JPH0330830B2 - - Google Patents

Info

Publication number
JPH0330830B2
JPH0330830B2 JP14774980A JP14774980A JPH0330830B2 JP H0330830 B2 JPH0330830 B2 JP H0330830B2 JP 14774980 A JP14774980 A JP 14774980A JP 14774980 A JP14774980 A JP 14774980A JP H0330830 B2 JPH0330830 B2 JP H0330830B2
Authority
JP
Japan
Prior art keywords
signal
phase
phase detection
output
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14774980A
Other languages
Japanese (ja)
Other versions
JPS5772404A (en
Inventor
Toshio Tamamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Japan Inc
Original Assignee
Yokogawa Hewlett Packard Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hewlett Packard Ltd filed Critical Yokogawa Hewlett Packard Ltd
Priority to JP14774980A priority Critical patent/JPS5772404A/en
Publication of JPS5772404A publication Critical patent/JPS5772404A/en
Publication of JPH0330830B2 publication Critical patent/JPH0330830B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D13/00Circuits for comparing the phase or frequency of two mutually-independent oscillations

Description

【発明の詳細な説明】 本発明は被位相検波信号を位相検波する際に、
被位相検波信号中に含まれる高調波成分により出
力信号中に発生する誤差を除去した位相検波方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION When the present invention performs phase detection on a phase-detected signal,
The present invention relates to a phase detection method that removes errors generated in an output signal due to harmonic components contained in a phase-detected signal.

位相検波または同期整流は位相検波信号と同相
な被位相検波信号成分を抽出するために幅広い分
野で用いられているが、被位相検波信号中に高調
波成分が含まれていると出力信号中に該高調波成
分の影響が生じ、正確に同相成分の大きさを表わ
さないことになる。例えば、コンデンサやインダ
クタなどのキヤパシタンス値やインダクタンス値
を測定する回路定数測定装置においては、高調波
成分の影響により出力信号がこれらの値を正確に
表わさないことになる。
Phase detection or synchronous rectification is used in a wide range of fields to extract the phase-detected signal component that is in phase with the phase-detected signal. However, if the phase-detected signal contains harmonic components, the output signal may contain harmonic components. The influence of the harmonic components occurs, and the magnitude of the in-phase component is not accurately represented. For example, in a circuit constant measuring device that measures capacitance values and inductance values of capacitors, inductors, etc., the output signal does not accurately represent these values due to the influence of harmonic components.

従来高調波成分の影響を除去する方法として次
のような方法が知られている。第1図は位相検波
器の入出力信号の関係を示す図、第2図は従来の
位相検波方法において位相検波器に印加される信
号の波形図である。第1図において位相検波器1
の一方の入力端子には被位相検波信号VXが他方
の入力端子には位相検波信号VRが印加され、出
力端子に位相検波出力信号VOが得られる。第2
図Aは被位相検波信号VX(以後VXという)を第
2図Bは位相検波信号VR(以後VRという)を示
す。VRはVXの一周期を4m(mは整数、図におい
てはm=2)等分し、45゜から135゜までの振幅が0゜
から45゜までおよび135゜から180゜までの振幅(1+
√2)倍である方形波信号である。このような
VRによつてVXを位相検波すると(4m±1)次高
調波のみが(4m±1)分の1だけの大きさで影
響し、他の次数の高調波の影響は出力信号VO
に発生しない(詳しくは特開昭50年第133423号参
照)。第3図は第2図Bに示す信号を3個の信号
に分割した場合の波形図である。信号Bは信号A
よりも45゜進み、信号Cは信号Aよりも45゜遅れ、
そしてこれらの信号B、Cの振幅はそれぞれ信号
Aの振幅の1/√2である。したがつて信号A、
B、Cを加えると第2図Bの信号となる。よつて
従来の他の方法においては振幅の等しい信号A、
B、Cにより時分割で位相検波を行ない各位相検
波出力信号の大きさに比例したデジタル値を各別
に求め、そして信号Aによる位相検波の出力信号
に対応するデジタル値のみを√2倍し、そして3
個とデジタル値を加算することにより出力信号を
得ている。この方法は第2図に示した方法と等価
であることは勿論である(詳しくは米国特許第
4181949号参照)。
Conventionally, the following methods are known as methods for removing the influence of harmonic components. FIG. 1 is a diagram showing the relationship between input and output signals of a phase detector, and FIG. 2 is a waveform diagram of a signal applied to the phase detector in a conventional phase detection method. In Fig. 1, phase detector 1
The phase-detected signal V X is applied to one input terminal of the , and the phase-detected signal V R is applied to the other input terminal, and a phase-detected output signal V O is obtained at the output terminal. Second
Figure A shows the phase detected signal V X (hereinafter referred to as V X ), and Figure 2 B shows the phase detected signal V R (hereinafter referred to as V R ). V R divides one period of V (1+
√2) times the square wave signal. like this
When phase detecting V (For details, see Japanese Patent Application Laid-Open No. 133423 of 1970). FIG. 3 is a waveform diagram when the signal shown in FIG. 2B is divided into three signals. signal B is signal A
signal C is 45° ahead of signal A, and signal C is 45° behind signal A.
The amplitudes of these signals B and C are each 1/√2 of the amplitude of signal A. Therefore, signal A,
When B and C are added, the signal shown in FIG. 2B is obtained. Therefore, in other conventional methods, signals A of equal amplitude,
Time-division phase detection is performed using B and C, and a digital value proportional to the magnitude of each phase detection output signal is obtained separately, and only the digital value corresponding to the output signal of the phase detection using signal A is multiplied by √2. and 3
The output signal is obtained by adding the digital values. This method is of course equivalent to the method shown in Figure 2 (for details, refer to the U.S. patent
(See No. 4181949).

本発明の目的は上述した方法とは異なる位相検
波方法を提供することである。まず本発明の理解
を容易にするために数式を用いて本発明の原理を
説明する。
It is an object of the invention to provide a phase detection method different from the methods described above. First, in order to facilitate understanding of the present invention, the principle of the present invention will be explained using mathematical formulas.

被位相検波信号VX =asin(ωt+θa)+bsin(3ωt +θb) +csin(5ωt+θc)+…… ここでθa、θb、θcは位相差を表わす。Phase-detected signal V X = asin (ωt + θ a ) + bsin (3ωt + θ b ) + csin (5ωt + θ c ) +... Here, θa, θb, and θc represent phase differences.

位相検波信号VR(0゜)(方形波信号) =AK=1 sin(2k−1)ωt/2k−1 VR(+45゜)(VRより45゜進み信号) =AK=1 sin{(2k−1)(ωt+45゜)}/2k−1 VR(−45゜)(VRより45゜遅れ信号) =AK=1 sin{(2k−1)(ωt−45゜)}/2k−1 とする。これらから VX・VR(0°)={asin(ωt+θa)+bsin
(3ωt+θb)+csin(5ωt+θc)+……} ×A・(sinωt+1/3sin3ωt+1/
5sin5ωt+……) ここで、 {asin(ωt+θa)}×Asinωt+A/3sin3
ωt+A/5sin5ωt+……) =aAcosθa/2−aAcos(2ωt+θa)/2
+aAcos(−2ωt+θa)/6−aAcos(4ωt+θa)/6
+…… {bsin(3ωt+θb)}×Asinωt+A/3sin3
ωt+A/5sin5ωt+……) =bAcos(2ωt+θb)/2−bAcos(4ωt
+θb)/2+bAcosθb)/6−bAcos(6ωt+θb)/
6+…… 以下同様にする。
Phase detection signal V R (0°) (square wave signal) = A K=1 sin (2k-1) ωt/2k-1 V R (+45°) (signal 45° ahead of V R ) = A = A _ _ _ (ωt−45°)}/2k−1. From these, V X・V R (0°)={asin(ωt+θ a )+bsin
(3ωt+θ b )+csin(5ωt+ θc )+……} ×A・(sinωt+1/3sin3ωt+1/
5sin5ωt+……) Here, {asin(ωt+θ a )}×Asinωt+A/3sin3
ωt+A/5sin5ωt+...) =aAcosθ a /2−aAcos(2ωt+ θa )/2
+aAcos(-2ωt+ θa )/6-aAcos(4ωt+ θa )/6
+... {bsin(3ωt+θ b )}×Asinωt+A/3sin3
ωt+A/5sin5ωt+……) = bAcos(2ωt+θ b )/2−bAcos(4ωt
b )/2+bAcosθ b )/6−bAcos(6ωt+θ b )/
6+... Do the same below.

さらに、VX・VR(+45゜)、およびVX・VR(−
45゜)についても同様にする。ここで、被位相検
波信号VXと被位相検波信号VRのそれぞれの周波
数が一致するときに生ずる直流出力成分に注目
し、また、基本波成分の7倍以上の周波数成分は
充分小さいと仮定すると、 VX・VR(0゜)≒aA/2cosθa+bA/6 cosθb+cA/10cosθc VX・VR(+45゜)≒aA/2cos(θa−45゜) +bA/6cos(θb−135゜)+cA/10cos(θc−225゜
) VX・VR(−45゜)≒aA/2cos(θa+45゜) +bA/6cos(θb+135゜)+cA/10cos(θc+225゜
) ++√2=√2Aacosθa よつてVR(+45゜)およびVR(−45゜)で位相検波
した信号と、VR(0゜)で位相検波した出力を√2
倍した信号とを加算すれば、位相検波出力はVX
中に含まれる高調波成分の影響を受けずcosθa
比例した出力信号が得られる。この場合VR(0゜)
が基準位相検波信号である。上記数式に基づき本
発明は以下のようにして位相検波を行う。第4図
は本発明による位相検波方法を示した波形図であ
る。図において、まず一定期間TcだけVXをVR
(+45゜)で位相検波を行ないその出力を積分す
る。続いて同一期間TcだけVR(−45゜)で位相検
波を行ないその出力を積分する。さらに続いて√
2Tc期間だけVR(0゜)で位相検波を行ないその出
力を積分する。このとき積分の時定数をτとし、
τを交流信号成分が充分に抑圧される時定数に選
べば、直流成分のみが積分されることになり、 出力電圧=1/τ・Tc・VX・VR(+45゜) +1/τ・Tc・VX・VR(−45゜) +1/τ・√2・Tc・VX・VR(0゜) =1/τ・Tc(式+式+√2×式) したがつて(2+√2)Tc期間経過後の積分
出力は式より1/τ・Tc・(√2aAcosθa)とな る。したがつてこの出力信号を電圧計で計れば、
VX中に含まれる高調波成分の影響を受けないで
cosθaに比例した出力を得ることができる。例え
ばVX=P+jQとすればPはacosθaに比例するか
らVXの実数成分を正確に測定できる。なおVR(−
0゜)、VR(+45゜)、VR(−45゜)を印加するシーケ

スは問題ではなく、要するに3個の位相検波信号
により連続測定を行なえばよい。また上記例にお
いてはVXと同相な(θa=0゜として)信号VR(−0゜)
を基準位相検波信号としたが、VX(θa=0゜として)
と90゜位相の異なる信号(例えば−90゜遅れた信
号)VR(−90゜)を基準位相検波信号とし、VR(−
90°)と該VR(−90°)と±45゜位相の異なるVR(−
45゜)、VR(−135゜)とを用いて位相検波すれば積
分出力は−√2aA(sinθa)Tc(積分の時定数τは
便宜上1とする。以下同様)となり、前述Qは
asinθaに比例するからVXの虚数成分を正確に測
定できる。次に本発明の応用例について述べる。
Furthermore, V X・V R (+45°) and V X・V R (−
Do the same for 45°). Here, we focus on the DC output component that occurs when the frequencies of the phase -detected signal V Then, V X・V R (0°)≒ aA /2cosθ a +bA / 6 cosθ b +cA/10cosθ c V b −135 ° ) + cA /10cos (θ c −225 ° ) V +225 ++ √2√2Aacosθ
By adding the multiplied signal, the phase detection output is V
An output signal proportional to cosθ a can be obtained without being affected by harmonic components contained in the output signal. In this case V R (0°)
is the reference phase detection signal. Based on the above formula, the present invention performs phase detection as follows. FIG. 4 is a waveform diagram showing the phase detection method according to the present invention. In the figure, first, V X is changed to V R for a certain period Tc.
(+45°) and integrate the output. Next, phase detection is performed at V R (-45°) for the same period Tc, and the output is integrated. Furthermore, √
Phase detection is performed at V R (0°) for 2Tc period and the output is integrated. At this time, let the time constant of integration be τ,
If τ is selected as a time constant that sufficiently suppresses the AC signal component, only the DC component will be integrated, and the output voltage = 1/τ・Tc・V X・V R (+45°) +1/τ・TcV X・V R (−45°) +1/τ・√2Tc・V 2+√2) The integrated output after the Tc period is 1/τ・Tc・(√2aAcosθ a ) from the formula. Therefore, if you measure this output signal with a voltmeter,
Not affected by harmonic components contained in V
It is possible to obtain an output proportional to cosθ a . For example, if V X =P+jQ, P is proportional to acosθ a , so the real component of V X can be accurately measured. Note that V R (−
There is no problem with the sequence of applying V R (+45°), V R (+45°), and V R (−45°); in short, it is sufficient to carry out continuous measurements using three phase detection signals. In addition, in the above example, the signal V R (−0°) which is in phase with V X (assuming θ a = 0°)
was used as the reference phase detection signal, and V X (assuming θ a = 0°)
A signal with a phase difference of 90° (for example, a signal delayed by -90°) V R (-90°) is used as the reference phase detection signal, and V R (-
90°) and the V R (−90°), which has a phase difference of ±45°
45゜) and V R (-135゜), the integral output becomes -√2aA(sinθ a )Tc (the time constant τ of integration is assumed to be 1 for convenience. The same applies hereafter), and the above-mentioned Q is
Since it is proportional to asinθ a , the imaginary component of V X can be measured accurately. Next, an application example of the present invention will be described.

第5図は本発明を適用したベクトル電圧計のブ
ロツク図である。位相検波器1の一方の入力端子
には被位相検波信号VXが他方の入力端子には可
変位相信号発生器9の出力信号が印加される。可
変位相信号発生器9は論理演算制御器5の制御信
号に応答して基準信号VREFと同相な信号VR(0゜)、
該信号と±45゜位相のずれた信号VR(+45゜)、VR
(−45゜)等を発生する。積分器3には又スイツチ
4を介して(またはさらにフイルタを介して)位
相検波器1の出力信号または直流基準信号(電圧
Er)6が選択的に印加される。積分器3の出力
信号は論理演算制御器5に印加される。制御器5
は前述制御信号を発生すると共に、比較動作、ス
イツチ4の制御動作、計数演算動作等を行ない、
いわゆるデユアルスロープ積分動作が行なわれる
ように制御する。この電圧計は次のように動作す
る。
FIG. 5 is a block diagram of a vector voltmeter to which the present invention is applied. The phase detection signal V X is applied to one input terminal of the phase detector 1, and the output signal of the variable phase signal generator 9 is applied to the other input terminal. The variable phase signal generator 9 responds to the control signal of the logical operation controller 5 to generate a signal VR (0°) which is in phase with the reference signal V REF .
Signal V R (+45°) out of phase with the signal by ±45°, V R
(-45°) etc. The integrator 3 is also connected via a switch 4 (or further via a filter) to the output signal of the phase detector 1 or a DC reference signal (voltage
Er)6 is selectively applied. The output signal of the integrator 3 is applied to the logic operation controller 5. Controller 5
generates the aforementioned control signal, and also performs comparison operations, control operations for switch 4, counting operations, etc.
Control is performed so that a so-called dual slope integral operation is performed. This voltmeter works as follows.

VR(0゜)と同相なVX成分を測定する場合につい
て説明する。充電期間中、スイツチ4は位相検波
器1の出力信号を受信するように接続される。そ
して第4図について前述したように信号発生器9
より信号VR(0゜)、VR(+45゜)、VR(−45゜)が順

発生されて位相検波(同期整流)され、(2+√
2)Tc期間後積分器3の出力信号は√2
AacosθaTcとなる。この期間経過後スイツチ4
が切換えられて電圧Erが積分器3に印加され放
電動作が行なわれる。いわゆるデユアルスロープ
積分動作が行なわれる。よつて放電期間TX
acosθaに比例するからTX=√2AacosθaTc/Er
を求めることによりVXの実数成分を求めること
ができる。ここでVXが基準信号VREFをコンデン
サ、インダクタ等に印加して得られる電圧VX
(X+jY)VREFとすると損失分を高調波の影響を
受けないで正確に測定することができる。また
VR(−90゜)、VR(−45゜)、VR(−135゜)を用いて

相検波し、上述と同様な動作を行なえばTX
asinθaに比例するから、TX=√2AasinθaTc/
Erを求めることにより、VXの虚数成分即ちコン
デンサの容量値を正確に測定できる。なお上述コ
ンデンサの損失分等を測定する場合位相検波信号
をVREFから必ずしも導出する必要はなく、別の基
準記号から得てもよい。この場合VREFと位相検波
信号とに基本的に位相差があれば論理演算制御器
5により最終的に補正計算を行えばよい(米国特
許第4196475号参照)。
We will explain the case of measuring the V X component that is in phase with V R (0°). During the charging period, the switch 4 is connected to receive the output signal of the phase detector 1. and signal generator 9 as described above with respect to FIG.
The signals V R (0°), V R (+45°), and V R (−45°) are sequentially generated and phase-detected (synchronous rectification), resulting in (2+√
2) After the Tc period, the output signal of integrator 3 is √2
Aacosθ a Tc. After this period, switch 4
is switched, voltage Er is applied to integrator 3, and a discharging operation is performed. A so-called dual slope integral operation is performed. Therefore, the discharge period T
Since it is proportional to acosθ a , T X = √2Aacosθ a Tc/Er
The real component of V X can be found by finding . Here, V X is the voltage obtained by applying the reference signal V REF to a capacitor, inductor, etc.
By setting (X+jY)V REF , the loss can be measured accurately without being affected by harmonics. Also
If you perform phase detection using V R (-90°), V R (-45°), and V R (-135°) and perform the same operation as above, T
Since it is proportional to asinθ a , T X =√2Aasinθ a Tc/
By determining Er, the imaginary component of VX , that is, the capacitance value of the capacitor can be accurately measured. Note that when measuring the loss of the capacitor mentioned above, the phase detection signal does not necessarily need to be derived from V REF , and may be obtained from another reference symbol. In this case, if there is basically a phase difference between V REF and the phase detection signal, a final correction calculation may be performed by the logical operation controller 5 (see US Pat. No. 4,196,475).

第6図は本発明を適用したベクトル電圧比計の
ブロツク図である。第6図の電圧比計が第5図の
電圧計と異なる点は構成上、スイツチ2を介して
VX、VREFが導入されること、スイツチ4および
直流基準信号6が存在しないことである。動作上
異なる点は放電動作時スイツチ2がVREFを受信す
るように切換えられ且つ可変位相信号発生器9か
らVR(0゜)が発生されて位相検波されることであ
る。したがつてX成分、Y成分等のベクトル電圧
比が放電時間TX=√2acosθaTc等により直接求
められる。なおこの場合放電時に高調波の影響が
考えられるが、充電電圧が小さく且つ放電電圧が
大きい場合(例えばθaが小で、VR(−90゜)、VR
(−45゜)、VR(−135゜)で充電し、VR(0゜)で放電
する場合)には高調波の影響は無視できるほど小
さい。
FIG. 6 is a block diagram of a vector voltage ratio meter to which the present invention is applied. The difference between the voltage ratio meter in Figure 6 and the voltmeter in Figure 5 is that the voltage ratio meter in Figure 6 is
V X , V REF are introduced, switch 4 and DC reference signal 6 are absent. The difference in operation is that during the discharging operation, switch 2 is switched to receive V REF , and V R (0°) is generated from variable phase signal generator 9 and phase detected. Therefore, the vector voltage ratio of the X component, Y component, etc. can be directly determined by the discharge time T X =√2 a cos θ a Tc, etc. In this case, the influence of harmonics may be considered during discharging, but if the charging voltage is small and the discharging voltage is large (for example, θ a is small, V R (-90°), V R
(-45°), charging at V R (-135°) and discharging at V R (0°)), the effect of harmonics is so small that it can be ignored.

以上の説明より明らかなように本発明によれ
ば、位相検波出力に被位相検波信号中に含まれる
高調波成分の影響は発生しない。よつて本発明を
ベクトル電圧計や回路定数測定器に使用して極め
て効果大である。
As is clear from the above description, according to the present invention, the phase detection output is not affected by harmonic components contained in the phase detected signal. Therefore, the present invention can be used with great effect in vector voltmeters and circuit constant measuring instruments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は位相検波器の入出力信号の関係を示す
図、第2図は従来の位相検波方法において位相検
波器に印加される信号の波形図、第3図は第2図
Bに示す信号の分割波形図、第4図は本発明によ
る位相検波方法を示す波形図、第5図は本発明を
適用したベクトル電圧計のブロツク図、第6図は
本発明を適用したベクトル電圧比計のブロツク図
である。 1:位相検波器、2,4:スイツチ、3:積分
器、5:論理演算制御器、9:可変位相信号発生
器。
Figure 1 is a diagram showing the relationship between input and output signals of a phase detector, Figure 2 is a waveform diagram of the signal applied to the phase detector in the conventional phase detection method, and Figure 3 is the signal shown in Figure 2B. Figure 4 is a waveform diagram showing the phase detection method according to the present invention, Figure 5 is a block diagram of a vector voltmeter to which the present invention is applied, and Figure 6 is a diagram of a vector voltage ratio meter to which the present invention is applied. It is a block diagram. 1: Phase detector, 2, 4: Switch, 3: Integrator, 5: Logic operation controller, 9: Variable phase signal generator.

Claims (1)

【特許請求の範囲】[Claims] 1 被位相検波信号を位相検波信号で位相検波す
る位相検波手段と、該位相検波手段の出力を積分
する積分手段とを備え、前記位相検波信号とし
て、第1信号と、該第1信号とそれぞれ+45゜、−
45゜位相の異なる第2、第3信号との、3つの信
号の中から1信号ずつ順次前記位相検波手段に印
加し、前記各信号の印加中にそれぞれ対応する期
間だけ前記位相検波手段の出力を前記積分手段で
積分し、3回の積分によつて順次累積された前記
積分手段の出力を最終的な位相検波出力とする位
相検波方法であつて、前記第2、第3信号印加中
の積分時間は共に等しくTcであり、前記第1信
号印加中の積分時間は√2・Tcであることを特
徴とする位相検波方法。
1 comprising a phase detection means for phase-detecting a phase-detected signal with a phase detection signal, and an integration means for integrating the output of the phase detection means, and as the phase detection signal, a first signal and the first signal, respectively. +45°, -
The second and third signals having 45° different phases are sequentially applied one signal at a time to the phase detection means, and the output of the phase detection means is applied only for a corresponding period while each signal is being applied. is integrated by the integrating means, and the output of the integrating means accumulated sequentially through three integrations is used as a final phase detection output, the method comprising: A phase detection method characterized in that both integration times are equal to Tc, and the integration time during application of the first signal is √2·Tc.
JP14774980A 1980-10-22 1980-10-22 Phase detecting method Granted JPS5772404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14774980A JPS5772404A (en) 1980-10-22 1980-10-22 Phase detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14774980A JPS5772404A (en) 1980-10-22 1980-10-22 Phase detecting method

Publications (2)

Publication Number Publication Date
JPS5772404A JPS5772404A (en) 1982-05-06
JPH0330830B2 true JPH0330830B2 (en) 1991-05-01

Family

ID=15437268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14774980A Granted JPS5772404A (en) 1980-10-22 1980-10-22 Phase detecting method

Country Status (1)

Country Link
JP (1) JPS5772404A (en)

Also Published As

Publication number Publication date
JPS5772404A (en) 1982-05-06

Similar Documents

Publication Publication Date Title
JP6616987B2 (en) Impedance measuring apparatus and impedance measuring method
CA2413976A1 (en) Biosensor apparatus and method with sample type and volume detection
CN205427032U (en) Weak signal detection device based on phase -locked loop
EP2869075A1 (en) System and method for detecting a leakage from power cables of a DC bus to ground
JPS60209833A (en) Method and apparatus for determining coordinates of contact point on surface for sensing half analog of resistance type
US4409543A (en) Impedance meter
JPS5875074A (en) Measuring device for capacity or other parameter
CN111766451B (en) System and method for high-precision capacitance parameter test
JPH0330830B2 (en)
JP2787078B2 (en) measuring device
JP2000046882A (en) Impedance-measuring apparatus and method for measuring impedance
JP2587970B2 (en) Impedance measuring device
US4181949A (en) Method of and apparatus for phase-sensitive detection
JP2589817Y2 (en) LCR tester
JP4280428B2 (en) Frequency selective detector and wavelet transformer using the same
JPH06109783A (en) Lcr tester
RU2046360C1 (en) Device for measuring phase shift between two signals
JPH0354311B2 (en)
JPH0632255B2 (en) Method of measuring leakage current of lightning arrester
JPS5938731Y2 (en) phase detector
JPH01143971A (en) Method for measuring insulation resistance
JPH079447B2 (en) Insulation resistance measuring method and device
JPS6213018Y2 (en)
KR950004833B1 (en) Method and apparatus for measuring powerfactor of wattmeter
JPH0566988B2 (en)