JPH0330857B2 - - Google Patents

Info

Publication number
JPH0330857B2
JPH0330857B2 JP56086184A JP8618481A JPH0330857B2 JP H0330857 B2 JPH0330857 B2 JP H0330857B2 JP 56086184 A JP56086184 A JP 56086184A JP 8618481 A JP8618481 A JP 8618481A JP H0330857 B2 JPH0330857 B2 JP H0330857B2
Authority
JP
Japan
Prior art keywords
toner
styrene
charge
amount
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56086184A
Other languages
Japanese (ja)
Other versions
JPS57201244A (en
Inventor
Taku Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56086184A priority Critical patent/JPS57201244A/en
Publication of JPS57201244A publication Critical patent/JPS57201244A/en
Publication of JPH0330857B2 publication Critical patent/JPH0330857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/083Magnetic toner particles
    • G03G9/0839Treatment of the magnetic components; Combination of the magnetic components with non-magnetic materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09725Silicon-oxides; Silicates

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電子写真等に用いる磁性トナーに関す
る。 電子写真法は米国特許第2297691号明細書に開
示されて以来多くの研究が為されて来た。中でも
特開昭54−42141号広報に開示されたいわゆるジ
ヤンピング現像法の改良された方法は電子写真の
多くの難点を克服する新規なプロセスとして注目
されているが、この現像法は現像スリーブとトナ
ーが接触摩擦帯電することにより潜像を現像する
ための荷電をトナーに与える方法を含むが、トナ
ーの帯電極性、帯電量はこの現像法の大きな変動
要因となつている。トナーの極性の転換は一般に
それ程起こり得ないが、帯電量は雰囲気及びそれ
に付随するトナーやスリーブの状態に応じて変化
する。その結果は主としてラインのシヤープネ
ス、画像濃度、文字周辺のトビチリなどとなつて
現われるが、トナーの持つ帯電量が減少してくる
とこれらは悪い方向になる。またトナーの持つ帯
電量が増大するとスリーブ上のコート層が厚くな
り異常な高濃度を惹起してカブリなどが生じ易く
なる。また濃度のムラも生じ、総じて画像は劣悪
なものになる。以上の如く、この現像法に於いて
は、トナーの帯電量は安定していることが必要で
ある。本発明者の検討の結果、この安定性は多く
を空気中の水分含有量に依存していることを見出
した。さらに別の検討の結果、トナーの帯電量は
直接に測定されないがスリーブ上にトナーを150
〜200μにコートした表面電位を測定して−5〜
−10V程度で充分な画像性を得られ、一般的な条
件下に於いては−20〜−30Vの電位であるところ
から、帯電量の低減する方向への変動は画像性へ
の影響の度合が帯電量の増大する方向への変動に
比べ小さなものであることも見出している。注目
すべきはトナーの帯電量のより増大する方向への
変動であり、適正な帯電量を維持させる方策が今
なお望まれている。 従つて本発明の目的はかかる現像法に於ける帯
電量が極めて安定しているトナーを提供すること
である。 さらに本発明の目的は安定した良好な画像が常
に得られるトナーを提供することである。 本発明の目的はアルカリ金属の酸化物及び酸化
硅素から形成された硅酸塩を主として含む非結晶
性無機固体物質を表面に有する磁性粉を含む電子
写真用トナーにより達成される。本発明者の検討
に於いて、トナーの帯電性は大きく2つの要素で
評価され、1つは帯電電荷の能力であり今1つは
帯電電荷の保持能力である。現像に寄与すべき帯
電性は多くの場合後者に依存していると見ること
も出来る。即ちトナーが帯電をしてから現像及び
転写工程に至るまでに様々な時間的推移があると
考えることが妥当だからである。もちろん帯電の
能力も重要な因子であるが、帯電能力のないトナ
ーや帯電してから直ちに現像に供される部分を除
き、その影響は小さいと考えて良いと思われる。
帯電の能力はトナーを構成する樹脂の抵抗により
殆んど定まるが保持能力はこの樹脂と及び添加さ
れる染顔料、各種添加剤により異なつて来る。従
来この保持能力の制御はカーボンブラツクなどの
低抵抗な導電物質の少量添加あるいはマグネタイ
トなどの高抵抗な導電物質の比較的多量な添加に
より行われて来た。然し例えばカーボンブラツク
などの如き低抵抗の導電物質の添加は実用上の使
用量の範囲が狭く、樹脂に対してたかだか十数部
程度に抑えねばならない。過剰の添加はトナーの
帯電電荷保持能力の異常な低下を来たし、雰囲気
の微小な変動の影響が敏感に現われる。適正な添
加量は樹脂に対し数%という範囲内に存在し、樹
脂中への分散がより難しいものとなる。この結果
トナー粒子毎の差が極めて大きく拡大され現像性
に差を生じ結果として画像等に極めて悪い影響を
与えるに至る。また例えばマグネタイトなどの高
抵抗な導電物質の比較的多量の添加による制御は
カーボンブラツクなどの低抵抗物質の添加による
制御に比べ添加量の許容範囲は十数部程度まで拡
大されることによりトナー粒子間の現像性に著し
い差は生じ難くなる。この結果画像性は極めて安
定したものとなることが期待される。然し多大量
の顔料の添加はトナーの今一つの要求特性である
ところの定着性に極めて劣悪な影響を与えてしま
う。例えば熱ローラー定着に於いて樹脂100部に
対しマグネタイト10部の添加は凡そ定着温度を5
〜10度上昇させると云われ、また圧力定着に於い
ては定着線圧を凡そ10Kg増加するといわれてい
る。従つてトナーの帯電電荷保持能力の制御の為
に多量の高抵抗顔料を添加せしめることは得策で
はない。また、特開昭54−139544号公報に、予め
磁性粉の表面に粉末状アルミナまたは酸化ケイ素
の如き分散性向上剤を高速ミキシングにより付着
処理せしめ、処理された磁性粉と樹脂とを溶融混
練したのちに粉砕して磁性トナーを生成する方法
が提案されている。しかしながら、該方法は、磁
性粉の流動性を良くして、樹脂内における磁性粉
の分散性を向上させ、磁性粉の各粒子が互に接触
して連鎖状になることを防止して、所望の高電気
抵抗値を有する磁性トナーを調整する方法であ
り、これに対して、本発明は磁性粉の表面をアル
カリ金属の酸化物及び酸化硅素から形成された硅
酸塩を含有する非結晶性無機固体物質で処理した
磁性粉を使用することになり磁性トナーの帯電電
荷保持能力を抑制するものであり、本発明と目的
が相違している。本発明者は磁性粉を比較的、低
抵抗化処理をすることを試みて鋭意検討したとこ
ろ、硅酸塩を主として含む非結晶性無機固体物質
を表面にコーテイングしたマグネタイト等の磁性
粉を用いることにより極めて安定した帯電保持能
力と比較的広い添加量の有効範囲を有し、極端な
多量の磁性粉の添加を要しない磁性トナーを得る
に至つた。 硅酸塩を主として含む非結晶性無機固体物質と
は、主としてアルカリ金属の酸化物と酸化硅素か
らなる非晶質の固体物質で、アルカリ金属として
ナトリウム、カリウムなどが用いられる。この両
者の混合比はアルカリ金属の酸化物1モルに対し
酸化硅素が2〜4モルであるように選ぶべきで、
好ましくは2.1〜3.5の範囲が良いようである。酸
化硅素のモル比が減少すると水の吸着が過多とな
り本発明の目的にそぐわなくなり、逆に増加する
と硅酸イオンが縮合して本発明の磁性体の処理を
実施する上で技術的に困難なものとなる。 磁性粉の表面を、硅酸塩を含有する非結晶性無
機固体物質でコーテイングする方法は、基本的に
は水溶液として磁性粉を投入し蒸発乾固せしめる
方法が簡便である。 磁性粉に対する上記無機固体物質の処理量は10
重量%以下で良く、好ましくは0.01〜5重量%で
最も望ましい結果を得る。 本発明で使用する磁性粉としては強磁性の元素
及びこれらを含む合金、化合物などであり、マグ
ネタイト、ヘマタイト、フエライトなどの鉄、コ
バルト、ニツケル、マンガンなどの合金や化合
物、その他の強磁性合金など従来より磁性材料と
して知られているものがある。通常使用する磁性
粉の大きさとしては平均粒径が0.05〜5μ好ましく
は0.1〜1μが良い。前記処理を施した磁性粉は、
現像剤中に10〜50重量%、好ましくは15〜35重量
%含有させるのが良い。トナーの結着樹脂として
は公知のものがすべて使用可能であるが、例えば
ポリスチレン、ポリP−クロルスチレン、ポリビ
ニルトルエンなどのスチレン及びその置換体の単
重合体、スチレンP−−クロルスチレン共重合
体、スチレン−プロピレン共重合体、スチレン−
ビニルトルエン共重合体、スチレン−ビニルナフ
タリン共重合体、スチレン−アクリル酸メチル共
重合体、スチレン−アクリル酸エチル共重合体、
スチレン−アクリル酸ブチル共重合体、スチレン
−アクリル酸オクチル共重合体、スチレン−メタ
アクリル酸メチル共重合体、スチレン−メタアク
リル酸エチル共重合体、スチレン−メタアクリル
酸ブチル共重合体、スチレン−αクロルメタアク
リル酸メチル共重合体、スチレン−アクリロニト
リル共重合体、スチレン−ビニルメチルエーテル
共重合体、スチレン−ビニルエチルエーテル共重
合体、スチレン−ビニルメチルケトン共重合体、
スチレン−ブタジエン共重合体、スチレン−イソ
プレン共重合体、スチレン−アクリロニトリル−
インデン共重合体、スチレン−マレイン酸共重合
体、スチレン−マレイン酸エステル共重合体など
のスチレン系共重合体、ポリメチルメタクリレー
ト、ポリブチルメタクリレート、ポリ塩化ビニ
ル、ポリ酢酸ビニル、ポリエチレン、ポリプロピ
レン、ポリエステル、ポリウレタン、ポリアミ
ド、エポキシ樹脂、ポリビニルブチラール、ポリ
アマイド、ポリアクリル酸樹脂、ロジン、変性ロ
ジン、テルペン樹脂、フエノール樹脂、脂肪族又
は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素
化パラフイン、パラフインワツクスなどが単独或
いは混合して使用できる。 さらにトナー中には着色調色、荷電制御等の目
的で、カーボンブラツク等各種染顔料等が含有さ
れてもよい。 本発明のトナーの実施の態様は以下の如くであ
る。 実施例及び比較例 ケイ砂150gとソーダ灰80gの混合物を1300〜
1500℃程度まで加熱熔融したものの生成物を低圧
オートクレーブ処理し100水溶液とする。この
水溶液1中に50gの市販のマグネタイト(戸
田、EPT・500)を入れ常温に於いて約3時間に
わたり撹拌したのち60℃で乾燥する。この乾燥は
指で粒子をある程度ほぐせるぐらいで充分であ
る。 この処理マグネタイト50部をポリスチレン−ブ
チルメタクリレート(マイオナツクX−211)100
部とともに溶融混練し常法により5〜30μのトナ
ーを得た。このトナー100部に対し0.5部の疎水性
コロイド状シリカを乾式混合したものを市販の普
通紙複写機(キヤノン製NP−200)に適用し25
℃に於いて相対湿度が5%〜90%の環境下で複写
画像を得た。また各環境下での現像スリーブ上の
表面電位を測定した。この時併せて何らの処理も
施さないマグネタイトを用いた同一処方の比較ト
ナーAも評価の対照としている。さらに、処理を
施さないマグネタイト100重量部と微粉末酸化ケ
イ素0.5重量部とを高速ミキシングして調整した
磁性粉50重量部とスチレン−ブチルメタクリレー
ト100重量部とを使用して比較トナーBを調整し、
評価した。 本発明のトナーは前述の現像スリーブ上の電位
測定に於いて高湿度下で−10V程度、低湿度下に
於いてもたかだか−40V程度に止まり、何らの処
理も行われないマグネタイトを同量用いた比較ト
ナーの場合には高湿度下で−15V程度低湿度下に
於いて−65V程度まで上昇することから見て極め
て効果のあることがわかる。また、比較トナーB
の場合においては、高湿度下で−17V程度であ
り、低湿度下に於いて−70V程度まで上昇するこ
とが知見された。もちろんこのような現像スリー
ブ電位はトナーの帯電能力若しくは帯電保持能力
の一面を伺はせるに過ぎないが、結果として画像
性に於いての評価でもこの安定な傾向はよりはつ
きりと示された。 以上の結果を第1表に示す。
The present invention relates to a magnetic toner used in electrophotography and the like. Much research has been conducted on electrophotography since it was disclosed in US Pat. No. 2,297,691. Among them, an improved method of the so-called jumping development method disclosed in JP-A No. 54-42141 is attracting attention as a new process that overcomes many of the difficulties of electrophotography. This includes a method in which toner is given a charge for developing a latent image by contact triboelectrification, but the charge polarity and charge amount of the toner are major variables in this developing method. Although the polarity of toner generally does not change much, the amount of charge changes depending on the atmosphere and the accompanying state of the toner and sleeve. The results mainly appear as line sharpness, image density, and blurring around characters, but as the amount of charge held by the toner decreases, these things become worse. Furthermore, as the amount of charge held by the toner increases, the coating layer on the sleeve becomes thicker, resulting in an abnormally high density, which tends to cause fogging. In addition, density unevenness also occurs, resulting in an overall poor image quality. As described above, in this developing method, it is necessary that the amount of charge of the toner be stable. As a result of studies conducted by the present inventors, it was found that this stability largely depends on the moisture content in the air. As a result of further studies, it was found that although the amount of charge on the toner was not directly measured, the toner was placed on the sleeve at a
-5~ by measuring the surface potential coated with ~200μ
Sufficient image quality can be obtained at around -10V, and under general conditions the potential is -20 to -30V, so a change in the direction of decreasing the amount of charge will affect the image quality. It has also been found that the change in the amount of charge is smaller than the change in the direction of increase in the amount of charge. What should be noted is the increase in the amount of charge on the toner, and there is still a need for measures to maintain a proper amount of charge. Therefore, an object of the present invention is to provide a toner having an extremely stable charge amount in such a developing method. A further object of the present invention is to provide a toner with which stable and good images can always be obtained. The object of the present invention is achieved by an electrophotographic toner comprising a magnetic powder having on its surface an amorphous inorganic solid material mainly containing a silicate formed from an oxide of an alkali metal and a silicon oxide. In the studies conducted by the present inventors, the chargeability of toner is roughly evaluated based on two factors: one is the ability to charge a charged charge, and the other is the ability to retain a charged charge. It can be seen that the charging property that contributes to development depends on the latter in many cases. That is, it is reasonable to consider that there are various temporal transitions from when the toner is charged until the development and transfer steps. Of course, charging ability is also an important factor, but it can be considered that its influence is small, except for toner that does not have charging ability and parts that are subjected to development immediately after being charged.
The charging ability is mostly determined by the resistance of the resin constituting the toner, but the holding ability varies depending on the resin, dyes and pigments added, and various additives. Conventionally, this retention ability has been controlled by adding a small amount of a low-resistance conductive material such as carbon black, or by adding a relatively large amount of a high-resistance conductive material such as magnetite. However, the addition of a low-resistance conductive substance such as carbon black has a narrow range of practical usage, and must be limited to about 10 parts or more based on the resin. Addition of an excessive amount causes an abnormal reduction in the charge retention ability of the toner, and the effect of minute fluctuations in the atmosphere becomes sensitive. The appropriate amount of addition is within the range of several percent based on the resin, making it more difficult to disperse into the resin. As a result, the difference between toner particles is greatly enlarged, resulting in a difference in developability, and as a result, it has an extremely negative effect on images, etc. Furthermore, control by adding relatively large amounts of high-resistance conductive substances such as magnetite expands the allowable range of addition amount to about 10 parts compared to control by adding low-resistance substances such as carbon black. It becomes difficult for a significant difference to occur in the developability between the two. As a result, it is expected that the image quality will be extremely stable. However, the addition of a large amount of pigment has an extremely poor effect on the fixing properties, which is another required characteristic of the toner. For example, in hot roller fusing, adding 10 parts of magnetite to 100 parts of resin will increase the fusing temperature by approximately 5.
It is said to increase the temperature by ~10 degrees, and in pressure fixing, it is said to increase the fixing linear pressure by about 10 kg. Therefore, it is not a good idea to add a large amount of high-resistance pigment to the toner in order to control the charge retention ability of the toner. Furthermore, in Japanese Patent Application Laid-Open No. 54-139544, a dispersion improver such as powdered alumina or silicon oxide is applied to the surface of magnetic powder in advance by high-speed mixing, and the treated magnetic powder and resin are melt-kneaded. A method has been proposed in which magnetic toner is produced by pulverizing the toner. However, this method improves the fluidity of the magnetic powder, improves the dispersibility of the magnetic powder in the resin, and prevents each particle of the magnetic powder from coming into contact with each other to form a chain, thereby achieving the desired result. In contrast, the present invention is a method for preparing a magnetic toner having a high electric resistance value of Since magnetic powder treated with an inorganic solid substance is used, the charge retention ability of the magnetic toner is suppressed, and the purpose is different from the present invention. The inventors of the present invention have tried to treat magnetic powder with a relatively low resistance, and after intensive study, they found that it is possible to use magnetic powder such as magnetite whose surface is coated with an amorphous inorganic solid material mainly containing silicates. As a result, a magnetic toner which has an extremely stable charge retention ability, a relatively wide effective range of addition amount, and does not require the addition of an extremely large amount of magnetic powder has been obtained. An amorphous inorganic solid substance mainly containing silicates is an amorphous solid substance mainly consisting of an oxide of an alkali metal and silicon oxide, and sodium, potassium, etc. are used as the alkali metal. The mixing ratio of the two should be selected such that silicon oxide is 2 to 4 moles per mole of alkali metal oxide.
It seems that a range of 2.1 to 3.5 is preferable. If the molar ratio of silicon oxide decreases, water will be adsorbed excessively, which is not suitable for the purpose of the present invention.On the other hand, if the molar ratio of silicon oxide decreases, silicate ions will condense, making it technically difficult to carry out the treatment of the magnetic material of the present invention. Become something. A simple method for coating the surface of magnetic powder with an amorphous inorganic solid material containing silicate is basically to introduce the magnetic powder as an aqueous solution and evaporate to dryness. The processing amount of the above inorganic solid substance for magnetic powder is 10
The amount may be less than 0.01% by weight, preferably 0.01 to 5% by weight to obtain the most desirable results. The magnetic powder used in the present invention includes ferromagnetic elements and alloys and compounds containing these, such as iron such as magnetite, hematite, and ferrite, alloys and compounds of cobalt, nickel, and manganese, and other ferromagnetic alloys. There are some materials that have been known as magnetic materials. Generally used magnetic powder has an average particle size of 0.05 to 5μ, preferably 0.1 to 1μ. The magnetic powder subjected to the above treatment is
It is recommended that the developer contains 10 to 50% by weight, preferably 15 to 35% by weight. All known binder resins can be used for the toner, including monopolymers of styrene and its substituted products such as polystyrene, polyP-chlorostyrene, and polyvinyltoluene, and styrene-P-chlorostyrene copolymers. , styrene-propylene copolymer, styrene-
Vinyl toluene copolymer, styrene-vinylnaphthalene copolymer, styrene-methyl acrylate copolymer, styrene-ethyl acrylate copolymer,
Styrene-butyl acrylate copolymer, styrene-octyl acrylate copolymer, styrene-methyl methacrylate copolymer, styrene-ethyl methacrylate copolymer, styrene-butyl methacrylate copolymer, styrene- α-chloromethyl methacrylate copolymer, styrene-acrylonitrile copolymer, styrene-vinyl methyl ether copolymer, styrene-vinyl ethyl ether copolymer, styrene-vinyl methyl ketone copolymer,
Styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-acrylonitrile
Styrenic copolymers such as indene copolymer, styrene-maleic acid copolymer, styrene-maleic acid ester copolymer, polymethyl methacrylate, polybutyl methacrylate, polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, polyester , polyurethane, polyamide, epoxy resin, polyvinyl butyral, polyamide, polyacrylic acid resin, rosin, modified rosin, terpene resin, phenolic resin, aliphatic or alicyclic hydrocarbon resin, aromatic petroleum resin, chlorinated paraffin, paraffin Wax etc. can be used alone or in combination. Further, the toner may contain various dyes and pigments such as carbon black for the purpose of color toning, charge control, etc. Embodiments of the toner of the present invention are as follows. Examples and Comparative Examples A mixture of 150g of silica sand and 80g of soda ash was heated to 1300~
The product heated and melted to about 1500℃ is treated in a low pressure autoclave to make a 100% aqueous solution. 50 g of commercially available magnetite (Toda, EPT 500) was added to this aqueous solution 1, stirred at room temperature for about 3 hours, and then dried at 60°C. This drying is sufficient to loosen the particles to some extent with your fingers. Add 50 parts of this treated magnetite to 100 parts of polystyrene-butyl methacrylate (Mionatsuk X-211).
A toner of 5 to 30 .mu.m was obtained by melting and kneading the mixture together with the other components in a conventional manner. A dry mixture of 0.5 parts of hydrophobic colloidal silica per 100 parts of this toner was applied to a commercially available plain paper copying machine (Canon NP-200).
Copied images were obtained in an environment with a relative humidity of 5% to 90% at .degree. Furthermore, the surface potential on the developing sleeve was measured under each environment. At this time, comparative toner A of the same formulation using magnetite without any treatment was also used as a control for evaluation. Furthermore, Comparative Toner B was prepared using 50 parts by weight of magnetic powder prepared by high-speed mixing of 100 parts by weight of untreated magnetite and 0.5 parts by weight of finely powdered silicon oxide, and 100 parts by weight of styrene-butyl methacrylate. ,
evaluated. The toner of the present invention was measured to have a potential of about -10 V under high humidity and only about -40 V at low humidity when measuring the potential on the developing sleeve mentioned above. In the case of the comparative toner, the voltage rose to about -15V under high humidity and to about -65V under low humidity, which shows that it is extremely effective. Also, comparison toner B
In this case, it was found that the voltage was about -17V under high humidity and rose to about -70V under low humidity. Of course, such a developing sleeve potential only indicates one aspect of the toner's charging ability or charge retention ability, but as a result, this stable trend was clearly demonstrated in the evaluation of image quality. . The above results are shown in Table 1.

【表】 画像性は反射濃度、ベタ黒画像の濃度ムラ、ラ
インのシヤープネス、カブリ、階調再現性の総合
的評価である。
[Table] Image quality is a comprehensive evaluation of reflection density, density unevenness of solid black images, line sharpness, fog, and gradation reproducibility.

Claims (1)

【特許請求の範囲】[Claims] 1 アルカリ金属の酸化物及び酸化硅素から形成
された硅酸塩を含有する非結晶性無機固体物質を
表面に有する磁性粉を含有することを特徴とする
電子写真用磁性トナー。
1. A magnetic toner for electrophotography, characterized in that it contains magnetic powder having on its surface a non-crystalline inorganic solid material containing a silicate formed from an alkali metal oxide and silicon oxide.
JP56086184A 1981-06-04 1981-06-04 Magnetic toner Granted JPS57201244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56086184A JPS57201244A (en) 1981-06-04 1981-06-04 Magnetic toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56086184A JPS57201244A (en) 1981-06-04 1981-06-04 Magnetic toner

Publications (2)

Publication Number Publication Date
JPS57201244A JPS57201244A (en) 1982-12-09
JPH0330857B2 true JPH0330857B2 (en) 1991-05-01

Family

ID=13879674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56086184A Granted JPS57201244A (en) 1981-06-04 1981-06-04 Magnetic toner

Country Status (1)

Country Link
JP (1) JPS57201244A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810341B2 (en) * 1986-05-28 1996-01-31 キヤノン株式会社 Magnetic toner
CA2107524C (en) * 1992-10-06 1999-01-19 Hiromitsu Misawa Iron oxide particles and process for producing the same

Also Published As

Publication number Publication date
JPS57201244A (en) 1982-12-09

Similar Documents

Publication Publication Date Title
JP2633130B2 (en) Magnetic toner, image forming method, surface-modified silica fine powder and method for producing the same
JPH0140976B2 (en)
JPH04338971A (en) Magnetic toner
JPS5927901B2 (en) Transfer type one-component magnetic developer
JPH0330855B2 (en)
JPH0330857B2 (en)
JPS5934539A (en) Developing agent
JPS5891463A (en) Magnetic toner
JP2742082B2 (en) Negatively chargeable electrophotographic developer
JPS60217368A (en) Toner
JPS58184950A (en) Magnetic toner
JPS59123850A (en) Developer
JP2769871B2 (en) Magnetic developer
JP4234858B2 (en) Negative developer
JPS59200252A (en) Developer
JPH02126266A (en) Toner for developing electrostatic charge image
JPS5938581B2 (en) Magnetic toner for electrophotography
JPS5886559A (en) Developer
JPS6026351A (en) Magnetic toner
JPS6355700B2 (en)
JPH0140979B2 (en)
JPS62119550A (en) Insulating magnetic dry developer
JPH01123250A (en) Carrier
JPH04184456A (en) Electrostatic latent image developing carrier
JPH0421861B2 (en)