JPH0329854A - Enzyme immunoassay - Google Patents

Enzyme immunoassay

Info

Publication number
JPH0329854A
JPH0329854A JP16644989A JP16644989A JPH0329854A JP H0329854 A JPH0329854 A JP H0329854A JP 16644989 A JP16644989 A JP 16644989A JP 16644989 A JP16644989 A JP 16644989A JP H0329854 A JPH0329854 A JP H0329854A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
biological fluid
measured
superoxide
catalase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16644989A
Other languages
Japanese (ja)
Inventor
Nobuo Oshima
信夫 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP16644989A priority Critical patent/JPH0329854A/en
Publication of JPH0329854A publication Critical patent/JPH0329854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To reduce the number of blanks to be measured and to enhance measuring sensitivity by performing a process decomposing superoxide and a process decomposing hydrogen peroxide as pretreatment removing hydrogen peroxide in living body fluids before a process allowing oxidase to act on the living body fluids. CONSTITUTION:Before oxidase is allowed to act on living body fluids, superoxide dismutase (SOD) and catalase are mixed with the living body fluids to decompose superoxide and hydrogen peroxide contained in the living body fluids. Next, an SOD inhibitor suppressing the superoxide decomposing function of SOD and a catalase inhibitor suppressing the hydrogen peroxide decomposing function of catalase are added to the living body fluids and, subsequently, oxidase selectively reacting with a component to be measured to form hydrogen peroxide is allowed to act on the living body fluids. Further, the concn. of formed hydrogen peroxide is measured. The concn. of the component to be measured is determined from the measured concn. of hydrogen peroxide.

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、生体液中の成分であって、酸化酵素の作用に
より過酸化水素を生成する被測定成分を測定する方法に
係わり、特に高感度の測定を行えるものに関する。
[Detailed Description of the Invention] A. INDUSTRIAL APPLICATION FIELD The present invention relates to a method for measuring a component in a biological fluid that generates hydrogen peroxide through the action of an oxidizing enzyme, and particularly to a method that enables highly sensitive measurement.

B.発明の概要 本発明は、酵素免疫測定方法において、酸化酵素を生体
液に作用させる工程の前に、生体液中の過酸化水素を除
去する前処理を行うこととし、この前処理として、スー
パーオキサイドを分解する工程と、過酸化水素を分解す
る工程とを行うことにより、測定ブランクを低減し、測
定感度を高めることを可能とする。
B. Summary of the Invention The present invention provides an enzyme immunoassay method in which pretreatment for removing hydrogen peroxide from the biological fluid is performed before the step of causing an oxidizing enzyme to act on the biological fluid, and as this pretreatment, superoxide By performing the step of decomposing hydrogen peroxide and the step of decomposing hydrogen peroxide, it is possible to reduce measurement blanks and increase measurement sensitivity.

C.従来の技術 一般に、臨床検査分野においては、さまざまな微量戊分
を測定するものとして、免疫測定法が用いられている。
C. BACKGROUND OF THE INVENTION Generally, in the field of clinical testing, immunoassay methods are used to measure various minute amounts of blood.

免疫測定法の代表的なものには、ラジオ・イムノ・アッ
セイ法(RIA)があるが、このRIAは標識として放
射性同位元素を使用するため、環境や健康の保安の観点
から、他の測定法に対する要請が高まっている。
Radio immunoassay (RIA) is a typical immunoassay method, but since RIA uses a radioactive isotope as a label, it is not suitable for other measurement methods from the viewpoint of environmental and health safety. There is an increasing demand for

3 他の免疫測定法としては、エンザム・イムノ・アッセイ
法(E I A ;酵素免疫測定法)やルミネッセンス
・イムノ・アッセイ法(LIA;発光免疫測定法)など
が挙げられる。
3 Other immunoassay methods include enzyme immunoassay (EIA) and luminescence immunoassay (LIA).

これらの測定法では、微量戊分の量を過酸化水素などの
量に置き換えて測定を行っている。
In these measurement methods, measurements are performed by replacing the amount of trace amounts of bokubun with amounts of hydrogen peroxide, etc.

D.発明が解決しようとする課題 しかしながら従来、EIAでは、測定ブランクがあるた
めに、高い測定感度を得ることが困ガ[であるという問
題があった。
D. Problems to be Solved by the Invention However, conventional EIA has had a problem in that it is difficult to obtain high measurement sensitivity due to the presence of measurement blanks.

すなわち生体液中には微量の過酸化水素が存在しており
、この過酸化水素の濃度が測定ブランクとなる。被測定
戊分が極めて低濃度である場合、過酸化水素の測定値と
測定ブランクの差異が極めて小さくなってしまい、過酸
化水素の測定値に基4 づいて被測定戊分を正確に定量することが困難となる。
That is, a trace amount of hydrogen peroxide exists in the biological fluid, and the concentration of this hydrogen peroxide serves as a measurement blank. If the concentration of the ester to be measured is extremely low, the difference between the measured value of hydrogen peroxide and the measurement blank will be extremely small, making it difficult to accurately quantify the ester to be measured based on the measured value of hydrogen peroxide. This becomes difficult.

本発明は、この問題点に鑑みてなされたものであり、そ
の目的とするところは、過酸化水素の測定ブランクを抑
え、EIAにおける測定感度を高める点にある。
The present invention has been made in view of this problem, and its purpose is to suppress hydrogen peroxide measurement blanks and increase measurement sensitivity in EIA.

E.課題を解決するための手段 請求項ICこ係る発明は、生体液中の成分であって、酸
化酵素の作用により過酸化水素を生成する被測定成分を
測定する酵素免疫測定方法において、次の工程を順次行
うものである。
E. Means for Solving the Problems Claim IC This invention provides an enzyme immunoassay method for measuring a component in a biological fluid that produces hydrogen peroxide by the action of an oxidizing enzyme, which includes the following steps: This is done sequentially.

■ スーパーオキサイド・ジスムダーゼ(SOD)とカ
タラーゼとを生体液に混合し、生体液中に含まれるスー
パーオキサイドと過酸化水素とを分解する工程。
■ A step in which superoxide dismudase (SOD) and catalase are mixed into a biological fluid to decompose superoxide and hydrogen peroxide contained in the biological fluid.

■ SODのスーパーオキサイド分解機能を抑制するS
OD阻害剤と、カタラーゼの過酸化水素分解機能を抑制
するカタラーゼ阻害剤とを生体液に添加する工程。
■ S suppresses the superoxide decomposition function of SOD
A step of adding an OD inhibitor and a catalase inhibitor that suppresses the hydrogen peroxide decomposition function of catalase to a biological fluid.

■ 被測定成分と選択的に反応して過酸化水素を生戊す
る酸化酵素を生体液に作用させる工程。
■ A process in which an oxidizing enzyme that selectively reacts with the component to be measured to produce hydrogen peroxide acts on the biological fluid.

■ 工程■において生成した過酸化水素の濃度を測定す
る工程。
■ A step of measuring the concentration of hydrogen peroxide produced in step ■.

■ 工程■において測定された過酸化水素の濃度から被
測定成分の濃度を決定する工程。
■ A step of determining the concentration of the component to be measured from the concentration of hydrogen peroxide measured in step ■.

また請求項2に係る発明は、同じく酵素免疫測定方法に
おいて、次の工程を順次行うものである。
Furthermore, the invention according to claim 2 is also an enzyme immunoassay method in which the following steps are sequentially performed.

■ 生体液を固定化SODに接触させて、生体液中に含
まれるスーパーオキサイドを分解する工程。
■ A step in which the biological fluid is brought into contact with immobilized SOD to decompose superoxide contained in the biological fluid.

■ 生体液を固定化力タラーゼに接触さぜて、生体液中
に含まれる過酸化水素を分解する工程。
■ A process in which the biological fluid is brought into contact with immobilized talase to decompose hydrogen peroxide contained in the biological fluid.

■ 被測定成分と選択的に反応して過酸化水素を生成す
る酸化酵素を生体液に作用させる工程。
■ A process in which an oxidizing enzyme that selectively reacts with the component to be measured to produce hydrogen peroxide acts on the biological fluid.

■ 工程■において生成した過酸化水素の濃度を測定す
る工程。
■ A step of measuring the concentration of hydrogen peroxide produced in step ■.

■ 工程■において測定された過酸化水素の濃度から被
測定成分の濃度を決定する工程。
■ A step of determining the concentration of the component to be measured from the concentration of hydrogen peroxide measured in step ■.

F.作用 酵素免疫測定方法における測定ブランクは、生体液中に
存在する過酸化水素C8:より生じる。
F. The measurement blank in the action enzyme immunoassay method is generated from hydrogen peroxide C8: present in biological fluids.

そこで本発明では、酸化酵素を生体液に作用させる前に
、カタラーゼを生体液に混合する操作を行うことにより
、生体液中の過酸化水素を分解する。この反応を式(1
)に示す。
Therefore, in the present invention, hydrogen peroxide in the biological fluid is decomposed by mixing catalase with the biological fluid before allowing the oxidase to act on the biological fluid. This reaction is expressed by the formula (1
).

7 21−I,Of→ O,+2H20        ・
・・(1)しかしこの操作だけでは、この操作の後にス
ーパーオキサイドOth−から新たに発生する過酸化水
素を除去することはできない。一般にスーパーオキサイ
ドO,−は、菌体等の生物体において各種の酸化反応が
起こるにつれて発生しており、寿命が短かく、式(2)
に示すように、過酸化水素H,O,に変化すると考えら
れる。
7 21-I, Of→ O, +2H20 ・
(1) However, this operation alone cannot remove newly generated hydrogen peroxide from superoxide Oth- after this operation. In general, superoxide O,- is generated as various oxidation reactions occur in living organisms such as bacterial cells, and has a short lifespan, and is expressed by the formula (2).
As shown in the figure, it is thought that hydrogen peroxide changes to H, O, and so on.

O t−+ O ,−+2 H ’→ O ,十H 2
0’2   ・・・(2)そこで上記の操作を行う前か
、上記の操作と共に、生体液にSODを混合する操作を
行う。SODは、広く好気性生物に存在する酵素であり
、式(2)の反応を促進するものである。この操作によ
り、スーパーオキサイドO,一を除去することができる
O t-+ O ,-+2 H'→ O , 10H 2
0'2...(2) Then, before or together with the above operation, an operation of mixing SOD into the biological fluid is performed. SOD is an enzyme that widely exists in aerobic organisms, and promotes the reaction of formula (2). By this operation, superoxide O,1 can be removed.

8 この後、SOD阻害剤とカタラーゼ阻害剤とを生体液に
添加し、SODと過酸化水素の分解を抑制したうえで、
酸化酵素を生体液に作用させて過酸化水素を生成する。
8 After this, an SOD inhibitor and a catalase inhibitor are added to the biological fluid to suppress the decomposition of SOD and hydrogen peroxide, and then
Hydrogen peroxide is produced by oxidizing enzymes acting on biological fluids.

生1戊した過酸化水素の量は、被測定成分の量を置き換
えたものとなる。酸化酵素を作用させる前に、スーパー
オキサイド02−と過酸化水素を除去することにより、
測定ブランクを極めて小さく抑えているので、過酸化水
素の濃度を測定することにより、被測定戊分の濃度を高
精度に決定することが可能となる。
The amount of raw hydrogen peroxide replaces the amount of the component to be measured. By removing superoxide 02- and hydrogen peroxide before allowing the oxidizing enzyme to act,
Since the measurement blank is kept extremely small, by measuring the concentration of hydrogen peroxide, it is possible to determine the concentration of the hydrogen peroxide with high precision.

また生体液中のスーパーオキサイドOffi−と過酸化
水素を除去する前処理において、固定化SODと固定化
カタラーゼを使用することとすれば、SOD阻害剤とカ
タラーゼ阻害剤を生体液に添加する必要がなくなり、生
体液中の成分の測定かより容易になる。
Furthermore, if immobilized SOD and immobilized catalase are used in pretreatment to remove superoxide Offi- and hydrogen peroxide from biological fluids, it is necessary to add SOD inhibitors and catalase inhibitors to biological fluids. This makes it easier to measure components in biological fluids.

G.実施例1 ここで実胤例1を説明する。実施例lは、尿酸の測定法
へ本発明を適用した例である。
G. Example 1 Here, actual seed example 1 will be explained. Example 1 is an example in which the present invention is applied to a method for measuring uric acid.

まず、実施例lに使用する試薬等の調製を示す。First, the preparation of reagents and the like used in Example 1 will be described.

■ O.lmol/(! リン酸緩衝液 pH.7、0
■ SOD (フナコシ製) 10,OOO’U/In12 0.05’mol/(!
 リン酸緩衝液 pH7.8 ■ カタラーゼ(シグマ製) 10,O’00U/mQ O.’0 1mol/12 
リン酸緩衝液 pH7.0 ■ KCN  O’.  lmo+/12(0.  1
molz’2 トリス−塩酸緩衝液p H 8.0溶液
) ■ 尿酸オキシダーゼ(ベーリンガー・マンハイム社製
) 4.’5U/mg  O.’IM炭酸ナトリウム溶液■
 ルミノール 2X10−’mol/12  (0.2mol/(!炭
酸緩衝液pH9.8)溶液 ■ フェリシアン化カリウム6 X 1 0 −”mo
l7 Q水溶液 ■ 標準液:尿酸水溶液( 5 mg/dll!,  
1 0 mg/dQ.  1 4 mg/ dl2) 次に測定手順を説明する。
■ O. lmol/(! Phosphate buffer pH.7,0
■ SOD (manufactured by Funakoshi) 10, OOO'U/In12 0.05'mol/(!
Phosphate buffer pH 7.8 ■ Catalase (manufactured by Sigma) 10, O'00U/mQ O. '0 1mol/12
Phosphate buffer pH 7.0 ■ KCN O'. lmo+/12(0.1
molz'2 Tris-HCl buffer pH 8.0 solution) ■ Urate oxidase (manufactured by Boehringer Mannheim) 4. '5U/mg O. 'IM sodium carbonate solution■
Luminol 2X10-'mol/12 (0.2mol/(!carbonate buffer pH 9.8) solution ■ Potassium ferricyanide 6X 10-'mo
l7 Q aqueous solution■ Standard solution: uric acid aqueous solution (5 mg/dll!,
10 mg/dQ. 14 mg/dl2) Next, the measurement procedure will be explained.

第1図は、実施例1における測定手順を示すフローチャ
ートである。
FIG. 1 is a flowchart showing the measurement procedure in Example 1.

11 まず試験管に試料( 5 mg/ dQ.  1 0 
mg/ dQ.  14 mg/ dQ尿酸水溶液)0
.5mQを分取し、0.1mol/12リン酸緩衝液を
0.5ml2入れpH7.0に調製した(ステップの)
11 First, put the sample (5 mg/dQ. 10) into a test tube.
mg/dQ. 14 mg/dQ uric acid aqueous solution) 0
.. 5 mQ was taken out and 0.5 ml of 0.1 mol/12 phosphate buffer was added to adjust the pH to 7.0 (in step).
.

次にSODとカタラーゼをそれぞれ10μQ添加し(ス
テップ■■)、30℃で30分反応させ、試料中のスー
パーオキサイドと過酸化水素を除去した。
Next, 10 μQ each of SOD and catalase were added (step ■■) and reacted at 30° C. for 30 minutes to remove superoxide and hydrogen peroxide in the sample.

次にSODとカタラーゼの阻害剤としてKCNを10μ
g添加したくステップ■)。
Next, add 10μ of KCN as an inhibitor of SOD and catalase.
g Addition step ■).

次にこの試料を100倍に希釈したうえで1ml2分取
し、尿酸オキシダーゼを10μe添加した。
Next, this sample was diluted 100 times, two 1 ml portions were taken, and 10 μe of uric acid oxidase was added.

そして30℃で30分反応させ、過酸化水素を発生させ
た(ステップ■)。
A reaction was then carried out at 30° C. for 30 minutes to generate hydrogen peroxide (step ①).

次にこの試料を100μe分取し、ルミノメー12 夕(UPD−8000 :器明電舎製)を使用し、ルミ
ノール、フェリシアン化カリウムをそれぞれ500μe
自動分注し、発光反応を起こさせて過酸化水素の量を測
定した(ステップ■)。
Next, 100 μe of this sample was collected, and 500 μe each of luminol and potassium ferricyanide were collected using Luminome 12 (UPD-8000, manufactured by Kimeidensha).
The amount of hydrogen peroxide was measured by automatic dispensing and a luminescence reaction (Step ■).

以上の手順により測定した過酸化水素の量に基づいて、
標準液から検量線を求め、尿酸の量を定量分析した。こ
の結果を第2図に示す。
Based on the amount of hydrogen peroxide measured by the above procedure,
A calibration curve was obtained from the standard solution, and the amount of uric acid was quantitatively analyzed. The results are shown in FIG.

H.実施例2 次に、実施例2を説明する。本実施例も実施例lと同様
に尿酸の測定法への適用例である。
H. Example 2 Next, Example 2 will be described. Like Example 1, this example is also an example of application to a method for measuring uric acid.

実施例2では、固定化SODと固定化カタラーゼを使用
して、生体液中のスーパーオキシドと過酸化水素を除去
する手法をとっている。
Example 2 employs a method of removing superoxide and hydrogen peroxide from biological fluids using immobilized SOD and immobilized catalase.

まず、固定化SODおよび固定化カタラーゼの調製を説
明する。水不溶性媒体として、式(3)に示すアミノブ
ロビルCPG(多孔性ガラスの一種であり、修飾型を使
用(フナコシ製))を使用する。また官能性試薬として
2.5%グルタルアルデヒド溶液(0.OIMリン酸緩
衝液(pH7.0))を使用した。1gのアミノブロピ
ルC I3 Gを25m(2のグルタルアルデヒド溶液
に接触させ、2時間の室温撹拌(スターラは×)を行い
、式(3)に示すように反応させる。この後、蒸留水に
より洗浄してアルデヒドCPGを得る。
First, the preparation of immobilized SOD and immobilized catalase will be explained. As the water-insoluble medium, aminobrovir CPG (a type of porous glass, a modified type (manufactured by Funakoshi)) shown in formula (3) is used. In addition, a 2.5% glutaraldehyde solution (0.0M phosphate buffer (pH 7.0)) was used as a functional reagent. 1 g of aminopropyl C I3 G was brought into contact with the glutaraldehyde solution of 25 m (2) and stirred at room temperature for 2 hours (with the stirrer x) to react as shown in formula (3). After this, it was washed with distilled water and to obtain aldehyde CPG.

GI ass−−−NH,+ CHO(CH.).CH
OアミノプロピルCPG   グルタルアルデヒド→ 
G I  a s s ・・・N=CH(CH,)3C
HO          −  (3)アルデヒドCl
)G このアルデヒドCPGをプロテイン溶液と接触させ、3
時間の室温撹拌(スターラは×)を行い、式(4)に示
すように反応させる。
GI ass---NH, + CHO (CH.). CH
O aminopropyl CPG glutaraldehyde→
G I a s s...N=CH(CH,)3C
HO - (3) Aldehyde Cl
)G This aldehyde CPG is contacted with a protein solution, 3
Stir at room temperature for hours (stirrer: x) to react as shown in formula (4).

GI ass ・・・N=CH(CHJ3CHO + 
NHtRアルデヒドCPG →G I a s s −・N’C H (C H 2
)3C H =N−R固定化プロテイン(シッフ塩基生
成物)・・・(4) この後、式(5)に示すように、このシッフ塩基生成物
を還元剤NaBH.により還元して、固定化プロテイン
を得る。
GI ass...N=CH(CHJ3CHO+
NHtR aldehyde CPG → G I a s s −・N'C H (C H 2
)3C H =N-R immobilized protein (Schiff base product) (4) After this, as shown in formula (5), this Schiff base product is treated with the reducing agent NaBH. to obtain the immobilized protein.

G I a ss−N=CH(CHt)acH=N−R
固定化プロテイン(シッフ塩基生成物)→ GI aS
S・=NHCH,(CH.)3CH.NH−R  ・ 
(5)NaBH4    固定化プロテイン 以上の手順において、プロテイン溶液としてSOD溶液
(10,OOOU/mI2、0.05mo+/eリン酸
緩衝液(pH7.8))を使用することにより、固定化
SODを得る。またプロテイン溶液としてカタラーゼ溶
液(100,OOOU/m(1、O .  O l m
ol/ Qリン酸緩衝液(pH7.0))を使用するこ
とにより、固定化カタラーゼを得る。
G I a ss-N=CH(CHt)acH=N-R
Immobilized protein (Schiff base product) → GI aS
S.=NHCH, (CH.)3CH. NH-R・
(5) NaBH4 Immobilized protein In the above procedure, immobilized SOD is obtained by using SOD solution (10,OOOU/mI2, 0.05 mo+/e phosphate buffer (pH 7.8)) as the protein solution. . In addition, as a protein solution, a catalase solution (100, OOOU/m (1, O.Olm
Obtain immobilized catalase by using ol/Q phosphate buffer (pH 7.0).

15 16 次に測定手順を説明する。15 16 Next, the measurement procedure will be explained.

第3図は本実施例の測定手順を示すフローチャートであ
る。
FIG. 3 is a flowchart showing the measurement procedure of this embodiment.

まず試験管に試料(標準液: 5mg/dl2,  1
 0mg/dl2,  1 4mg/dQ尿酸水溶液)
0.5ml2を分取し、0.  1no1/12リン酸
緩衝液を0.5ml2入れp H 7 .0に調製した
(ステップ■)。
First, add the sample (standard solution: 5mg/dl2, 1
0mg/dl2, 14mg/dQ uric acid aqueous solution)
Aliquot 0.5ml2 and add 0.5ml. Add 0.5ml2 of 1no1/12 phosphate buffer to pH 7. 0 (step ■).

次に固定化SODを充填したカラムに試料を通し、その
濾液を収集する(ステップ■)。
Next, the sample is passed through a column packed with immobilized SOD, and the filtrate is collected (step ①).

さらにこの溶液を、固定化力タラーゼを充填したカラム
に通し、その濾液を収集する(ステップ■)。
Further, this solution is passed through a column packed with immobilized talase, and the filtrate is collected (step ①).

次にこの試料を100倍に希釈したうえで1ml2分取
し、尿酸オキシダーゼを10μσ添加し、実施例1と同
様に過酸化水素を発生させ(ステップ■)、その過酸化
水素の発生量を測定することにより、尿酸の量を定量分
析したくステップ■)。
Next, this sample was diluted 100 times, 1 ml was taken out, 10 μσ of urate oxidase was added, hydrogen peroxide was generated in the same manner as in Example 1 (step ■), and the amount of hydrogen peroxide generated was measured. Step ■) to quantitatively analyze the amount of uric acid.

この結果、実施例1と同等の効果を得た。As a result, the same effect as in Example 1 was obtained.

■.発明の効果 以上説明したように、本発明によれば、酵素免疫測定方
法において、酸化酵素を生体液に作用させる工程の前に
、生体液中の過酸化水素を除去する前処理を行うことと
し、この前処理として、スーパーオキサイドを分解する
工程と、過酸化水素を分解する工程とを行うこととして
いる。
■. Effects of the Invention As explained above, according to the present invention, in the enzyme immunoassay method, a pretreatment for removing hydrogen peroxide from the biological fluid is performed before the step of allowing the oxidizing enzyme to act on the biological fluid. As this pretreatment, a step of decomposing superoxide and a step of decomposing hydrogen peroxide are performed.

これにより生体液中に存在する過酸化水素を除去し、し
かもスーパーオキシターゼより新たに過酸化水素が発生
することを防止することができ、過酸化水素の測定ブラ
ンクを大幅に低減できる。
This makes it possible to remove hydrogen peroxide present in the biological fluid and prevent new hydrogen peroxide from being generated by superoxidase, thereby significantly reducing hydrogen peroxide measurement blanks.

したがって測定感度が向上し、被測定戊分が極めて低濃
度である場合でも、正確な測定が可能となる。
Therefore, measurement sensitivity is improved, and even when the concentration of the substance to be measured is extremely low, accurate measurement is possible.

4.図面の簡単な説明 第l図は実施例1における測定手順を示すフローチャー
ト、第2図は実施例1による尿酸の測定結果を示すグラ
フ、第3図は実施例2における測定手順を示すフローチ
ャートである。
4. Brief Description of the Drawings Figure 1 is a flowchart showing the measurement procedure in Example 1, Figure 2 is a graph showing the measurement results of uric acid in Example 1, and Figure 3 is a flowchart showing the measurement procedure in Example 2. .

l9 第2図 尿酸分析結果 尿酸含量(mg/dN) 第1図 実施例1の手順l9 Figure 2 Uric acid analysis results Uric acid content (mg/dN) Figure 1 Procedure of Example 1

Claims (2)

【特許請求の範囲】[Claims] (1)生体液中の成分であって、酸化酵素の作用により
過酸化水素を生成する被測定成分を測定する方法におい
て、 スーパーオキサイド・ジスムダーゼとカタラーゼとを生
体液に混合し、生体液中に含まれるスーパーオキサイド
と過酸化水素とを分解する工程と、スーパーオキサイド
・ジスムダーゼのスーパーオキサイド分解機能を抑制す
るスーパーオキサイド・ジスムダーゼ阻害剤と、カタラ
ーゼの過酸化水素分解機能を抑制するカタラーゼ阻害剤
とを生体液に添加する工程と、 被測定成分と選択的に反応して過酸化水素を生成する酸
化酵素を生体液に作用させる工程と、この工程において
生成した過酸化水素の濃度を測定する工程と、 この工程において測定された過酸化水素の濃度から被測
定成分の濃度を決定する工程と を順次行うことによる酵素免疫測定方法。
(1) In a method for measuring a component in a biological fluid that produces hydrogen peroxide through the action of an oxidase, superoxide dismudase and catalase are mixed with the biological fluid, and the component is mixed into the biological fluid. A step of decomposing the superoxide and hydrogen peroxide contained, a superoxide dismudase inhibitor that suppresses the superoxide decomposition function of superoxide dismudase, and a catalase inhibitor that suppresses the hydrogen peroxide decomposition function of catalase. a step of adding the hydrogen peroxide to the biological fluid; a step of causing an oxidizing enzyme that selectively reacts with the component to be measured to produce hydrogen peroxide to act on the biological fluid; and a step of measuring the concentration of the hydrogen peroxide produced in this step. and determining the concentration of the component to be measured from the concentration of hydrogen peroxide measured in this step.
(2)生体液中の成分であって、酸化酵素の作用により
過酸化水素を生成する被測定成分を測定する方法におい
て、 生体液を固定化スーパーオキサイド・ジスムダーゼに接
触させて、生体液中に含まれるスーパーオキサイドを分
解する工程と、 生体液を固定化カタラーゼに接触させて、生体液中に含
まれる過酸化水素を分解する工程と、被測定成分と選択
的に反応して過酸化水素を生成する酸化酵素を生体液に
作用させる工程と、この工程において生成した過酸化水
素の濃度を測定する工程と、 この工程において測定された過酸化水素の濃度から被測
定成分の濃度を決定する工程と を順次行うことによる酵素免疫測定方法。
(2) In a method for measuring a component in a biological fluid that produces hydrogen peroxide through the action of an oxidase, the biological fluid is brought into contact with immobilized superoxide dismudase, and A step of decomposing the superoxide contained in the biological fluid, a step of bringing the biological fluid into contact with immobilized catalase to decompose the hydrogen peroxide contained in the biological fluid, and a step of decomposing the hydrogen peroxide by selectively reacting with the component to be measured. A step of causing the generated oxidase to act on a biological fluid, a step of measuring the concentration of hydrogen peroxide generated in this step, and a step of determining the concentration of the component to be measured from the concentration of hydrogen peroxide measured in this step. An enzyme immunoassay method in which the following steps are performed sequentially.
JP16644989A 1989-06-28 1989-06-28 Enzyme immunoassay Pending JPH0329854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16644989A JPH0329854A (en) 1989-06-28 1989-06-28 Enzyme immunoassay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16644989A JPH0329854A (en) 1989-06-28 1989-06-28 Enzyme immunoassay

Publications (1)

Publication Number Publication Date
JPH0329854A true JPH0329854A (en) 1991-02-07

Family

ID=15831615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16644989A Pending JPH0329854A (en) 1989-06-28 1989-06-28 Enzyme immunoassay

Country Status (1)

Country Link
JP (1) JPH0329854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405988A2 (en) * 1989-06-28 1991-01-02 Sankyo Company Limited Use of superoxide dismutase in assays involving an oxidase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966899A (en) * 1982-10-07 1984-04-16 Ono Pharmaceut Co Ltd Determination of hydrogen peroxide
JPS63291595A (en) * 1987-05-22 1988-11-29 Meidensha Electric Mfg Co Ltd Determination of glucose in biospecimen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966899A (en) * 1982-10-07 1984-04-16 Ono Pharmaceut Co Ltd Determination of hydrogen peroxide
JPS63291595A (en) * 1987-05-22 1988-11-29 Meidensha Electric Mfg Co Ltd Determination of glucose in biospecimen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405988A2 (en) * 1989-06-28 1991-01-02 Sankyo Company Limited Use of superoxide dismutase in assays involving an oxidase

Similar Documents

Publication Publication Date Title
JPH0329854A (en) Enzyme immunoassay
JPH0228320B2 (en)
US3677903A (en) Determination of uricase activity
KR970001814B1 (en) Process for measuring the content of component in vital fluid
Maguire et al. Evidence for interference by ascorbate in the measurement of cerebrospinal fluid glucose by a kinetic glucose oxidase/peroxidase procedure.
US4816394A (en) Quantitative analysis of 3α-hydroxysteroid and reagent useful therefor
Li et al. A novel analysis method for lactate dehydrogenase activity in serum samples based on fluorescence capillary analysis
JPS61247963A (en) Quantitatively determining method for vital material with ammonia as resulted product of reaction
JPS62195297A (en) Reagent for determining calcium ion
JPS63291595A (en) Determination of glucose in biospecimen
JP2761768B2 (en) Method for determining NADH and method for determining bile acid using the same
JPS63291597A (en) Determination of glucose in biospecimen
Svehla Catalytic methods in analytical chemistry
JP2004065078A (en) Kit for simply determining concentration of pyruvic acid and method for simply determining concentration of pyruvic acid
JPS5852640B2 (en) Method for measuring peroxidase activity
JPH01296999A (en) Measurement of living body specimen
JPH1118798A (en) Determination of cholesterol and reagent therefor
JPS63291596A (en) Determination of glucose in biospecimen
JPH03202770A (en) Method for measuring component of living body
JPS6057840B2 (en) Cholesterol quantitative agent and method
JP3227486B2 (en) Copper measurement method
JPS63271142A (en) Method for measuring hydrogen peroxide in sample
JPS63291598A (en) Determination of glucose in biospecimen
JPH0362400B2 (en)
JPH05111395A (en) Method for micro-analysis of ingredient in biological sample