JPH0330700A - Detection of nucleic aid region - Google Patents

Detection of nucleic aid region

Info

Publication number
JPH0330700A
JPH0330700A JP1165550A JP16555089A JPH0330700A JP H0330700 A JPH0330700 A JP H0330700A JP 1165550 A JP1165550 A JP 1165550A JP 16555089 A JP16555089 A JP 16555089A JP H0330700 A JPH0330700 A JP H0330700A
Authority
JP
Japan
Prior art keywords
nucleic acid
region
detected
regions
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1165550A
Other languages
Japanese (ja)
Inventor
Kazumasa Hikichi
引地 一昌
Yutaka Tsukada
裕 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S R L KK
Original Assignee
S R L KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S R L KK filed Critical S R L KK
Priority to JP1165550A priority Critical patent/JPH0330700A/en
Publication of JPH0330700A publication Critical patent/JPH0330700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To simultaneously and readily detect plural nucleic acid regions by amplifying the plural regions having mutually different size in a sample gene with a gene-amplifying method, subjecting the sample to electrophoresis, separating the amplified plural regions according to the size of individual region and detected nucleic acid fragments. CONSTITUTION:Plural regions to be detected having mutually different size in sample DNA or RNA are dissolved in buffer solutions and subjected to heat treatment to denaturate DNA or RNA protease. Then nucleotide and DNA or RNA polymerase are added, thus subjected to a temperature-controlling in a temperature cycle of high temperature and low temperature by a gene- amplifying method to simultaneously amplify the plural regions to be detected. Next, the sample after the amplification is subjected to electrophoresis and separated according to the respective sizes of the amplified plural regions to be detected, then a separated nucleic acid region is detected by detecting a nucleic acid fragment.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、核酸領域の検出方法に関する。さらに詳細に
は、本発明は、DNA又はRNA試料中の複数の検出す
べき領域を同時に検出することができる核酸領域の検出
方法に関する。本発明は、遺伝子の解析に基づ(各種遺
伝病や感染症の診断、ワクチンや生物製剤の品質チエツ
ク等に適用することができる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting a nucleic acid region. More specifically, the present invention relates to a method for detecting a nucleic acid region that can simultaneously detect multiple regions to be detected in a DNA or RNA sample. The present invention is based on gene analysis (applicable to diagnosis of various genetic diseases and infectious diseases, quality check of vaccines and biological products, etc.).

[従来の技術1 従来より、DNA又はRNA (以下、「核酸」と呼ぶ
ことがある)試料が特定の領域を有するか否かは、サザ
ンプロット法、ノーザンプロット法又はドツトプロット
法等により調べられていた。
[Prior art 1] Conventionally, whether or not a DNA or RNA (hereinafter sometimes referred to as "nucleic acid") sample has a specific region has been investigated by Southern blot method, Northern blot method, dot plot method, etc. was.

最近、lコピーのDNA領域をも検出することができる
遺伝子増幅法が開発された(R,に。
Recently, a gene amplification method that can detect even one copy of a DNA region has been developed (R.

5aikiら、5cience、 230.1350[
1985)) 、遺伝子増幅法では、検出すべき核酸領
域の両端部にそれぞれハイブリダイズする2種類のブラ
イマーとDNA又はRNAポリメラーゼを用いて、相補
鎖合成と変性のサイクルを数千回繰返して、検出すべき
領域を数十万倍に増幅させる。従って、極めて微量の試
料中の核酸領域をも検出することができ、試料中、lコ
ピーの核酸領域をも検出することが可能である。
5aiki et al., 5science, 230.1350 [
1985)), the gene amplification method uses two types of primers and DNA or RNA polymerase that hybridize to both ends of the nucleic acid region to be detected, and cycles of complementary strand synthesis and denaturation are repeated several thousand times to achieve detection. Amplify the target area hundreds of thousands of times. Therefore, it is possible to detect even a very small amount of a nucleic acid region in a sample, and it is also possible to detect one copy of a nucleic acid region in a sample.

遺伝子増幅法を利用した遺伝子の解析方法も憫察されて
おり、例えば、 Journal of C1inic
alLaboratory Analysis 2:1
94−198 (19881には、遺伝子増幅法を用い
てヒトT細胞白血病ウィルスのプロウィルスを検出する
方法が記載されている。
Gene analysis methods using gene amplification methods are also under scrutiny; for example, Journal of C1inic
alLaboratory Analysis 2:1
94-198 (19881) describes a method for detecting the provirus of human T-cell leukemia virus using gene amplification methods.

しかしながら、遺伝子増幅法を利用した従来の検出方法
では、1回の操作で1つの領域を検出することしかでき
ない。従って、核酸中の複数の領域を検出する必要があ
る場合には、各領域についてそれぞれ検出操作(遺伝子
増幅法による増幅及びプローブとのハイブリダイゼーシ
ョン)を行なわなければならず、時間と労力がかかるも
のであった。
However, conventional detection methods using gene amplification methods can only detect one region in one operation. Therefore, when it is necessary to detect multiple regions in a nucleic acid, detection operations (amplification by gene amplification method and hybridization with a probe) must be performed for each region, which is time-consuming and labor-intensive. Met.

[発明が解決しようとする課題] 従って、本発明の目的は、複数の核酸領域を同時に簡便
に検出することができる、核酸領域の検出方法を提供す
ることである。
[Problems to be Solved by the Invention] Therefore, an object of the present invention is to provide a method for detecting a nucleic acid region that can easily detect a plurality of nucleic acid regions simultaneously.

[課題を解決するための手段] 本願発明者らは、鋭意研究の結果、遺伝子増幅法により
増幅する、検出すべき核酸領域の大きさをそれぞれ異な
らしめ、遺伝子増幅法と電気泳動とを組合わせることに
よって複数の核酸領域を同時に簡便に感度良(検出する
ことができることを見出し本発明を完成した。
[Means for Solving the Problems] As a result of intensive research, the inventors of the present application have made the sizes of the nucleic acid regions to be detected and amplified by the gene amplification method different, and combined the gene amplification method and electrophoresis. We have completed the present invention by discovering that multiple nucleic acid regions can be detected simultaneously with ease and sensitivity.

すなわち、本発明は、+11試料DNA又はRNA中の
、大きさのそれぞれ異なる複数の検出すべき領域をポリ
メラーゼチェインリアクシコン法により同時に増幅させ
る工程と、(2)増幅後の試料を電気泳動にかけ、増幅
された上記検出すべき複数の領域をそれぞれの大きさに
基づいて分離する工程と、(3)分離された核酸断片を
検出する工程とを含む核酸領域の検出方法を提供する。
That is, the present invention includes a step of simultaneously amplifying a plurality of regions to be detected of different sizes in +11 sample DNA or RNA by the polymerase chain reaction method, (2) subjecting the amplified sample to electrophoresis, A method for detecting a nucleic acid region is provided, which includes the steps of: separating the plurality of amplified regions to be detected based on their respective sizes; and (3) detecting the separated nucleic acid fragments.

[発明の効果] 本発明の方法によると、複数の核酸領域を同時に感度良
く検出することができる。従って、遺伝病や感染症の詮
所や、ワクチンや生物製剤の品質チエツク等において、
複数の核酸領域を検出する必要がある場合に、従来方法
に比べてはるかに簡便に検出することができ、有利であ
る。
[Effects of the Invention] According to the method of the present invention, multiple nucleic acid regions can be detected simultaneously with high sensitivity. Therefore, in investigating genetic diseases and infectious diseases, checking the quality of vaccines and biological products, etc.
When it is necessary to detect multiple nucleic acid regions, this method is advantageous because it can be detected much more easily than conventional methods.

[発明の詳細な説明] 本発明の方法の第1工程では、検出すべき複数の核酸領
域を遺伝子増幅法により増幅する。遺伝子増幅法自体は
上記文献に記載されているように公知である。すなわち
、二本鎖核酸を変性して一本鎖にし、増幅すべき領域の
各鎖の5°末端領域とそれぞれハイブリダイズする、各
領域当り2種類のブライマーを各鎖とハイブリダイズさ
せ、DNA又はRNAポリメラーゼを用いて、上記ブラ
イマーを起点として相補鎖を合成して二本鎖にし、さら
にこれを変性して上記ブライマーとハイブリダイズさせ
、DNA又はRNAポリメラーゼを用いて相補鎖を合成
するというサイクルを繰返す。サイクルをn回繰返すと
理論上、その核酸領域は2″倍に増幅される。サイクル
の繰返し数は、特に限定されないが、通常20回ないし
40回程度が適当である。
[Detailed Description of the Invention] In the first step of the method of the present invention, multiple nucleic acid regions to be detected are amplified by a gene amplification method. The gene amplification method itself is known as described in the above-mentioned literature. That is, a double-stranded nucleic acid is denatured to become a single strand, and two types of primers per region are hybridized to each strand, each hybridizing with the 5° end region of each strand of the region to be amplified. Using RNA polymerase, a complementary strand is synthesized using the above-mentioned brimer as a starting point to form a double strand, which is further denatured and hybridized with the above-mentioned brimer, and a complementary strand is synthesized using DNA or RNA polymerase. Repeat. If the cycle is repeated n times, the nucleic acid region is theoretically amplified 2'' times. The number of cycles is not particularly limited, but is usually about 20 to 40 times.

本発明の第1工程において、特徴的なことは、複数の検
出すべき領域を同時に増幅することと、増幅する複数の
領域の大きさをそれぞれ異ならしむることである。複数
の領域を同時に増幅することは、各領域について上記し
た2種類のブライマーを反応させることによって行なう
ことができる。すなわち、例えば4つの領域を検出する
場合には、各領域の各鎖の5°末端領域とハイブリダイ
ズするブライマー、すなわち、合計′8種類のブライマ
ーを反応させればよい。また、増幅される複数の検出す
べき領域の大きさをそれぞれ異ならしむることは、ブラ
イマーの塩基配列を選択することにより達成することが
できる。すなわち、遺伝子増幅法により増幅される領域
は、二本鎖・核酸の第1鎖とハイブリダイズする第1の
ブライマーと、二本鎖核酸の第2鎖とハイブリダイズす
る第2のブライマーとによって挟まれた領域であるので
、第1及び/又は第2のブライマーの塩基配列を選択す
ることによって、それらの間に挟まれる領域の大きさを
任意に変えることができる。
In the first step of the present invention, the characteristics are that a plurality of regions to be detected are simultaneously amplified and that the sizes of the plurality of regions to be amplified are made to be different. Simultaneous amplification of a plurality of regions can be performed by reacting the two types of primers described above for each region. That is, when detecting four regions, for example, it is sufficient to react with brimers that hybridize with the 5° terminal region of each chain in each region, that is, a total of '8 types of brimers. Furthermore, making the sizes of the plurality of amplified regions to be detected different can be achieved by selecting the base sequence of the primer. That is, the region to be amplified by the gene amplification method is sandwiched between a first brimer that hybridizes with the first strand of a double-stranded nucleic acid and a second brimer that hybridizes with the second strand of a double-stranded nucleic acid. Therefore, by selecting the base sequences of the first and/or second primer, the size of the region sandwiched between them can be arbitrarily changed.

本発明の方法では、ブライマーの塩基配列を選択するこ
とによって、増幅すべき複数の領域の大きさを異ならし
むる。このように、増幅領域の大きさをそれぞれ異なら
しむることによって、次の電気泳動工程において増幅さ
れた核酸分子をその大きさに従って容易に分離すること
が可能になる。
In the method of the present invention, the sizes of multiple regions to be amplified are made different by selecting the base sequence of the primer. In this way, by making the amplification regions different in size, it becomes possible to easily separate the amplified nucleic acid molecules according to their sizes in the next electrophoresis step.

次に、試料を電気泳動にかけ、増幅された各核酸領域を
分離する。電気泳動による核酸分子の分離はこの分野に
おいて周知であり、サザンプロット法やノーサンプロッ
ト法において行なわれている方法をそのまま適用するこ
とができる。ゲルとしては通常アガロース又はポリアク
リルアミドゲルが用いられる。この電気泳動工程におい
て、第1工程で増幅された複数の検出すべき領域は、そ
の大きさに基づいて分離される。
Next, the sample is subjected to electrophoresis to separate each amplified nucleic acid region. Separation of nucleic acid molecules by electrophoresis is well known in this field, and methods used in the Southern blot method and the Northam blot method can be applied as they are. As the gel, agarose or polyacrylamide gel is usually used. In this electrophoresis step, the plurality of regions to be detected that were amplified in the first step are separated based on their sizes.

次に、分離された核酸断片を検出する。これは例えば、
電気泳動による分離パターンを維持したまま1分離され
た核酸分子を基体上に転写、固定し、転写、固定された
核酸断片を検出することにより行なうことができる。こ
れらの工程自体はこの分野において周知であり、サザン
プロット法やノーサンプロット法において行なわれてい
る方法をそのまま適用することができる。すなわち、こ
こで用いられる基体としてはナイロンフィルターやニト
ロセルロースフィルターを好ましく用いることができる
。核酸分子の固定は、例えば、常法により、フィルター
を熱乾燥又は紫外線照射することにより行なうことがで
きる。転写、固定された核酸分子の検出は例えば、増幅
されたそれぞれの領域と特異的にハイブリダイズする標
識プローブをそれぞれ作用させ、それらの標識プローブ
が基体上の核酸分子と特異的に結合するかを調べること
により、検出すべき核酸領域が試料中に存在したか否か
を知ることができる。検出すべき領域は、それぞれの大
きさに応じて分離されたパターンを維持したまま基体上
に固定されているので、どの試料中にどの領域が存在し
、どの領域が欠損していたかを一目瞭然に知ることがで
き、極めて好都合である。あるいは、ゲル電気泳動後、
分離された核酸断片を基体上に転写、固定することなく
、ゲルを熱乾燥させ、上記と同様に標識プローブを用い
て、分離パターンを維持したまま核酸断片を検出するこ
とができる。
Next, the separated nucleic acid fragments are detected. For example,
This can be carried out by transferring and immobilizing one separated nucleic acid molecule onto a substrate while maintaining the electrophoretic separation pattern, and detecting the transferred and immobilized nucleic acid fragments. These steps themselves are well known in this field, and the methods used in the Southern blot method and the Northan blot method can be applied as they are. That is, a nylon filter or a nitrocellulose filter can be preferably used as the substrate used here. Nucleic acid molecules can be immobilized, for example, by heat drying the filter or irradiating it with ultraviolet rays, using conventional methods. For example, detection of transcribed and immobilized nucleic acid molecules involves applying labeled probes that specifically hybridize to each amplified region, and determining whether these labeled probes specifically bind to the nucleic acid molecules on the substrate. By examining it, it can be known whether the nucleic acid region to be detected is present in the sample. The areas to be detected are fixed on the substrate while maintaining separate patterns according to their size, so it is easy to see at a glance which areas are present in which sample and which areas are missing. It's very convenient to know. Alternatively, after gel electrophoresis,
The gel is heat-dried without transferring and immobilizing the separated nucleic acid fragments onto a substrate, and the nucleic acid fragments can be detected while maintaining the separation pattern using a labeled probe in the same manner as described above.

本発明の方法は、非常に基本的な技術であり、極めて広
い適用範囲を有する0例えば、複数のDNA領域が存在
するか否かを調べる必要がある遺伝子解析、それに基づ
く各種遺伝病や感染症の診断に適用することができる。
The method of the present invention is a very basic technique and has an extremely wide range of application. can be applied to the diagnosis of

さらに、ワクチンやその他の生物製剤の品質を遺伝子解
析によりチエツクすることにも適用することができる。
Furthermore, it can be applied to checking the quality of vaccines and other biological products by genetic analysis.

すなわち、例えばエイズウィルス(HI V)等のウィ
ルスは、その表面構造がしばしば変異するので一旦製造
したワクチンが効かなくなるおそれがあるが、本発明の
方法により、それらのウィルスの変異を迅速に追跡する
ことが可能になる。また。
That is, for example, the surface structure of viruses such as the AIDS virus (HIV) often mutates, so there is a risk that vaccines once produced may become ineffective, but the method of the present invention allows rapid tracking of mutations in these viruses. becomes possible. Also.

遺伝子工学的に有用物質を大腸菌等の微生物や動植物細
胞内で生産させる場合に、宿主細胞の増殖に従って、そ
の有用物質をコードする領域が変異したり脱落したりす
るおそれがあるが、本発明の方法を適用してそのような
変異や脱落を複数の領域について迅速に知ることができ
る。また、複数の核酸分子を含む核酸混合物中の複数の
核酸分子を同時に検出することもできる。従って、本発
明の方法は、1種類の核酸分子中の複数の領域の検出に
適用できるだけではなく、異なる複数種類の核酸分子中
の領域を検出することにも適用することができる。
When genetically engineering useful substances to be produced in microorganisms such as E. coli or in animal or plant cells, there is a risk that the region encoding the useful substance may mutate or drop out as the host cells proliferate. The method can be applied to rapidly identify such mutations and omissions in multiple regions. Furthermore, multiple nucleic acid molecules in a nucleic acid mixture containing multiple nucleic acid molecules can also be detected simultaneously. Therefore, the method of the present invention can be applied not only to detecting multiple regions in one type of nucleic acid molecule, but also to detecting regions in multiple different types of nucleic acid molecules.

以下、本発明の方法を適用して成人T細胞白血病ウィル
ス(以下、ATLVという)のプロウィルスを検出した
実施例を記載するが、本発明の方法は極めて適用範囲の
広い基本的な技術であって、複数の核酸領域を検出する
ことが望まれるあらゆる場合に適用することができるも
のであり、下記実施例に示すATLVの検出や、ヒトの
疾病の診断にその適用が限定されるものではないことは
明らかである。
Hereinafter, an example will be described in which the provirus of adult T-cell leukemia virus (hereinafter referred to as ATLV) was detected by applying the method of the present invention. Therefore, it can be applied in any case where it is desired to detect multiple nucleic acid regions, and its application is not limited to the detection of ATLV shown in the following example or the diagnosis of human diseases. That is clear.

[実施例] fil試料の調製 健常人及びATL患者からの末梢血5〜10m1から比
重液を用いてリンパ球を分離し、常法によりリンパ球中
のDNAを抽出した。
[Example] Preparation of fil samples Lymphocytes were separated from 5 to 10 ml of peripheral blood from healthy individuals and ATL patients using a specific gravity solution, and DNA in the lymphocytes was extracted by a conventional method.

(2)ブライマー及び増幅領域 ATLVのgag領域(およそ第800〜2090塩基
) 、 pot領域(およそ第2500〜5180塩基
)、env領域(およそ第5180〜6640塩基)及
びpX領域(およそ第6680〜8360塩基)を検出
するための、これら領域とそれぞれ重複する領域の第1
鎖及び第2鎖の5゛末端領域とそれぞれ特異的にハイブ
リダイズする、下記表に示す塩基配列を示すブライマー
を化学合成した1表中、各ブライマーの塩基配列の両側
の数字は、各ブライマーがハイブリダイズするA T 
L Vゲノムの塩基の位置を示す。
(2) Brimer and amplification region ATLV gag region (approximately 800th to 2090th base), pot region (approximately 2500th to 5180th base), env region (approximately 5180th to 6640th base), and pX region (approximately 6680th to 8360th base) The first region that overlaps with each of these regions for detecting
Chemically synthesized brimers having the nucleotide sequences shown in the table below, which specifically hybridize with the 5' terminal region of the strand and the second strand, respectively.In the table, the numbers on both sides of the nucleotide sequence of each brimer indicate the Hybridizing AT
The base positions of the LV genome are shown.

従って、例えばgag領域を検出するための領域として
は第1375塩基から1632塩基が規定され、この領
域が増幅される。増幅される各領域の大きさは、gag
領域が158 bp、pro/pol領域力月20 b
p、env領域が193 bp、 pX−IVが220
 bpであり、増幅される各領域の大きさは異なってい
た。
Therefore, for example, the 1375th to 1632nd bases are defined as the region for detecting the gag region, and this region is amplified. The size of each region amplified is gag
Area is 158 bp, pro/pol area is 20 b
p, env region is 193 bp, pX-IV is 220 bp
bp, and the size of each amplified region was different.

(3)遺伝子増幅法 fil試料の調製 (1)で調製したDNA試料の一部を採り、トノスーE
DTA(TE)緩衝液に最終濃度口、lug/μ11.
:溶かした。その50μlを95℃で5分間加熱し、混
存が予想されるDNA又はRNA分解酵素を変性させた
。−度攪拌後、6000 rpm、30秒間遠心し、以
・下の操作に用いた。
(3) Preparation of gene amplification method fil sample Take a part of the DNA sample prepared in (1), and
Final concentration in DTA(TE) buffer, lug/μ11.
: Melted. 50 μl of the mixture was heated at 95° C. for 5 minutes to denature DNA or RNA degrading enzymes that were expected to be present. After stirring at -degrees, the mixture was centrifuged at 6000 rpm for 30 seconds and used in the following operations.

fii1反応試薬混合物の調製 反応試薬混合物を、試験管1本当り以下の容量で、試料
数に合わせて反応混合物を作製した。
Preparation of fii1 Reaction Reagent Mixture Reaction mixtures were prepared in a volume equal to or less than one test tube according to the number of samples.

10 x  Tris/にc1/MgclzM衝液  
   10.1)OμmdNTP混合物(4NTP) 
        8.00 u 1gag領域ブライ7
−1(0゜5u g/μm1 0.25 u 1gag
領域プライv−2fO,5ug#zl)  0.25L
L1pol領域ブライv −1(0,5ug/u 11
 0.25 u 1pol領域ブラー1’?−2(0,
5+ug#zll  0.25ulenv領域ブライマ
ー110.5u g/μm1 0.25 u 1env
領域ブライマー2((1,5ug#zll  0.25
LL1px  領域ブライマー1 (0,5ug/al
l  0.25 ulpx  領域ブライマー2+0.
5μg/μl)  0.25μITaqポリメラーゼ[
51/u 11     0.50 u 1合計   
20.50ti1 fiiil遺伝子増幅 蒸留水?4.50 u l 、上記反応試薬混合物20
.50tLl及び上記DNA試料5.00u lを混合
し、600 rpn+で3o秒間遠心してベレットを沈
殿させた。2滴の鉱油を加えた後、6000 rpmで
30秒間遠心して気泡を抜いた。遠心管を市販の自動温
度コントローラーにセットし、遺伝子増幅を開喧した。
10 x Tris/c1/MgclzM solution
10.1) Oμm dNTP mixture (4NTPs)
8.00 u 1gag area braai 7
-1 (0゜5u g/μm1 0.25 u 1gag
Area ply v-2fO, 5ug#zl) 0.25L
L1pol area bliv-1 (0,5ug/u 11
0.25 u 1pol area blur 1'? −2(0,
5+ug#zll 0.25ulenv area Brimer 110.5u g/μm1 0.25 u 1env
Area Brimer 2 ((1,5ug#zll 0.25
LL1px Area Brimer 1 (0.5ug/al
l 0.25 ulpx Area Brimer 2+0.
5μg/μl) 0.25μITaq polymerase [
51/u 11 0.50 u 1 total
20.50ti1 fiiiil gene amplified distilled water? 4.50 ul of the above reaction reagent mixture 20
.. 50 tLl and 5.00ul of the above DNA sample were mixed and centrifuged at 600 rpm+ for 30 seconds to precipitate pellets. After adding 2 drops of mineral oil, air bubbles were removed by centrifugation at 6000 rpm for 30 seconds. The centrifuge tube was set in a commercially available automatic temperature controller, and gene amplification was performed.

温度サイクルは、1)94℃、2分間、2)60°C,
3分間、3)72°C13分間であった。終了後、試料
を4℃で保存した。
The temperature cycle was 1) 94°C for 2 minutes, 2) 60°C,
3) 72°C for 13 minutes. After completion, the samples were stored at 4°C.

(4)電気泳動 1%ウルトラピュアアガロース(BRL社製)、2%N
usive GTGアガロース(F M Cバイオプロ
ダクツ社製)及び0.3μg7mlのエチジウムブロマ
イドを1 xTE緩衝液に加熱して溶解し、アガロース
ゲルを作製した。(3)で得られた増幅終了後の試料に
6xローデイング緩衝液を加え、そのlOμlをゲルの
各ウェルに入れ、電気泳動を行なった(50mA、2〜
3時間)、マーカーを含む緩衝液も同じ条件で電気泳動
にかけた。
(4) Electrophoresis 1% Ultra Pure Agarose (manufactured by BRL), 2% N
Usive GTG agarose (manufactured by FMC Bioproducts) and 0.3 μg and 7 ml of ethidium bromide were heated and dissolved in 1×TE buffer to prepare an agarose gel. 6x loading buffer was added to the amplified sample obtained in (3), and 10μl of it was placed in each well of the gel, and electrophoresis was performed (50mA, 2-
3 hours), and the buffer containing the marker was also subjected to electrophoresis under the same conditions.

(5)サザンブロツティングによるDNAの転写常法に
従い、(4) で電気泳動分離されたDNAをナイロン
フィルターに転写した。
(5) DNA transcription by Southern blotting According to a conventional method, the DNA electrophoretically separated in (4) was transferred to a nylon filter.

(6)オリゴDNAプローブの5゛末端標識上記表に示
した塩基配列を有する、各領域を検出するためのオリゴ
DNAプローブ(表中、プローブの塩基配列の左右の数
字は、そのプローブがハイブリダイズするATLVゲノ
ムの位置を示す)の5′末端を32pで標識した。標識
は、下記組成の反応混合物を37℃で1時間インキュベ
トすることにより行なった。
(6) 5' end labeling of oligo DNA probes Oligo DNA probes for detecting each region that have the base sequences shown in the table above (in the table, the numbers on the left and right of the base sequence of the probe indicate that the probe is hybridized). The 5' end of the ATLV genome (location in the ATLV genome shown) was labeled with 32p. Labeling was performed by incubating a reaction mixture with the following composition at 37° C. for 1 hour.

混合オリゴDNAプローブ(0,5μg/μm10.6
μl滅閑蒸留水             5.4μl
r −”P −ATP  (−3000Ci/mmol
l       10.Ou 1合計  20.Ou 
1 反応後、Quic 5pinカラム(G25セフアデツ
クスカラム)(ベーリンガーーマンハイム社製)で分離
した(遠心3(100rpm、2分間)(71DNAバ
ンドの“検出 fil プレハイブリダイゼーション 5 x 5SPE、5Xデンハルツ溶液及び0.5%S
OSから成る滴液20+mlで10 x 20 cm2
フィルターを処理し、56℃で2時間インキュベートし
た。
Mixed oligo DNA probe (0.5μg/μm10.6
μl cold distilled water 5.4μl
r −”P −ATP (−3000Ci/mmol
l 10. Ou 1 total 20. Ou
1 After the reaction, it was separated using a Quick 5pin column (G25 Sephadex column) (manufactured by Boehringer-Mannheim) (Centrifugation 3 (100 rpm, 2 minutes) (71 DNA band "detection filter") Prehybridization 5 x 5SPE, 5X Denhartz solution and 0.5%S
10 x 20 cm2 with 20+ml drops of OS
Filters were treated and incubated for 2 hours at 56°C.

(iilハイブリダイゼーション fitのブレパイプリダイゼーション後の液とff2P
−プローブ(2x 10’ dpm/園1,4〜5 m
l/10 x 20 cm2フィルター)を混合し、5
6℃で2時間インキュベートした。
(Iil hybridization fit's liquid after Brepipe hybridization and ff2P
- Probe (2x 10' dpm/1.4-5 m
l/10 x 20 cm2 filter) and 5
Incubate for 2 hours at 6°C.

fiiil洗浄 以下の洗浄を行なった。fiiiil cleaning The following cleaning was performed.

112 x 5SPE10.1%SOS 、室温、10
分間2)同上 315 x 5SPE10.1%SOSで55℃、10
分間fivl現像 常法により、1〜2日間オートラジオグラフィーを行な
った。
112 x 5SPE10.1%SOS, room temperature, 10
Minutes 2) Same as above 315 x 5SPE10.1%SOS at 55℃, 10
Autoradiography was carried out for 1 to 2 days using a conventional minute-fivl development method.

(8)結果 結果を図に示す。図中、レーン1は健常人、レーン2な
いしレーン11がATL患者からの末梢血リンパ球DN
Aについての結果を示す。レーン12はマーカー($ 
X 174の1lae III消化物、断片サイズは1
357 bp、1078 bp、372 bp、603
bp、310 bp、281 bp、271 bp、2
34 bp、 194 bp、118 bp及び72 
bp )の泳動パターンを示す。図がられかるように、
レーン1においてはATLVの発現は全く認められず、
レーン2のATL患者はATLVの全領域を発現、レー
ン3の患者はgag領域のみを発現、レーン4の患者は
pal領域のみを発現、レーン5の患者はenv領域の
みを発現、レーン6の患者はpX領域のみを発現、レー
ン7の患者はgag領域とpal領域のみを発現、レー
ン8の患者はgag領域どenv領域のみを発現、レー
ン9の患者はgag領域とpX領域のみを発現、レーン
lOの患者はpol領域とenv領域のみを発現、レー
ン11の患者はgag領域、pal領域及びenv領域
を発現していることがわかる。
(8) The results are shown in the figure. In the figure, lane 1 is the DNA of healthy subjects, and lanes 2 to 11 are peripheral blood lymphocyte DNA from ATL patients.
The results for A are shown. Lane 12 is a marker ($
1lae III digest of X 174, fragment size is 1
357 bp, 1078 bp, 372 bp, 603
bp, 310 bp, 281 bp, 271 bp, 2
34 bp, 194 bp, 118 bp and 72 bp
bp) is shown. As you can see from the diagram,
In lane 1, no expression of ATLV was observed;
The ATL patient in lane 2 expresses the entire ATLV region, the patient in lane 3 expresses only the gag region, the patient in lane 4 expresses only the pal region, the patient in lane 5 expresses only the env region, and the patient in lane 6 patients in lane 7 express only the gag and pal regions; patients in lane 8 express only the gag and env regions; patients in lane 9 express only the gag and pX regions; It can be seen that the IO patient expresses only the pol region and env region, and the patient in lane 11 expresses the gag region, pal region, and env region.

上記実施例から明らかなように、本発明の方法によると
、検出すべき複数の核酸領域を感度良く同時に簡便に検
出することができることがわかる。
As is clear from the above examples, according to the method of the present invention, it is possible to simultaneously and easily detect multiple nucleic acid regions to be detected with high sensitivity.

【図面の簡単な説明】 図は、本発明の方法を適用して、ATLVのプロウィル
スの検出を行なった結果得られたオートラジオグラフィ
ーを示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS The figure shows autoradiography obtained as a result of detecting ATLV provirus by applying the method of the present invention.

Claims (1)

【特許請求の範囲】 試料DNA又はRNA中の、大きさのそれぞれ異なる複
数の検出すべき領域を遺伝子増幅法により同時に増幅さ
せる工程と、 増幅後の試料を電気泳動にかけ、増幅された上記検出す
べき複数の領域をそれぞれの大きさに基づいて分離する
工程と、 分離された核酸断片を検出する工程とを含む核酸領域の
検出方法。
[Claims] A step of simultaneously amplifying a plurality of regions to be detected with different sizes in a sample DNA or RNA by a gene amplification method, and subjecting the amplified sample to electrophoresis to perform the amplified detection region. A method for detecting a nucleic acid region, the method comprising: separating a plurality of regions based on their respective sizes; and detecting the separated nucleic acid fragments.
JP1165550A 1989-06-28 1989-06-28 Detection of nucleic aid region Pending JPH0330700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1165550A JPH0330700A (en) 1989-06-28 1989-06-28 Detection of nucleic aid region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1165550A JPH0330700A (en) 1989-06-28 1989-06-28 Detection of nucleic aid region

Publications (1)

Publication Number Publication Date
JPH0330700A true JPH0330700A (en) 1991-02-08

Family

ID=15814501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1165550A Pending JPH0330700A (en) 1989-06-28 1989-06-28 Detection of nucleic aid region

Country Status (1)

Country Link
JP (1) JPH0330700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266431A (en) * 2009-04-14 2010-11-25 National Institute Of Advanced Industrial Science & Technology Detection method by migration separation of biopolymer, and support for electrophoresis used for the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NUCLEIC ACIDS RESEARCH=1988 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266431A (en) * 2009-04-14 2010-11-25 National Institute Of Advanced Industrial Science & Technology Detection method by migration separation of biopolymer, and support for electrophoresis used for the method

Similar Documents

Publication Publication Date Title
US20220251618A1 (en) Amplicon rescue multiplex polymerase chain reaction for amplification of multiple targets
US8785130B2 (en) Use of markers including nucleotide sequence based codes to monitor methods of detection and identification of genetic material
JP2002501760A (en) Nucleic acid analysis method
JPH02299599A (en) Diagnosis kit, primer composition, and their use for replication or detection of nucleic acid
JP4047395B2 (en) Method for simultaneous amplification of nucleic acids
US20210363517A1 (en) High throughput amplification and detection of short rna fragments
JP2021000138A (en) Diagnostic methods and compositions
JP2022145606A (en) Highly sensitive methods for accurate parallel quantification of nucleic acids
EP0648222B1 (en) Methods of single nucleotide primer extension to detect specific alleles and kits therefor
JPH09238687A (en) Synthesis of nucleic acid
AU8103687A (en) Improved nucleic acid hybridization technique and kit therefor
Chiocchia et al. Highly sensitive method to detect mRNAs in individual cells by direct RT-PCR using Tth DNA polymerase
WO2008102924A1 (en) Microarray for detection of mitochondrial dna mutation and method for diagnosis of diabetes using the same
KR101236197B1 (en) Differential detection of West nile virus and Japanese encephalitis virus
JPH0330700A (en) Detection of nucleic aid region
KR920007664B1 (en) Methods for purification amplification and detection of a nucleic acid
JP4130487B2 (en) Method for simultaneous amplification of nucleic acids
KR101731400B1 (en) Non-Amplification Method for DNA Detection Using Gold Nanoparticle and Magnetic Bead Particle
EP0466367B1 (en) Process for detecting nucleic acid
CN114480327B (en) Taq DNA polymerase mutant
JPH074275B2 (en) Method and diagnostic test kit for amplifying and detecting nucleic acid
US20180023127A1 (en) Visually determinable genetic testing
JPH07298897A (en) Method for formation,amplification and detection of target nucleic acid using two labeling primers and pcr kit containing said nucleic acid
JP3396218B2 (en) Nucleic acid detection method
KR20240032631A (en) Highly sensitive methods for accurate parallel quantification of variant nucleic acids