JPH0329917A - Optical coordinate transforming device - Google Patents

Optical coordinate transforming device

Info

Publication number
JPH0329917A
JPH0329917A JP16492789A JP16492789A JPH0329917A JP H0329917 A JPH0329917 A JP H0329917A JP 16492789 A JP16492789 A JP 16492789A JP 16492789 A JP16492789 A JP 16492789A JP H0329917 A JPH0329917 A JP H0329917A
Authority
JP
Japan
Prior art keywords
light
coordinate
image
transformed image
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16492789A
Other languages
Japanese (ja)
Inventor
Yasuyuki Mitsuoka
靖幸 光岡
Toshiji Takei
利治 武居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP16492789A priority Critical patent/JPH0329917A/en
Publication of JPH0329917A publication Critical patent/JPH0329917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Holo Graphy (AREA)

Abstract

PURPOSE:To always obtain a proper coordinate transformed image by detecting the light intensity and its variance of the coordinate transformed image and changing the light intensity of the coordinate transformed image or the light reception sensitivity of a photodetector in accordance with detection results. CONSTITUTION:The coherent light emitted from a laser 1 is expanded by a beam expander 2 and passes a spatial optical modulator 3 where an input image is written and a coordinate transforming filter 4 and is subjected to Fourier transformation by a Fourier transforming lens 5 and passes a beam splitter 6 to obtain the coordinate transformed image of the input image on the photode tector (A) 7. The light branched by the beam splitter 6 is received by a photode tector (B) 8, and the output of the laser 1 is controlled by a laser control part 9 based on the signal outputted from this photodetector. Thus the light reception sensitivity of the photodetector or the light intensity of the coordinate transformed image is adjusted to always obtain the proper coordinate transformed image though the light intensity of the desired coordinate transformed image is changed by the change of the size, the shape, or the like of an object.

Description

【発明の詳細な説明】 〔産業上の利用分瞥〕 本発明は、光訓測や光情報処理等に利用される光学的座
標変換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to an optical coordinate conversion device used for optical measurement, optical information processing, etc.

〔発四の概要〕[Summary of Hatsushi]

本発明は、光学的座標変換装置において、座標変換の対
象となる人力像の大きさや形状等が変化すると適疋な座
標変換イ象が得られなくなるという問題点を、座標変換
像の光強、度やその変化を検出し、それに応して座標変
換像の光強度を変化させるか、又は受光素子の受光感度
を変化さセることにより、常に適疋な座標変換像が得ら
れるようにしたものである。
The present invention solves the problem that an appropriate coordinate transformation image cannot be obtained when the size, shape, etc. of a human image that is a target of coordinate transformation changes in an optical coordinate transformation device. By detecting the angle and its changes and changing the light intensity of the coordinate transformation image accordingly, or changing the light receiving sensitivity of the light receiving element, an appropriate coordinate transformation image can always be obtained. It is something.

〔従来の技術〕[Conventional technology]

例えば文字や部品のように、形状・大きさ・向き・位置
等が異なる物体を計測、認識する場合、第1に対象物を
2次元の画像(入力像)に変換し、第2にその入力像を
所望の座標系に変換し、第3にその座標変換像に対して
計測や認識を行うという手順が一般的である。
For example, when measuring and recognizing objects with different shapes, sizes, orientations, positions, etc., such as characters or parts, firstly, the object is converted into a two-dimensional image (input image), and secondly, the input A common procedure is to transform an image into a desired coordinate system, and then thirdly perform measurement and recognition on the coordinate transformed image.

ここで、Iel4標変換の種頂としては、向きの異なる
物体に対して認、識や四転時の31測等を行う場合には
極座標変換、向きも大きさも共に異なる物体に対して認
識や回転角・倍率の計測等を行う場合には7!,,r〜
θ変換など、目的に応して様々な種類がある。
Here, the seeds of Iel 4 coordinate transformation include polar coordinate transformation when performing recognition and recognition for objects with different orientations, 31 measurements during quadruple rotation, etc., and recognition and recognition for objects with different orientations and sizes. 7 when measuring rotation angles and magnifications, etc. ,,r~
There are various types depending on the purpose, such as θ conversion.

上記の座標変換を光学的に行う一般的な方法を第2図に
示す。これは、フーリエ変換レンズ24の前焦点面に入
力像22と座標変換フィルタ23を重ねて配置し、その
人力像22の背後からコヒーレント光21照射ずること
により、フーリエ変換レンズ24の後焦点面に配置した
受光素子25に座標変換像を得るものである。また、上
記座標変換フィルタ23は、計算機ホrJグラムにより
作成ざれる。
A general method for performing the above coordinate transformation optically is shown in FIG. This is achieved by arranging the input image 22 and the coordinate conversion filter 23 superimposed on the front focal plane of the Fourier transform lens 24, and by irradiating the coherent light 21 from behind the human image 22, the input image 22 and the coordinate conversion filter 23 are placed on the front focal plane of the Fourier transform lens 24. A coordinate transformed image is obtained on the arranged light receiving element 25. Further, the coordinate conversion filter 23 is created using a computer-generated hologram.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来は言1測や認識する対象物の大きさ
や形状が変化した場合、適正な座標変換像が得られなく
なるという問題点を有していた。例えば、対象物の大き
さが小さくなった場合、空間光変調器上に書き込まれる
2次元の入力像は小さくなる。その空間光変調器に=1
ヒーレン1・光を照射すると、空間光変調器を透過する
金光量は減少するので、座標変換像の光強度は減少する
。そのために、受光素子の受光感度に対して、座標変換
像の光強度が小さすぎて座標変換像が受光できなくなる
ことが生しる。逆に、対象物が大きい場合には、座標変
換像の光強度が大きすぎて座標変換像が受光できなくな
る。
However, conventional methods have had the problem that if the size or shape of the object to be recognized changes, an appropriate coordinate transformation image cannot be obtained. For example, if the size of the object becomes smaller, the two-dimensional input image written on the spatial light modulator becomes smaller. = 1 for that spatial light modulator
When the Heeren 1 light is irradiated, the amount of gold light transmitted through the spatial light modulator decreases, so the light intensity of the coordinate transformed image decreases. Therefore, the light intensity of the coordinate-transformed image is too small relative to the light-receiving sensitivity of the light-receiving element, and the coordinate-transformed image cannot be received. On the other hand, if the object is large, the light intensity of the coordinate transformed image will be too high and the coordinate transformed image will not be able to be received.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明においては少なくと
も1個のコヒーレント光源と座標変換の幻象となる2次
元の入力像を保持している空間光変調器と前記空間光変
調器に重ねて配置した座標変換フィルタとレンズと受光
素子から戒る所望の座標変換像を得る手段と、前記座標
変換像の光強度又は前記光強度の変化を計測する手段と
、前記光強度を又は前記光強度の変化に応して、前記光
強度変化させる手段又は前記受光素子の受光感度を変化
さセる手段を有する。
In order to solve the above problems, in the present invention, at least one coherent light source and a spatial light modulator holding a two-dimensional input image that is an illusion of coordinate transformation are placed over the spatial light modulator. means for obtaining a desired coordinate transformation image from a coordinate transformation filter, a lens, and a light receiving element; a means for measuring the light intensity of the coordinate transformation image or a change in the light intensity; and a means for measuring the light intensity or a change in the light intensity. The light receiving device includes means for changing the light intensity or means for changing the light-receiving sensitivity of the light-receiving element.

〔作用〕[Effect]

上記のような構威にすれば、対象物の大きさや形状等が
変化により、所望の座標変換像の光強度3 が変化しても、受光素子の受光感度を調整することや、
座標変換像の光強度を調整することにより、常に適正な
座標変換像を得ることができる。
With the above structure, even if the light intensity 3 of the desired coordinate transformation image changes due to changes in the size or shape of the object, the light receiving sensitivity of the light receiving element can be adjusted.
By adjusting the light intensity of the coordinate transformed image, an appropriate coordinate transformed image can always be obtained.

〔実施例〕〔Example〕

以下に本発明による実施例を、図面に基づいて説明する
Embodiments according to the present invention will be described below based on the drawings.

(第1実施例) 第1図は、本発明による光学的座標変換装置の一実施例
を示ず構或図である。レーザー1から出射されたコヒー
レント光は、ビーl、エキスパンダー2により光束が拡
大された後、入力像が書き込まれている空間光変調器3
,座標変換フィルタ4を透過し、フーリエ変換レンズ5
でフーリエ変換され、ビームスプリソタ6を透過して、
受光素子(4)7 (例えばCCDカメラ)に入力倣の
座標変換像が得られる。ただし、フーリエ変換レンズ5
の前焦点面に空間光変調器3と座標変換フィルタ4を重
ねて配置し、後焦点面に受光素子(Al7を配置する。
(First Embodiment) FIG. 1 is a diagram showing the structure of an embodiment of an optical coordinate conversion device according to the present invention. After the coherent light emitted from the laser 1 is expanded by a beam L and an expander 2, it is sent to a spatial light modulator 3 on which an input image is written.
, passes through the coordinate transformation filter 4, and passes through the Fourier transformation lens 5.
The beam is Fourier transformed and transmitted through the beam splitter 6.
A coordinate transformed image of the input pattern is obtained on the light receiving element (4) 7 (for example, a CCD camera). However, the Fourier transform lens 5
A spatial light modulator 3 and a coordinate conversion filter 4 are placed in an overlapping manner on the front focal plane, and a light receiving element (Al7) is placed on the back focal plane.

ビームスプリンタ6で分岐された光は受光素子(1′1
8で受光され、受光素子(凶8から出ノjされ4 る信号をもとに、レーザー制御部9でレーザーlの出力
を制9卸ずる構戒になっている。
The light branched by the beam splinter 6 is sent to a light receiving element (1'1
Based on the signal received by the light receiving element 8 and output from the light receiving element 8, the laser control section 9 controls the output of the laser 1.

次に動作について説明する。例えば、空間光変調器3」
二に書き込まれている入力像が小さくなった場合につい
て考える。入力像がボジ状態で空間光変調器3上に書き
込まれていると、入力像が小さくなるとそれに応して空
間光変調器3を透過する光量が減少する。このため、受
光素子■7上にできる座標変換像の光強度は減少し、受
光範囲外になってしまうので、そのままでは受光素子■
7には座標変換像の1部しか得られない等ということが
生しる。この場合、受光素子08に入射する光量も減少
しているので、受光素子08から出力される信号によっ
て、座標変換像の光強度が滅少したことがわかる。そこ
で、受光素子((3)8から出力される信号を基に、レ
ーザー制御部9でレーザー1の出力が増大するように制
御すると、受光素子(4)7上にできる座標変換像の光
強度が強くなる。
Next, the operation will be explained. For example, spatial light modulator 3''
Consider the case where the input image written in the second section becomes smaller. If the input image is written on the spatial light modulator 3 in a blur state, when the input image becomes smaller, the amount of light passing through the spatial light modulator 3 decreases accordingly. For this reason, the light intensity of the coordinate-converted image formed on the light-receiving element 7 decreases, and it goes outside the light-receiving range.
7, only a part of the coordinate transformation image can be obtained. In this case, since the amount of light incident on the light receiving element 08 has also decreased, it can be seen from the signal output from the light receiving element 08 that the light intensity of the coordinate transformed image has decreased. Therefore, if the laser control section 9 controls the output of the laser 1 to increase based on the signal output from the light receiving element ((3) 8), the light intensity of the coordinate transformed image formed on the light receiving element (4) 7 becomes stronger.

以上のフィードハソクにより、受光素子(Al7には適
正な座標変換像が得られることになる。逆に、入力像が
大きくなった場合は、上記と逆のフィドハソクをか↓ノ
れば良いこと+j言うまでもない。
With the above feed hask, an appropriate coordinate transformation image will be obtained for the light receiving element (Al7).On the other hand, if the input image becomes large, it goes without saying that all you need to do is perform the feed hask in the opposite direction to the above. stomach.

(第2実施例) 第3図は、本発明による光学的座標変換装置の他の実施
例を示す措成図である。人力像を座標変換し、受光する
手段は前記第1実施例と同しであるので省略する。第3
図では、レーり′−1から受光素子(4)7までの光路
上の任意の位置に可変式NDフィルタI2を配置し、そ
の可変式NDフィルタ12を回転さセるステソピングモ
ータ11と、そのステソピングモータ11を制御ずるモ
ータ制御部10を設ける。そして、受光素子+1318
から出力される信号をもとに、モータ制御部10はステ
ソピングモク11を匍H卸ずる。
(Second Embodiment) FIG. 3 is a diagram showing another embodiment of the optical coordinate conversion device according to the present invention. The means for converting the coordinates of the human-powered image and receiving the light are the same as in the first embodiment, and will therefore be omitted. Third
In the figure, a variable ND filter I2 is arranged at an arbitrary position on the optical path from the laser beam 1 to the light receiving element (4) 7, and a stethoping motor 11 rotates the variable ND filter 12; A motor control section 10 for controlling the stethoping motor 11 is provided. And the light receiving element +1318
Based on the signal output from the motor controller 10, the motor controller 10 lowers the stethoscope 11.

−1−記構戒によるど、例えば人力像が小さくなった場
合、第1実施例と同様に受光素子(])8から出力され
る信号によって、座標変換像の光強度が減少したことが
わかる。そこで、受光素子e8から出力される信号をも
とに、モータ制御部10によってステノピングー[一夕
11を制1卸し、可変弐N Dフィルタ12を回転させ
て、可変式NDフィルタ12を透過する光量を増大させ
ると、座標変換像の光強度は強くなる。以上のフィード
ハノクにより、受光素子内7には適正な座標変換像が得
られることになる。
-1- According to the memorandum, for example, when the human power image becomes smaller, it can be seen that the light intensity of the coordinate transformed image decreases from the signal output from the light receiving element (]) 8, as in the first embodiment. . Therefore, based on the signal output from the light receiving element e8, the motor controller 10 controls the steno pin 11, rotates the variable ND filter 12, and transmits the light through the variable ND filter 12. When the amount of light is increased, the light intensity of the coordinate transformed image becomes stronger. Due to the feed function described above, an appropriate coordinate transformed image is obtained in the light receiving element 7.

ここで、光量を調節するために可変式フィルタ12を用
いているが、例えば液晶TVのように外部からの電気信
号により透過光量を調節できるものであれば良いことは
言うまでもない。
Here, the variable filter 12 is used to adjust the amount of light, but it goes without saying that any filter that can adjust the amount of transmitted light by an external electrical signal, such as a liquid crystal TV, may be used.

(第3実施例) 第4図は、本発明による光学的座標変換装置の他の実施
例を示す構威図である。人力像を座標変換し、受光する
手段は前記実施例と同しであるので省略する。第4図で
は、受光素子+138から出力される信号をもとに、受
光素子(Al7の受光感度を調節する。
(Third Embodiment) FIG. 4 is a structural diagram showing another embodiment of the optical coordinate conversion device according to the present invention. The means for converting the coordinates of a human-powered image and receiving light are the same as in the previous embodiment, and will therefore be omitted. In FIG. 4, the light receiving sensitivity of the light receiving element (Al7) is adjusted based on the signal output from the light receiving element +138.

例えば人力像が小さくなった場合、前記実施例と同様に
、受光素子(1′318から出力される信号によって、
座標変換像の光強度が減少したことがわかる。そこで、
受光素子03Bから出力される信号を7 もとに、受光素子(自)7の受光感度を調節し、弱い光
強度でも受光できるようにする。以上のフィトハノクに
より、受光素子(A]7には適正な座標変換像が得られ
ることになる。
For example, when the human image becomes smaller, the signal output from the light receiving element (1'318)
It can be seen that the light intensity of the coordinate transformed image has decreased. Therefore,
Based on the signal output from the light receiving element 03B, the light receiving sensitivity of the light receiving element (self) 7 is adjusted so that it can receive light even at a weak light intensity. Due to the above-mentioned function, an appropriate coordinate transformation image can be obtained on the light receiving element (A) 7.

ここで、上記3つの実施例において、座標変換像の受光
素子(A)7として例えばCCDカメラが考えられるが
、他にBS○結晶やフィルム等でも良いことは言うまで
もない。その場合、第4図において受光感度を調節ずる
ことば、T3 S O結晶に印加する電圧の変化や、フ
ィルムの感度や露光時問の変化に対応ずる。
Here, in the above three embodiments, a CCD camera, for example, can be considered as the light receiving element (A) 7 for the coordinate transformed image, but it goes without saying that other materials such as a BS○ crystal or a film may also be used. In this case, in FIG. 4, the light-receiving sensitivity is adjusted according to changes in the voltage applied to the T3 SO crystal, changes in film sensitivity, and changes in exposure time.

また、上記3つの実施例において、ビームスプリンタ6
はフーリエ変換レンズ5と受光素子■7の間の光路上に
配置しているが、空間光変調器3より後の光路」二であ
れば任意の位置で良いことは言うまでもない。
In addition, in the above three embodiments, the beam splinter 6
is placed on the optical path between the Fourier transform lens 5 and the light receiving element 7, but it goes without saying that it may be placed at any position on the optical path after the spatial light modulator 3.

また、上記3つの実施例においてビームスプリンタ6と
受光素子((3)8を用いて、光を分岐さ・lて、座標
変換像の光強度やその変化を測定しているが、座標変換
像の受光素子(4)7としてC C I)カメラ等8 を使えず、CCDカメラからの出力をもとにレーザー1
の出力やNDフィルタ12の回転角、受光素子■7であ
るCCDカメラの受光感度を変えることができるので、
ビームスプリンタ6や受光素子+1318は不要になる
ことは言うまでもない。
In addition, in the three embodiments described above, the beam splinter 6 and the light receiving element ((3) 8 are used to split the light and measure the light intensity and its changes in the coordinate transformed image. Since the CCD camera, etc. 8 cannot be used as the light receiving element (4) 7, the laser 1 is used based on the output from the CCD camera.
The output of the ND filter 12, the rotation angle of the ND filter 12, and the light receiving sensitivity of the CCD camera which is the light receiving element 7 can be changed.
Needless to say, the beam splinter 6 and the light receiving element +1318 become unnecessary.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、座標変換の対象となる入力像の大
きさや形状等が変化しても、常に適正な座標変換像が得
られるので、計測に用いた場合には桔度が向」ニし、ま
た認識に用いた場合にはその信頼性が向上ずる。
As explained above, even if the size, shape, etc. of the input image that is the target of coordinate transformation changes, an appropriate coordinate transformation image is always obtained, so when used for measurement, the squareness will be in the opposite direction. , and when used for recognition, its reliability is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光学的座標変換装置の一実施例を
示す構成図、第2図は従来の光学的座標変換方法の一例
を示す図、第3図は本発明による光学的座標変換装置の
他の実施例を示す構威図、第4図は本発明による光学的
座標変換装置の他の実施例を示す構或図である。 1・・・レーザ 2 ・ ・ 3 ・ ・ 4 ・ ・ 5 ・ ・ 6 ・ ・ 7 ・ ・ 8 ・ ・ 9 ・ ・ 10・ ・ 1l・ ・ 12・ ・ 21 ・ ・ 22・ ・ 23・ ・ 24・ ・ 25・ ・ fL ・ ・ヒームエキスパンダ ・空間光変調器 ・座標変換フィルタ ・フーリエ変換レンズ ・ビームスプリンタ ・受光素子(4) ・受光素子(D ・レーザー制御部 ・モータ制御部 ・モータ ・可変式NDフィルタ ・コヒーレント光 ・人力像 ・座標変換フィルタ ・フーリエ変換レンズ ・受光素子 ・フーリエ変換レンズの!!人点距離 以」二
FIG. 1 is a block diagram showing an embodiment of an optical coordinate conversion device according to the present invention, FIG. 2 is a diagram showing an example of a conventional optical coordinate conversion method, and FIG. 3 is a block diagram showing an optical coordinate conversion device according to the present invention. Fig. 4 is a structural diagram showing another embodiment of the optical coordinate conversion device according to the present invention. 1...Laser 2 ・ ・ 3 ・ ・ 4 ・ ・ 5 ・ ・ 6 ・ ・ 7 ・ ・ 8 ・ ・ 9 ・ ・ 10 ・ 1l ・ 12 ・ ・ 21 ・ 22 ・ 23 ・ ・ 24 ・25・・fL・・Heam expander・Spatial light modulator・Coordinate conversion filter・Fourier transform lens・Beam splinter・Photodetector (4)・Photodetector (D・Laser control unit・Motor control unit・Motor・Variable type ND filter, coherent light, human power image, coordinate conversion filter, Fourier transform lens, light receiving element, Fourier transform lens!!

Claims (1)

【特許請求の範囲】[Claims]  CCDカメラ等の撮像装置から得られる2次元画像と
、コヒーレント光を用いて座標変換する装置において、
少なくとも1個のコヒーレント光源と座標変換の対象と
なる2次元の入力像を保持している空間光変調器と前記
空間光変調器に重ねて配置した座標変換フィルタとレン
ズと受光素子から成る所望の座標変換像を得る手段と、
前記座標変換像の光強度又は前記光強度の変化を計測す
る手段と、前記光強度又は前記光強度の変化に応じて、
前記光強度を変化させる手段又は前記受光素子の受光感
度を変化させる手段を有することを特徴とする光学的座
標変換装置。
In a device that performs coordinate transformation using a two-dimensional image obtained from an imaging device such as a CCD camera and coherent light,
A desired light source comprising at least one coherent light source, a spatial light modulator holding a two-dimensional input image to be subjected to coordinate transformation, a coordinate transformation filter placed over the spatial light modulator, a lens, and a light receiving element. means for obtaining a coordinate transformation image;
means for measuring the light intensity of the coordinate transformed image or a change in the light intensity; and depending on the light intensity or the change in the light intensity,
An optical coordinate conversion device characterized by comprising means for changing the light intensity or means for changing the light-receiving sensitivity of the light-receiving element.
JP16492789A 1989-06-27 1989-06-27 Optical coordinate transforming device Pending JPH0329917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16492789A JPH0329917A (en) 1989-06-27 1989-06-27 Optical coordinate transforming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16492789A JPH0329917A (en) 1989-06-27 1989-06-27 Optical coordinate transforming device

Publications (1)

Publication Number Publication Date
JPH0329917A true JPH0329917A (en) 1991-02-07

Family

ID=15802489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16492789A Pending JPH0329917A (en) 1989-06-27 1989-06-27 Optical coordinate transforming device

Country Status (1)

Country Link
JP (1) JPH0329917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772784B2 (en) 2005-02-09 2010-08-10 Panasonic Corporation Transformer, illuminating apparatus using the same, and display apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772784B2 (en) 2005-02-09 2010-08-10 Panasonic Corporation Transformer, illuminating apparatus using the same, and display apparatus using the same

Similar Documents

Publication Publication Date Title
US4637056A (en) Optical correlator using electronic image preprocessing
US10917626B2 (en) Active illumination 3D imaging system
US5621529A (en) Apparatus and method for projecting laser pattern with reduced speckle noise
US5559603A (en) three-dimensional image measuring device
JP3573512B2 (en) Image processing method and image processing apparatus
JPH0355765B2 (en)
JP2002139304A (en) Distance measuring device and distance measuring method
JP2001523827A (en) Three-dimensional imaging by triangulation using dual-wavelength light
CN102466478B (en) System and method for measuring distance of moving object
JPH0329806A (en) Measuring method of shape of object
CN105758381A (en) Method for detecting inclination of camera die set based on frequency spectrum analysis
JP2001108417A (en) Optical shape measuring instrument
JPH01503330A (en) Compact continuous wave wavefront sensor
JPH0329917A (en) Optical coordinate transforming device
CN113805346A (en) Light field real-time detection regulation and control method and device
JPH0439690A (en) Optical information processor
US5467150A (en) Apparatus for measuring a cornea shape
JP2744494B2 (en) Speckle utilization measuring device
JPS63212809A (en) Conversion optical processor
JP3062664B2 (en) Optical pattern recognition device having coordinate conversion function
JPH03257419A (en) Optical information processor
JP2952322B2 (en) Optical pattern recognition device with automatic adjustment of light intensity
JPH09145320A (en) Three-dimensional input camera
JPH0989534A (en) Three-dimensional configuration measuring device
JP2004117001A (en) Laser doppler vibrometer