JPH0330310A - Aging of electrolytic capacitor - Google Patents

Aging of electrolytic capacitor

Info

Publication number
JPH0330310A
JPH0330310A JP16497989A JP16497989A JPH0330310A JP H0330310 A JPH0330310 A JP H0330310A JP 16497989 A JP16497989 A JP 16497989A JP 16497989 A JP16497989 A JP 16497989A JP H0330310 A JPH0330310 A JP H0330310A
Authority
JP
Japan
Prior art keywords
capacitor
aging
electrolytic capacitor
temperature
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16497989A
Other languages
Japanese (ja)
Other versions
JP2759928B2 (en
Inventor
Mikio Harashima
原島 幹雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP16497989A priority Critical patent/JP2759928B2/en
Publication of JPH0330310A publication Critical patent/JPH0330310A/en
Application granted granted Critical
Publication of JP2759928B2 publication Critical patent/JP2759928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To shorten aging time and operate an electrolytic capacitor efficiently by irradiating the electrolytic capacitor with microwaves and performing aging in a state where the temperature of a capacitor element rises. CONSTITUTION:Direct current voltage is impressed to an electrolytic capacitor 1 to perform aging in a state where a magnetron 10 irradiates its capacitor with microwaves and the temperature of a capacitor element rises. Accordingly, molecules of a small quantity of water contained in electrolyte with which the inside of the capacitor element is impregnated rotate and collide by irradiating the electrolytic capacitor 1 with the microwaves. The inside of the capacitor 1 generates heat by friction resulting from the above rotation and collision of the molecules and then, its temperature rises. Consequently, direct current voltage is impressed to the capacitor 1 in accordance with the normal process and aging is performed. The aging of the capacitor 1 is thus conducted efficiently in a short while.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、電解コンデンナのエージング方法の改良に
関する。
This invention relates to improvements in aging methods for electrolytic condensers.

【従来の技術】[Conventional technology]

電解コンデンサは、アルミニウム、タンタル、ニオブな
どの、表面に絶縁性酸化皮膜が形成されるいわゆる弁金
属を陽極に用い、前記絶縁性酸化皮膜を誘電体層として
用いると共に、対抗する集電用の陰極電極間に電解液を
介在させてコンデンサ素子を形成し、このコンデンサ素
子を金属や合成樹脂・ケースなどの外装ケースに収納し
、外装ケース開口部を封口部材で密閉して製造される。 電解コンデンサの誘電体層を構成する絶縁性の酸化皮膜
は、基材である陽極の弁金属表面を陽、1酸化反応等の
処理操作によって酸化させ、掘めて薄い誘電体層を形成
する。 電解コンデンサの特徴は小型、大容量にあるが、この理
由は誘電体層を形成する酸化皮膜層が例えばアルミニウ
ムにおいては、1■あたり12A程度と極めて薄いこと
と、比誘電率が十数ないしはそれ以上あることによる。 しかしながら、誘電体層が薄いため、誘電体層の形成後
の電解コンデンサの組立工程において、誘電体層が機械
的1員傷を受は破btすることがある。 また陽掘表面に誘電体層を形成後に陽極を所定の大きさ
に切断して用いる場合には、切断面に誘電体層が形成さ
れていないという場合もある。 このような誘電体層の損傷部や未形成部は、電解コンデ
ンサとして使用した場合、この部分に漏れ電流が流れ、
電解コンデンサの電気的特性を著しく1員なうことにな
る。 コンデンサ素子の内部に含浸されている電解液は、誘電
体層に直接接触して真の陰換として機能すると共に、誘
電体層の欠損部において局所的な陽極酸化反応を起こし
、酸化皮膜層の修復、形成の機能を担う。 このように電解コンデンサは、組立時点では漏れ電流が
大きく、そのままでは実用に供せないので、通常は組立
後、電解コンデンサのデバッグを兼ねてエージング処理
がおこなわれる。 エージング処理は、電解コンデンサを常温もしくは最高
使用温度の範囲まで温度上昇させ、所定時間、定電流あ
るいは定電圧源から定格電圧、あるいはサージ電圧程度
まで電圧が上昇するまで直流電圧を印加しておこなわれ
る。これにより、誘電体層である酸化皮膜の…偏部、あ
るいは未形成部は、内部の電解液によって陽極酸化反応
が進行し、酸化皮膜層が形成され、この形成とともに漏
れ電流は徐々に低減し、規定の漏れ電流値以下になった
ところでエージングを糸冬了させる。
Electrolytic capacitors use a so-called valve metal such as aluminum, tantalum, or niobium, which has an insulating oxide film formed on its surface, as an anode, and uses the insulating oxide film as a dielectric layer, as well as an opposing cathode for current collection. It is manufactured by interposing an electrolyte between electrodes to form a capacitor element, housing the capacitor element in an exterior case made of metal or synthetic resin, and sealing the opening of the exterior case with a sealing member. The insulating oxide film constituting the dielectric layer of an electrolytic capacitor is formed by oxidizing the valve metal surface of the anode, which is the base material, by a treatment operation such as a positive or mono-oxidation reaction, and forming a thin dielectric layer. Electrolytic capacitors are characterized by their small size and large capacity.The reason for this is that the oxide film layer that forms the dielectric layer is extremely thin, for example, on aluminum, at about 12A per square inch, and the dielectric constant is in the tens or more. This is due to the above reasons. However, since the dielectric layer is thin, the dielectric layer may be damaged by mechanical damage during the electrolytic capacitor assembly process after the dielectric layer is formed. Further, when the anode is cut into a predetermined size and used after forming a dielectric layer on the excavated surface, the dielectric layer may not be formed on the cut surface. When such damaged or unformed parts of the dielectric layer are used as an electrolytic capacitor, leakage current may flow through these parts.
This significantly affects the electrical characteristics of the electrolytic capacitor. The electrolytic solution impregnated inside the capacitor element directly contacts the dielectric layer and functions as a true anionic converter, and also causes a local anodic oxidation reaction in the defective areas of the dielectric layer, thereby reducing the oxide film layer. Responsible for repair and formation functions. As described above, electrolytic capacitors have a large leakage current at the time of assembly, and cannot be put to practical use as is. Therefore, after assembly, an aging process is usually performed to also serve as debugging of the electrolytic capacitor. Aging treatment is performed by raising the temperature of the electrolytic capacitor to room temperature or the maximum operating temperature range, and applying DC voltage from a constant current or constant voltage source for a predetermined period of time until the voltage rises to the rated voltage or surge voltage. . As a result, the anodic oxidation reaction progresses in the uneven parts or unformed parts of the oxide film, which is the dielectric layer, by the internal electrolyte, forming an oxide film layer, and with this formation, the leakage current gradually decreases. When the leakage current falls below a specified value, the aging process is terminated.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで、エージング処理を加温しておこなうのは、酸
化皮膜層の修復反応を早め、短時間でエージング処理を
終わらせるためである。従来のエージング処理時におけ
る;1111 温方法としては、バッジ処理によるもの
では、断熱材でIWねれた恒温槽内に、電解コンデンサ
を通電治具に取り付けて収納し、所定の温度まで電解コ
ンデンサを上昇させた後エージングをおこなうというも
のである。 また連続製造ラインの場合は、チェーン、ベルトコンベ
アなどにより電解コンデンサを連続して移送する工程の
途中に、トンネル状に恒温槽を配置し、この恒温槽中を
電解コンデンサが移送される間に温度を上昇させ、エー
ジングをおこなっている。 この恒温槽内の温度上昇の手段は、槽内にヒータ等の発
熱手段を設け、直接の輻射熱あるいは送風による対流に
よって電解コンデンサの温度上昇を図っている。しかし
この従来の方法では、電解コンデンサ本体の温度上昇に
時間がかかり、工−ジグ工程が長引くという欠点がある
。また恒温槽内の一定の空間を加熱しなければならない
ことから、電力消費等の無駄も多いという欠点があった
。 この発明は、従来のこのような欠点を改良したもので、
電解コンデンサのエージングを短時間に効率良くおこな
うエージング方法の提供を目的としている。
By the way, the reason why the aging treatment is performed by heating is to hasten the repair reaction of the oxide film layer and finish the aging treatment in a short time. 1111 During conventional aging treatment, in the badge treatment method, an electrolytic capacitor is attached to a current-carrying jig and stored in a constant temperature bath covered with insulation material, and the electrolytic capacitor is heated to a predetermined temperature. After raising the temperature, aging is performed. In addition, in the case of a continuous production line, a constant temperature bath is placed in the form of a tunnel in the middle of the process where electrolytic capacitors are continuously transferred by a chain or belt conveyor, etc., and the temperature increases while the electrolytic capacitors are transferred through this constant temperature bath. The temperature is increased and aging is performed. The means for raising the temperature in this thermostatic chamber is to provide a heat generating means such as a heater in the chamber, and to raise the temperature of the electrolytic capacitor by direct radiant heat or convection by air blowing. However, this conventional method has the disadvantage that it takes time to raise the temperature of the electrolytic capacitor body, prolonging the machining and jigging process. Furthermore, since a certain space within the thermostatic oven must be heated, there is a drawback in that there is a lot of waste, such as power consumption. This invention improves on these conventional drawbacks.
The purpose is to provide an aging method that efficiently ages electrolytic capacitors in a short period of time.

【課題を解決するための手段】[Means to solve the problem]

この発明は、外装部材内部に電解液が含浸されたコンデ
ンサ素子を収納してなる電解コンデンサに、マイクロ波
を照射してコンデンサ素子の温度を上昇させた状態で、
電解コンデンサに直流電圧を印加してエージングをおこ
なうことを特徴としている。 すなわちこの発明によれば、エージング工程での電解コ
ンデンサ本体の加温をマイクロ波の照射によっておこな
い、加温された電解コンデンサを常法に従って直流電圧
を印加してエージングするものである。
In this invention, an electrolytic capacitor, which has a capacitor element impregnated with an electrolytic solution inside an exterior member, is irradiated with microwaves to raise the temperature of the capacitor element.
It is characterized by aging by applying DC voltage to the electrolytic capacitor. That is, according to the present invention, the electrolytic capacitor main body is heated in the aging process by microwave irradiation, and the heated electrolytic capacitor is aged by applying a DC voltage according to a conventional method.

【作   用】[For production]

この発明によれば、電解コンデンサにマイクロ波を照射
することにより、コンデンサ素子の内部に含浸されてい
る電解液に含まれる少量の水の分子の回転、衝突に伴う
摩擦による発熱で、コンデンサ素子内部を温度上昇させ
ることができる。 マイクロ波は、周波数2.45GHz程度の高周波をマ
グネトロンなどの発振素子から照射するごとで得られる
。 電解コンデンサは、通常アルミニウム等の有底筒状の外
装ケースにコンデンサ素子が収納されており、マイクロ
波は通常金属で反射するために外装ケース面から内部へ
は照射されない。しかし1.10部は弾性ゴム部材等か
らなるので、マイクロ波は通常この封口部を通じてコン
デンサ素子内部に照射され発熱昇温する。外装ケースが
合成樹脂等の場合には、外装ケース面からもマイクロ波
が内部に浸透するので、照射時間あるいは照射エネルギ
ーを短縮もしくは減少させることができる。
According to this invention, by irradiating an electrolytic capacitor with microwaves, a small amount of water molecules contained in an electrolytic solution impregnated inside the capacitor element rotate and generate heat due to friction caused by collision, which causes the inside of the capacitor element to be heated. The temperature can be increased. Microwaves are obtained by irradiating high frequency waves with a frequency of about 2.45 GHz from an oscillation element such as a magnetron. In an electrolytic capacitor, a capacitor element is usually housed in a bottomed cylindrical outer case made of aluminum or the like, and since microwaves are usually reflected by metal, they are not irradiated into the interior from the outer case surface. However, since the 1.10 part is made of an elastic rubber member or the like, the microwave is normally irradiated into the inside of the capacitor element through this sealing part, causing heat generation and temperature rise. When the outer case is made of synthetic resin or the like, the microwave penetrates into the interior from the outer case surface, so the irradiation time or irradiation energy can be shortened or reduced.

【実 施 例】【Example】

以下実施例に基づいてこの発明を説明する。 第1図はこの発明による連続エージングをおこなう装置
の概要を示したものである。図において、電解コンデン
サ1は前段の組立工程において、陽極電極、陰極電極、
セパレータを重ね合わせて巻回したコンデンサ素子に電
解液を含浸したものを外装ケース内に収納し、外装ケー
スの開口部を弾性部材で密封したものである−また弾性
部材を貫通して内部から引き出された外部リード2.3
が取り付けられている。 この電解コンデンサ1は、エージング工程において、エ
ージング治具4に取り付けられる。エージング治具4は
、中央部に絶縁性の板状部材5が立設されており、電解
コンデンサ1の外部リード2.3はこの板状部材5を跨
ぐよ・うに両側面へ挿入される。板状部材5の側面には
、バネ性を有する金属板からなる接触端子6.7が取り
付けられており、この接触端子6.7の弾性力によって
外部リード2.3は挟持され、電解コンデンサ1はエー
ジング治具4に固定される。 接触端子6.7は電解コンデンサ1を固定するとともに
、各々が外部と電気的な接続を持ち、図示しない外部の
直流電源に接続されており、電解コンデンサ1ヘエージ
ングのための直流電圧を印加している。 このエージング治具4は図面の垂直方向に連続した形状
を成しており、複数の電解コンデンサlが連続して取り
付けられている。このエージング治具4は、ベルトコン
ベア、チェーンなどの移送装置8に取り付けられ、順次
移動して連続処理が可能なようになっている。 そして加温エージング処理がなされる電解コンデンサ1
は、金属製のパンチングメタルなどからなるマイクロ波
を拡散を防ぐシールドケース9内を通る際に、マグネト
ロン10からマイクロ波を照射され、内部のコンデンサ
素子の温度が上昇する。 なお、11はマグネトロン10を駆動するための高周波
電源である。 マイクロ波の照射方法は、連続的な照射によって所定温
度まで一気に上昇させてもよいし、短い時間づづ分断照
射してもよい。また−度温度が上昇した電解コンデンサ
は、マイクロ波の照射が終わると徐々に温度が下がるの
で、一定時間後に再度照射する等の方法が選択できる。 また電解コンデンサの温度低下を防ぐために、シールド
ケース9の外部を断熱材で覆ってもよい。 次にこの発明の方法と、従来の恒温槽内で昇温した場合
との温度上昇の変化を調べた。 使用した電解コンデンサは、定格電圧50V、定格静電
容量1000μFのもので、本体部分の外形寸法は直径
12.5M、長さ25Mの円筒形をしており、コンデン
サ素子は巻回された素子を使用し、端面から一方の端面
から一組の陽極リードと陰極リードとが引き出された構
造のものである。そして外装ケースには、有底筒状のア
ルミニウム類のケースが用いられ、開口部は弾性ゴムで
密閉されている。 この電解コンデンサのコンデンサ素子の中央部に光フア
イバサーモメークのプローブの先端を埋設し、その温度
変化を見るようにした。そしてコンデンサ素子の温度が
85′Cまで上昇する様子を記録した。 この発明の方法によるものは、電解コンデンサを通常の
室温中で固定台に配置し、マグネトロンの照射位置を電
解コンデンサの封口体の部分に向くように配置するとと
もに、電解コンデンサの外周をパンチングメタルで覆っ
て、マイクロ波が外部に漏れないようにシールドを施し
た。 マイクロ波の照射条件は、発振周波数2.45GHz、
出力500Wのものを用い、連続照射した。 一方従来例として、温風循環式の恒温槽内に同じ定格の
電解コンデンサを収納し、温度上昇を318べた。この
恒温槽は、ヒーターが熱せられた温風をファンを使って
槽内を循環させるもので、温風は吹き出し孔で約90°
Cである。 これらの温度変化を第2図のグラフに示す。 このグラフから明らかなように、この発明の方法を用い
たものは、僅か3分30秒でコンデンサ素子の温度が所
定の85゛Cまで上昇した。一方従来の恒温槽による方
法では、85°Cに上昇するまでに21分を要した。
The present invention will be explained below based on Examples. FIG. 1 shows an outline of an apparatus for performing continuous aging according to the present invention. In the figure, an electrolytic capacitor 1 has an anode electrode, a cathode electrode,
A capacitor element made by winding separators overlapping each other and impregnated with electrolyte is stored in an outer case, and the opening of the outer case is sealed with an elastic member. External lead 2.3
is installed. This electrolytic capacitor 1 is attached to an aging jig 4 in an aging process. The aging jig 4 has an insulating plate-like member 5 erected in the center thereof, and the external leads 2.3 of the electrolytic capacitor 1 are inserted into both sides of the plate-like member 5 so as to straddle the same. A contact terminal 6.7 made of a metal plate having spring properties is attached to the side surface of the plate member 5, and the external lead 2.3 is held by the elastic force of the contact terminal 6.7, and the electrolytic capacitor 1 is fixed to the aging jig 4. The contact terminals 6.7 fix the electrolytic capacitor 1, and each has an electrical connection with the outside, and is connected to an external DC power source (not shown) to apply a DC voltage for aging the electrolytic capacitor 1. ing. This aging jig 4 has a continuous shape in the vertical direction of the drawing, and a plurality of electrolytic capacitors 1 are successively attached thereto. The aging jig 4 is attached to a transfer device 8 such as a belt conveyor or chain, and is moved sequentially to enable continuous processing. And electrolytic capacitor 1 subjected to heating aging treatment
is irradiated with microwaves from the magnetron 10 as it passes through a shield case 9 made of punched metal or the like that prevents microwaves from being diffused, and the temperature of the internal capacitor element rises. Note that 11 is a high frequency power source for driving the magnetron 10. As for the microwave irradiation method, the temperature may be raised to a predetermined temperature all at once by continuous irradiation, or it may be irradiated in parts for short periods of time. Furthermore, since the temperature of an electrolytic capacitor whose temperature has increased by - degrees will gradually drop after the microwave irradiation ends, it is possible to choose a method such as re-irradiating the capacitor after a certain period of time. Further, in order to prevent the temperature of the electrolytic capacitor from decreasing, the outside of the shield case 9 may be covered with a heat insulating material. Next, we investigated the change in temperature rise between the method of the present invention and the conventional case where the temperature was raised in a constant temperature bath. The electrolytic capacitor used has a rated voltage of 50 V and a rated capacitance of 1000 μF. The external dimensions of the main body are cylindrical with a diameter of 12.5 m and a length of 25 m. The capacitor element is a wound element. It has a structure in which a set of anode lead and cathode lead are drawn out from one end face. The exterior case is a cylindrical aluminum case with a bottom, and the opening is sealed with elastic rubber. The tip of an optical fiber thermomake probe was buried in the center of the capacitor element of this electrolytic capacitor to observe temperature changes. The temperature of the capacitor element was then recorded to rise to 85'C. According to the method of this invention, an electrolytic capacitor is placed on a fixed stand at normal room temperature, the irradiation position of the magnetron is placed to face the sealing part of the electrolytic capacitor, and the outer periphery of the electrolytic capacitor is covered with a punching metal. A shield was applied to prevent microwaves from leaking outside. The microwave irradiation conditions were an oscillation frequency of 2.45 GHz,
Continuous irradiation was performed using a device with an output of 500 W. On the other hand, as a conventional example, an electrolytic capacitor of the same rating was housed in a thermostatic oven with hot air circulation, and the temperature rise was 318%. This thermostat uses a fan to circulate warm air heated by a heater inside the tank, and the hot air is heated at an angle of about 90
It is C. These temperature changes are shown in the graph of FIG. As is clear from this graph, when the method of the present invention was used, the temperature of the capacitor element rose to the predetermined temperature of 85°C in just 3 minutes and 30 seconds. On the other hand, in the conventional method using a constant temperature bath, it took 21 minutes to raise the temperature to 85°C.

【発明の効果】【Effect of the invention】

以上述べたように、この発明によれば、電解コンデンサ
を加温エージングする場合において、掘めて短時間のう
ちに電解コンデンサの素子を所定の温度まで上昇させエ
ージングをおこなうことができる。このため、エージン
グ処理の時間が短縮でき、電解コンデンサの製造効率を
向上させることができる。 また、コンデンサ素子のみを加温するために、従来のご
とく、巨大な恒温槽設備が不要になり、しかも加温に余
分な電力を使う必要もない。
As described above, according to the present invention, when aging an electrolytic capacitor by heating, it is possible to raise the element of the electrolytic capacitor to a predetermined temperature within a short time and perform aging. Therefore, the time for aging treatment can be shortened, and the manufacturing efficiency of electrolytic capacitors can be improved. In addition, since only the capacitor element is heated, there is no need for a huge constant temperature bath facility as in the past, and there is no need to use extra electricity for heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のエージング方法に用いられるエージ
ング装置の概略を示した説明図、第2図はこの発明と従
来の方法とによる電解コンデンサ内部の温度上昇を示す
グラフである。 l・・・電解コンデンサ 2.3・・・外部リード4・
・・エージング治具 5・・・板状部材6.7・・・接
触端子  8・・・移送装置9・・・シールドケース 11・・・高周波電源 10・・・マグネトロン
FIG. 1 is an explanatory diagram showing the outline of an aging apparatus used in the aging method of the present invention, and FIG. 2 is a graph showing the temperature rise inside an electrolytic capacitor according to the present invention and the conventional method. l... Electrolytic capacitor 2.3... External lead 4.
...Aging jig 5...Plate member 6.7...Contact terminal 8...Transfer device 9...Shield case 11...High frequency power source 10...Magnetron

Claims (1)

【特許請求の範囲】[Claims] (1)外装部材内部に電解液が含浸されたコンデンサ素
子を収納してなる電解コンデンサに、マイクロ波を照射
してコンデンサ素子の温度を上昇させた状態で、電解コ
ンデンサに直流電圧を印加してエージングをおこなうこ
とを特徴とする電解コンデンサのエージング方法。
(1) An electrolytic capacitor, which has a capacitor element impregnated with electrolyte inside its exterior member, is irradiated with microwaves to raise the temperature of the capacitor element, and then a DC voltage is applied to the electrolytic capacitor. A method for aging electrolytic capacitors, which is characterized by aging.
JP16497989A 1989-06-27 1989-06-27 Aging method for electrolytic capacitors Expired - Lifetime JP2759928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16497989A JP2759928B2 (en) 1989-06-27 1989-06-27 Aging method for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16497989A JP2759928B2 (en) 1989-06-27 1989-06-27 Aging method for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH0330310A true JPH0330310A (en) 1991-02-08
JP2759928B2 JP2759928B2 (en) 1998-05-28

Family

ID=15803526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16497989A Expired - Lifetime JP2759928B2 (en) 1989-06-27 1989-06-27 Aging method for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP2759928B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545908A (en) * 1991-12-09 1996-08-13 Nippondenso Co., Ltd. Vertical type insulated-gate semiconductor device
US5753943A (en) * 1995-03-07 1998-05-19 Nippondenso Co., Ltd. Insulated gate type field effect transistor and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545908A (en) * 1991-12-09 1996-08-13 Nippondenso Co., Ltd. Vertical type insulated-gate semiconductor device
US5753943A (en) * 1995-03-07 1998-05-19 Nippondenso Co., Ltd. Insulated gate type field effect transistor and method of manufacturing the same
US6146947A (en) * 1995-03-07 2000-11-14 Nippondenso Co., Ltd. Insulated gate type field effect transistor and method of manufacturing the same

Also Published As

Publication number Publication date
JP2759928B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US6231993B1 (en) Anodized tantalum pellet for an electrolytic capacitor
US5790368A (en) Capacitor and manufacturing method thereof
US5017272A (en) Method for forming a conductive film on a surface of a conductive body coated with an insulating film
JPH0330310A (en) Aging of electrolytic capacitor
CN110670105B (en) Pulse-direct current alternate mixed anodic oxidation method of anode foil for aluminum electrolytic capacitor
US2057315A (en) Electrolytic device
US3079536A (en) Film-forming metal capacitors
JP2005129622A (en) Manufacturing method of solid electrolytic capacitor
US2989447A (en) Manufacture of dry electrolytic devices
US6334945B1 (en) Aging process for solid electrode capacitor
JP3408125B2 (en) Method and apparatus for manufacturing organic solid electrolytic capacitor
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JPH03200313A (en) Manufacture of solid electrolytic capacitor
US2785116A (en) Method of making capacitor electrodes
US2714565A (en) Method of and apparatus for cleaning capacitor foils
US3649878A (en) Nonpolar solid electrolytic capacitor
JP3250310B2 (en) Method of forming anode foil for aluminum electrolytic capacitor
JPH06342740A (en) Manufacture of electrode foil for electrolytic capacitor
JPH0638386B2 (en) Aging method for electrolytic capacitors
JPH03250723A (en) Manufacture of solid electrolytic capacitor
JPH02277212A (en) Tantalum electrolytic capacitor and its manufacture
JP3591739B2 (en) Method for manufacturing solid electrolytic capacitor
JPH02267915A (en) Manufacture of solid-state electrolytic capacitor
JPH0513286A (en) Solid electrolytic capacitor
JPH10112423A (en) Formation method for anodic foil for aluminum electrolytic capacitor