果を示している。図中の時刻t1は血液ファントム中の酸素を消費させるためにドライイースト菌を投入したタイミングを示し、時刻t2はアッテネータを変更したタイミングを示し、時刻t3はアッテネータを更に変更したタイミングを示す。 9 and 10 are graphs showing the results of measuring the absorption coefficient and the reduced scattering coefficient for each wavelength (689 nm, 732 nm, and 759 nm) using a blood phantom. 9 and 10, the horizontal axis represents time, and the vertical axis represents the absorption coefficient (unit: cm −1 ) and the reduced scattering coefficient (unit: cm −1 ). FIG. 9 shows the result of the conventional method, and FIG. 10 shows the result of the measuring apparatus 1A and the measuring method of the present embodiment. Time t 1 in the figure shows the timing when dry yeast was added to consume oxygen in the blood phantom, time t 2 shows the timing when the attenuator was changed, and time t 3 shows the timing when the attenuator was further changed. .

また、図11及び図12は、ヒト前腕部の各波長(689nm、732nm、759nm)毎の吸収係数及び換算散乱係数を測定した結果を示すグラフである。図11及び図12において、横軸は時間を表し、縦軸は吸収係数(単位:cm-1)及び換算散乱係数(単位:cm-1)を表している。また、図11は従来の方法による結果を示しており、図12は本実施形態の測定装置1A及び測定方法による結果を示している。図中の時刻t4は前腕部にカフを装着したタイミングを示し、時刻t5はカフを外したタイミングを示す。 11 and 12 are graphs showing the results of measuring the absorption coefficient and the converted scattering coefficient for each wavelength (689 nm, 732 nm, and 759 nm) of the human forearm. 11 and 12, the horizontal axis represents time, and the vertical axis represents the absorption coefficient (unit: cm −1 ) and the reduced scattering coefficient (unit: cm −1 ). FIG. 11 shows the result of the conventional method, and FIG. 12 shows the result of the measuring apparatus 1A and the measuring method of the present embodiment. Time t 4 in the figure indicates the timing when the cuff is attached to the forearm, and time t 5 indicates the timing when the cuff is removed.

図9及び図10に示される血液ファントムを用いた測定では、生体とは異なり、組織酸素飽和度SO2が0%〜100%と広い範囲におよぶ。従って、生体と比べてS/N比が低くなる傾向がある。また、図11及び図12に示される前腕部の測定では、カフを装着してヘモグロビン量に急激な変化(脱酸素化)を与えることにより、689nmの吸収係数を急激に増加させ、S/N比を低下させている。図9〜図12を参照すると、これらのようにS/N比が低い状態においても、従来の方法(図9、図11)と比較して、本実施形態の測定装置1A及び測定方法(図10、図12)ではグラフの振幅が小さく、高い精度で安定的に測定できていることがわかる。また、これにより、測定時間の短縮も可能となる。 In the measurement using the blood phantom shown in FIGS. 9 and 10, the tissue oxygen saturation SO 2 is in a wide range of 0% to 100%, unlike a living body. Therefore, the S / N ratio tends to be lower than that of a living body. In the measurement of the forearm shown in FIG. 11 and FIG. 12, the absorption coefficient at 689 nm is increased abruptly by attaching a cuff and giving a rapid change (deoxygenation) in the amount of hemoglobin. The ratio is lowered. Referring to FIGS. 9 to 12, even in the state where the S / N ratio is low as described above, the measurement apparatus 1A and the measurement method (FIG. 9) of this embodiment are compared with the conventional methods (FIGS. 9 and 11). 10 and FIG. 12), it can be seen that the amplitude of the graph is small and the measurement can be stably performed with high accuracy. This also makes it possible to shorten the measurement time.

1A…散乱吸収体測定装置、2…光ファイバ保持具、5…演算部、9…表示部、10…制御部、31…光源部、32…光照射用ファイバ、41…光検出部、42…光検出用ファイバ、51…信号処理部、52…光学特性計測部、53…換算散乱係数データベース、54…演算処理部、B…散乱吸収体、D…光検出位置、P(n)…光パルス、S…光入射位置。   DESCRIPTION OF SYMBOLS 1A ... Scattering absorber measuring apparatus, 2 ... Optical fiber holder, 5 ... Calculation part, 9 ... Display part, 10 ... Control part, 31 ... Light source part, 32 ... Light irradiation fiber, 41 ... Light detection part, 42 ... Optical detection fiber, 51... Signal processing unit, 52... Optical characteristic measurement unit, 53... Converted scattering coefficient database, 54 .. arithmetic processing unit, B .. scattering absorber, D ... light detection position, P (n). , S: Light incident position.

Claims (4)

互いに波長が異なる複数の光パルスを散乱吸収体に入射する光入射部と、
前記散乱吸収体の内部を伝搬した各光パルスを検出する光検出部と、
前記光検出部での検出結果に基づいて、時間分解分光計測法により換算散乱係数及び吸収係数を算出する演算部と、
を備え、
前記演算部は、前記複数の光パルスの波長間での換算散乱係数の比に関するデータを予め有しており、各波長毎の換算散乱係数が前記換算散乱係数の比に従うものとして、前記検出結果に基づく複数波長の時間分解計測プロファイルを光拡散方程式の解にまとめてフィッティングすることにより前記換算散乱係数及び前記吸収係数を算出することを特徴とする、散乱吸収体測定装置。
A light incident part that impinges on the scattering medium a plurality of light pulses having different wavelengths from each other;
A light detection unit for detecting each light pulse propagated inside the scattering medium;
Based on the detection result in the light detection unit, a calculation unit that calculates a reduced scattering coefficient and an absorption coefficient by a time-resolved spectroscopic measurement method,
With
The calculation unit has data related to the ratio of the converted scattering coefficient between wavelengths of the plurality of light pulses in advance, and the detection result is assumed that the converted scattering coefficient for each wavelength follows the ratio of the converted scattering coefficient. A scattering absorber measuring apparatus, wherein the converted scattering coefficient and the absorption coefficient are calculated by fitting together time-resolved measurement profiles of a plurality of wavelengths based on the above to a solution of a light diffusion equation.
前記演算部は、各波長毎の前記検出結果の信頼性に基づく重み付けを、前記フィッティングに用いられる各波長毎の前記換算散乱係数に対して行うことを特徴とする、請求項1に記載の散乱吸収体測定装置。   2. The scattering according to claim 1, wherein the calculation unit performs weighting based on reliability of the detection result for each wavelength with respect to the converted scattering coefficient for each wavelength used for the fitting. Absorber measuring device. 互いに波長が異なる複数の光パルスを散乱吸収体に入射し、前記散乱吸収体の内部を伝搬した各光パルスを検出する光検出ステップと、
前記光検出ステップでの検出結果に基づいて、時間分解分光計測法により換算散乱係数及び吸収係数を算出する演算ステップと、
を備え、
前記演算ステップでは、前記複数の光パルスの波長間での換算散乱係数の比に関するデータが予め用意されており、各波長毎の換算散乱係数が前記換算散乱係数の比に従うものとして、前記検出結果に基づく複数波長の時間分解計測プロファイルを光拡散方程式の解にまとめてフィッティングすることにより前記換算散乱係数及び前記吸収係数を算出することを特徴とする、散乱吸収体測定方法。
A light detection step of entering a plurality of light pulses having different wavelengths from each other into the scattering medium and detecting each light pulse propagating through the scattering medium; and
Based on the detection result in the light detection step, a calculation step of calculating a reduced scattering coefficient and an absorption coefficient by a time-resolved spectroscopic method,
With
In the calculation step, data on the ratio of the converted scattering coefficient between the wavelengths of the plurality of light pulses is prepared in advance, and the detection result is assumed that the converted scattering coefficient for each wavelength follows the ratio of the converted scattering coefficient. A method for measuring a scattering medium, wherein the reduced scattering coefficient and the absorption coefficient are calculated by fitting together time-resolved measurement profiles of a plurality of wavelengths based on the above to a solution of a light diffusion equation.
前記演算ステップにおいて、各波長毎の前記検出結果の信頼性に基づく重み付けが、前記フィッティングに用いられる各波長毎の前記換算散乱係数に対して行われることを特徴とする、請求項3に記載の散乱吸収体測定方法。   The weighting based on the reliability of the detection result for each wavelength is performed on the converted scattering coefficient for each wavelength used for the fitting in the calculation step. Scattering absorber measurement method.
JP2013270885A 2013-12-27 2013-12-27 Scattering absorber measuring apparatus and scattering absorber measuring method Active JP6043276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013270885A JP6043276B2 (en) 2013-12-27 2013-12-27 Scattering absorber measuring apparatus and scattering absorber measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013270885A JP6043276B2 (en) 2013-12-27 2013-12-27 Scattering absorber measuring apparatus and scattering absorber measuring method

Publications (3)

Publication Number Publication Date
JP2015125090A true JP2015125090A (en) 2015-07-06
JP2015125090A5 JP2015125090A5 (en) 2016-11-04
JP6043276B2 JP6043276B2 (en) 2016-12-14

Family

ID=53535881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013270885A Active JP6043276B2 (en) 2013-12-27 2013-12-27 Scattering absorber measuring apparatus and scattering absorber measuring method

Country Status (1)

Country Link
JP (1) JP6043276B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208010A1 (en) * 2015-06-24 2016-12-29 浜松ホトニクス株式会社 Scattering absorber measurement device and scattering absorber measurement method
JP2019525801A (en) * 2016-07-07 2019-09-12 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ エジンバラThe University Court Of The University Of Edinburgh Imaging method and imaging apparatus
CN110603433A (en) * 2017-05-05 2019-12-20 3M创新有限公司 Scatterometry system and method of use
JP2020030105A (en) * 2018-08-22 2020-02-27 浜松ホトニクス株式会社 Phantom and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287755A (en) * 1998-04-02 1999-10-19 Hamamatsu Photonics Kk Method and device for measuring concentration of absorption constituent of scattered absorption body
JP2000146828A (en) * 1998-11-05 2000-05-26 Hamamatsu Photonics Kk Method and device for measure internal information on scatter absorber
JP2006521869A (en) * 2003-04-01 2006-09-28 グルコン インク Photoacoustic analysis evaluation method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287755A (en) * 1998-04-02 1999-10-19 Hamamatsu Photonics Kk Method and device for measuring concentration of absorption constituent of scattered absorption body
JP2000146828A (en) * 1998-11-05 2000-05-26 Hamamatsu Photonics Kk Method and device for measure internal information on scatter absorber
JP2006521869A (en) * 2003-04-01 2006-09-28 グルコン インク Photoacoustic analysis evaluation method and apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016042745; SUN, M. and CHEN, N.: 'Non-invasive measurement of blood glucose level by time-resolved transmission spectroscopy: A feasib' Optics Communications Vol. 285, 2012, pp. 1608-1612 *
JPN7016003349; CUBEDDU, R. et al.: 'Breast lesion characterization by a novel nonlinear perturbation approach' Proc. of SPIE Vol. 5138, 2003, pp. 23-28 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208010A1 (en) * 2015-06-24 2016-12-29 浜松ホトニクス株式会社 Scattering absorber measurement device and scattering absorber measurement method
US10422745B2 (en) 2015-06-24 2019-09-24 Hamamatsu Photonics K.K. Scattering absorber measurement device and scattering absorber measurement method
JP2019525801A (en) * 2016-07-07 2019-09-12 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ エジンバラThe University Court Of The University Of Edinburgh Imaging method and imaging apparatus
JP7150694B2 (en) 2016-07-07 2022-10-11 ザ ユニバーシティー コート オブ ザ ユニバーシティー オブ エジンバラ Device operating method, device and computer program
CN110603433A (en) * 2017-05-05 2019-12-20 3M创新有限公司 Scatterometry system and method of use
JP2020030105A (en) * 2018-08-22 2020-02-27 浜松ホトニクス株式会社 Phantom and method of manufacturing the same
JP7057254B2 (en) 2018-08-22 2022-04-19 浜松ホトニクス株式会社 Phantom and its manufacturing method

Also Published As

Publication number Publication date
JP6043276B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP4701468B2 (en) Biological information measuring device
KR102256808B1 (en) Non-invasive blood analysis
US10912504B2 (en) Near-infrared spectroscopy and diffuse correlation spectroscopy device and methods
CN101981422B (en) Method for non-invasive optic determination of temperature of medium
JP5527658B2 (en) Scattering absorber measurement method and apparatus
US20090204366A1 (en) Apparatus and method for non-invasive measurement of the concentration of a substance in subject&#39;s blood
US20090201490A1 (en) Apparatus and method using light retro-reflected from a retina to non-invasively measure the blood concentration of a substance
US9259486B2 (en) Method and system for calculating a quantification indicator for quantifying a dermal reaction on the skin of a living being
JP2018519889A (en) Photoelectric volume pulse wave recording device
JP6043276B2 (en) Scattering absorber measuring apparatus and scattering absorber measuring method
US20190053745A1 (en) Combined pulse oximetry and diffusing wave spectroscopy system and control method therefor
WO2016208010A1 (en) Scattering absorber measurement device and scattering absorber measurement method
US6704110B2 (en) Method and apparatus for measuring internal information of scattering medium
JP6125821B2 (en) Oxygen saturation measuring apparatus and oxygen saturation calculating method
EP3756545B1 (en) Method of measuring blood oxygen saturation
RU2633494C2 (en) Biosensor for non-invasive optical monitoring of biological tissues pathology
US11872022B2 (en) System and method for an optical blood flow measurement
US20230148312A1 (en) Device for non-invasive blood glucose concentration measurement
JP3524976B2 (en) Concentration measuring device
Ntziachristos et al. Oximetry based on diffuse photon density wave differentials
WO2015037446A1 (en) Measurement method and measurement device for brown adipose tissue
Fuglerud et al. Feasibility of supercontinuum sources for use in glucose sensing by absorption spectroscopy
Eskandari et al. Ideal light scatterer for near-infrared spectroscopy tissue mimicking phantoms
KR20210083085A (en) Method and apparatus for measuring blood component using self-reference point establishment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160914

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160914

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161111

R150 Certificate of patent or registration of utility model

Ref document number: 6043276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250