JPH03297753A - Method and device for controlling zigzagging of beltlike conveyance substance - Google Patents

Method and device for controlling zigzagging of beltlike conveyance substance

Info

Publication number
JPH03297753A
JPH03297753A JP9634290A JP9634290A JPH03297753A JP H03297753 A JPH03297753 A JP H03297753A JP 9634290 A JP9634290 A JP 9634290A JP 9634290 A JP9634290 A JP 9634290A JP H03297753 A JPH03297753 A JP H03297753A
Authority
JP
Japan
Prior art keywords
magnetic field
conveyance
conveyed object
meandering
beltlike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9634290A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoneda
寛 米田
Seiichi Marumoto
清一 丸元
Kazuo Muraoka
村岡 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9634290A priority Critical patent/JPH03297753A/en
Publication of JPH03297753A publication Critical patent/JPH03297753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)

Abstract

PURPOSE:To control zigzagging of a beltlike conveyance substance with high efficiency, high precision, and high response and to cause the stable passage of the conveyance substance by energizing the beltlike conveyance substance and applying a magnetic field thereon and controlling an electromagnetic force generated through interaction between a current and the magnetic field. CONSTITUTION:Devices 7 and 7b to energize a beltlike conveyance substance 1 under conveyance and a device 6 to apply a magnetic field, crossing a current direction at right angles, in the energizing area are provided. When the beltlike conveyance substance 1 runs in a state to displace from a given position, namely during zigzagging, an electromagnetic force in a direction extending at right angles with a conveyance direction is applied on the beltlike conveyance substance 1 by means of a magnetic field generating device 6 to control zigzagging during running so that the beltlike conveyance substance 1 is not displaced from a given pass area. This method and constitution perform stable conveyance of the beltlike conveyance substance 1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、連続焼鈍ライン、連続メツキライン、光輝焼
鈍ライン等の金属帯板を取り扱うラインに用いた場合に
好適である、非接触式の蛇行制御方法及び装置に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a non-contact type meandering line that is suitable for use in lines that handle metal strips such as continuous annealing lines, continuous plating lines, bright annealing lines, etc. The present invention relates to a control method and device.

[従来の技術] 従来、帯状搬送物の蛇行制御については、例えば、特開
昭60−247253号のように、リニアモータを用い
た蛇行制御装置が提案されている。第4図は、これらの
従来装置の構成を示しており、図において、1は金属帯
板、2a、2bは金属帯板1を流体力で浮揚支持するフ
ロータ、3は流体を噴出するスリット、4a、4bはリ
ニアモータである。
[Prior Art] Conventionally, for meandering control of a belt-shaped conveyed object, a meandering control device using a linear motor has been proposed, for example, as in Japanese Patent Laid-Open No. 60-247253. FIG. 4 shows the configuration of these conventional devices, in which 1 is a metal strip, 2a and 2b are floaters that levitate and support the metal strip 1 by fluid force, 3 is a slit that spouts fluid, 4a and 4b are linear motors.

[発明が解決しようとする課題] これらの従来技術はいずれも、リニアモータにより、非
接触状態にて金属帯板に磁界をかけ、この磁界により誘
導される金属帯板表面の渦電流と磁界の相互作用により
発生する電磁力を利用したものであり、対象とする金属
帯板の厚みが薄くなれば、金属帯板表面に誘導される渦
電流が小さくなり、発生する電磁力自体も小さな値しか
期待できない。
[Problems to be Solved by the Invention] In all of these conventional techniques, a linear motor applies a magnetic field to a metal strip in a non-contact state, and the eddy current on the surface of the metal strip induced by this magnetic field and the magnetic field are It utilizes the electromagnetic force generated by interaction, and as the thickness of the metal strip becomes thinner, the eddy current induced on the surface of the metal strip becomes smaller, and the generated electromagnetic force itself has a smaller value. I can't wait.

例えば、板厚0.1mmのステンレス鋼板とりニアモー
タの間隙を25mmにした状態で、140kVAの電力
を投入したりニアモータを適用した場合の該鋼板に発生
する電磁力は約200g程度である。更に電磁力を大き
くするためには、リニアモータへの電力投入を増大させ
るか、あるいは該鋼板とりニアモータとの間隙を更に小
さくするか、のいずれかであるが、前者はりニアモータ
および電源装置が極大化し、後者は該鋼板とりニアモー
タとの間隙が小さくなり、該鋼板搬送中の振動接触疵の
発生等があり、どちらも実用上問題がある。
For example, when a stainless steel plate with a thickness of 0.1 mm is used and the gap between the near motor is set to 25 mm, the electromagnetic force generated in the steel plate when 140 kVA of power is applied or the near motor is applied is about 200 g. In order to further increase the electromagnetic force, either increase the power input to the linear motor or further reduce the gap between the steel plate and the near motor. In the latter case, the gap between the steel plate and the near motor becomes smaller, and vibration contact flaws may occur during conveyance of the steel plate, and both pose practical problems.

本発明は、上記のような従来のものの欠点を解決するも
のであり、高効率、高鯖度の蛇行制御方法および装置を
提供することを目的としている。
The present invention solves the above-mentioned drawbacks of the conventional methods, and aims to provide a meandering control method and device with high efficiency and high degree of control.

[課題を解決するための手段] 本発明は、上記従来技術の欠点か、微小な渦電流の電磁
気的力に頼っていることに起因することに注目して成さ
れたもので、搬送中の帯状搬送物に通電する手段と、そ
の通電域内においてその電流方向と直交する磁界をかけ
る手段を有し、通電電流の強さと方向、及び、磁界の強
さと方向の両方、または片方を制御することにより、搬
送の直角方向に電磁気的な力を発生させ、被搬送物の走
行中の蛇行を制御することを特徴とする。
[Means for Solving the Problems] The present invention has been made by focusing on the drawbacks of the above-mentioned prior art, or the fact that they rely on the electromagnetic force of minute eddy currents. It has a means for energizing the belt-shaped conveyed object and a means for applying a magnetic field perpendicular to the direction of the current within the energized area, and controls the strength and direction of the energized current and/or the strength and direction of the magnetic field. It is characterized by generating an electromagnetic force in the direction perpendicular to the conveyance, thereby controlling the meandering of the conveyed object while it is traveling.

[作用] 上記構成とすることにより、走行する帯状搬送物が所定
の位置からずれて走行した場合、すなわち蛇行した場合
に、帯状搬送物を所定の位置に押し戻すように、搬送の
直角方向に電磁気的な力を帯状搬送物に発生させ、帯状
搬送物が所定の通過域からはみ出さないように、走行中
の蛇行を制御することにより、帯状搬送物の安定搬送が
可能となる。
[Function] With the above configuration, when the traveling belt-shaped conveyed object deviates from the predetermined position, that is, when it travels in a meandering manner, electromagnetic force is applied in the direction perpendicular to the conveyance so as to push the belt-shaped conveyed object back to the predetermined position. By generating a force on the belt-shaped conveyed object and controlling meandering during travel so that the belt-shaped conveyed object does not protrude from a predetermined passage area, stable conveyance of the belt-shaped conveyed object becomes possible.

[実施例] 本発明の一実施例を、本発明を実施する装置例の全体の
構成概念図である第1図、および電磁力発生原理図であ
る第2図、さらに磁界発生装置と金属帯板との間隙と発
生電磁力の関係を示すグラフである第3図に基づいて説
明する。
[Example] An example of the present invention is shown in Fig. 1, which is a conceptual diagram of the overall configuration of an example of a device for carrying out the present invention, and Fig. 2, which is a diagram showing the principle of electromagnetic force generation, as well as a magnetic field generating device and a metal band. The explanation will be based on FIG. 3, which is a graph showing the relationship between the gap with the plate and the generated electromagnetic force.

第1図において、1は金属帯板、5a、5b、5cは金
属帯板支持装置である。6は永久磁石の如き磁界発生装
置であり、本図では、金属帯板1を挟んだ構造になって
いるが、磁界が金属帯板1の厚み方向に通過しさえすれ
ばよいため、金属帯板1の片側だけに設置しても構わな
い。また、この設置位置であるが、7a、7bの通電装
置の間であれば、設置場所の限定は無く、また、数の制
限も無い。更に、本図では、竪型搬送ラインでの適用構
成になっているか、金属帯板を取り扱うラインであれば
、搬送ライン条件に制限は無い。
In FIG. 1, 1 is a metal strip, and 5a, 5b, and 5c are metal strip supporting devices. 6 is a magnetic field generating device such as a permanent magnet, and in this figure, it has a structure in which the metal strip plate 1 is sandwiched, but since the magnetic field only needs to pass in the thickness direction of the metal strip plate 1, the metal strip It may be installed only on one side of the board 1. Further, as for the installation position, as long as it is between the energizing devices 7a and 7b, there is no restriction on the installation location, and there is no restriction on the number. Further, in this figure, there are no restrictions on the conveyance line conditions as long as the configuration is applied to a vertical conveyance line or a line that handles metal strips.

次に動作について説明する。通電装置7a、7bにより
走行中の金属帯板1に電流を通電し、その金属帯板1の
通電域内において、その電流方向と直交する方向に、磁
界発生装置6により金属帯板1に磁界をかけると、(1
)式で表わされるフレミングの左手の法則により、金属
帯板1の搬送方向と直角方向に電磁気的な力が発生する
。この力は通電電流の強さと方向及び磁界の強さと方向
の両方或いは片方を制御することにより調整でき、これ
を利用して走行中の金属帯板lの蛇行を制御することが
できる。なお、電流、磁界および電磁力の方向を第2図
に示す。
Next, the operation will be explained. Current is applied to the running metal strip 1 by the energizing devices 7a and 7b, and a magnetic field is applied to the metal strip 1 by the magnetic field generator 6 in a direction perpendicular to the current direction within the energized area of the metal strip 1. Multiplying (1
) An electromagnetic force is generated in a direction perpendicular to the conveying direction of the metal strip 1 according to Fleming's left-hand rule expressed by the following equation. This force can be adjusted by controlling the strength and direction of the current and/or the strength and direction of the magnetic field, and can be used to control the meandering of the running metal strip l. Note that the directions of current, magnetic field, and electromagnetic force are shown in FIG.

F= (1/9.8 ) ・5 s (I XB) d
S  ・−(1)F:電磁力 (Kg)  S:電流・
磁界有効領域I:通電電流(A)B:磁束密度(T)ま
た、この装置を流体浮上装置により浮上搬送を行う搬送
系に適用する場合には、搬送及び蛇行制御をすべて非接
触で行え、高い表面品質の製品とすることができる上、
蛇行制御力として必要な電磁力は小さな力ですみ、磁界
発生装置および通電装置を小さくでき、必要電力も少な
い、という最も効果的な搬送システムとすることができ
る。
F= (1/9.8) ・5 s (I XB) d
S ・-(1) F: Electromagnetic force (Kg) S: Current・
Magnetic field effective area I: energizing current (A) B: magnetic flux density (T) Furthermore, when this device is applied to a transport system that performs floating transport using a fluid levitation device, transport and meandering control can all be performed non-contact, In addition to being able to produce products with high surface quality,
The electromagnetic force required as the meandering control force is small, the magnetic field generating device and the energizing device can be made small, and the required electric power is also small, making it possible to provide the most effective conveyance system.

更に、−船釣には蛇行制御は、金属帯板1のずれを検出
する手段を持ち、この変位検出信号から制御力を求めて
蛇行制御を行うが、上記原理を利用して、金属帯板1幅
内において、互いに金属帯板1の幅中心方向に電磁力が
発生するように磁界をかけ、かつ、金属帯板1のパスラ
イン中心からの変位により発生する中心方向電磁力が変
化するよに磁界をかける(例えば、パスラインから外れ
る程、磁界を強くする、及び/または、磁界領域を増す
など)ことにより自己求心性を持つ蛇行制御方法ができ
、金属帯板のずれを検出する手段を必要としない、安価
な蛇行制御システムが構築できる。
Furthermore, - meandering control for boat fishing has means for detecting the displacement of the metal strip 1, and meandering control is performed by determining the control force from this displacement detection signal. A magnetic field is applied to each other within one width so that an electromagnetic force is generated in the direction of the width center of the metal strip 1, and the center-direction electromagnetic force generated by the displacement of the metal strip 1 from the center of the pass line changes. By applying a magnetic field to (for example, increasing the magnetic field and/or increasing the magnetic field area as it deviates from the path line), a self-centripetal meandering control method can be achieved, and a means for detecting displacement of the metal strip. It is possible to construct an inexpensive meandering control system that does not require

第3図は、磁界発生装置6と金属帯板1との間隙と金属
帯板1に発生する電磁力の関係を示すグラフを示したも
のであり、比較のために、投入電力が同じ場合での従来
技術であるリニアモータ式での発生電磁力を併記した。
Figure 3 shows a graph showing the relationship between the gap between the magnetic field generator 6 and the metal strip 1 and the electromagnetic force generated in the metal strip 1. The electromagnetic force generated by the conventional linear motor type is also shown.

金属帯板1に発生する電磁力は、磁界発生装置6と金属
帯板1との間隙にほぼ反比例するが、従来技術のりニア
モータ式に比べ、約5倍程度の大きな電磁力を得ること
ができる。
The electromagnetic force generated in the metal strip 1 is almost inversely proportional to the gap between the magnetic field generator 6 and the metal strip 1, but it is possible to obtain an electromagnetic force about 5 times larger than that of the conventional linear motor type. .

[発明の効果] 以上述べたように、本発明によれば、帯状搬送物、例え
ば金属帯板に通電し、かつ磁界をかけて、この電流と磁
界の相互作用で発生する電磁力を制御することにより、
走行中の金属帯板を高効率・高鯖度・高応答にて蛇行制
御することができるため、金属帯板を安定通板すること
が実現でき、金属帯板の搬送許容域からのはみ出しによ
るライン休止・復旧のロス減少が図られ、また、高速走
行化が達成され、その効果は実用上非常に大である。
[Effects of the Invention] As described above, according to the present invention, an electric current is applied to a belt-shaped conveyed object, for example, a metal band plate, and a magnetic field is applied to control the electromagnetic force generated by the interaction between the current and the magnetic field. By this,
Since the meandering of the moving metal strip can be controlled with high efficiency, high speed, and high response, it is possible to achieve stable threading of the metal strip, and prevent the metal strip from protruding from the permissible conveyance range. Loss due to line stoppages and restorations has been reduced, and high-speed running has been achieved, which is extremely effective in practical terms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の金属帯板搬送系での一実施例に係わ
る装置例の全体の構成概念図、第2図は、本発明に係わ
る電磁力発生原理図、第3図は、磁界発生装置と金属帯
板との間隙と発生電磁力の関係を示すグラフ、第4図は
、リニアモータを用いた従来技術の構成図である。 1・・・金属帯板、2a、2b−・・フロータ、3・・
・スリット、4a、4b・・・リニアモータ。5a、5
b、5c・・・金属帯板支持装置、6・・・磁界発生装
置、7a、7b・・・通電装置。
FIG. 1 is a conceptual diagram of the overall configuration of an example of a device according to an embodiment of the metal strip conveying system of the present invention, FIG. 2 is a diagram of the principle of electromagnetic force generation according to the present invention, and FIG. 3 is a diagram of the magnetic field. FIG. 4, a graph showing the relationship between the gap between the generator and the metal strip plate and the generated electromagnetic force, is a configuration diagram of a conventional technique using a linear motor. 1...Metal band plate, 2a, 2b-...Floater, 3...
・Slit, 4a, 4b...Linear motor. 5a, 5
b, 5c... Metal strip support device, 6... Magnetic field generator, 7a, 7b... Current supply device.

Claims (1)

【特許請求の範囲】 1、搬送中の帯状搬送物に通電する手段と、その通電域
内においてその電流方向と直交する磁界をかける手段を
有し、通電電流の強さと方向、及び、磁界の強さと方向
の両方、または片方を制御することにより、搬送の直角
方向に電磁気的な力を発生させ、被搬送物の走行中の蛇
行を制御することを特徴とする帯状搬送物の蛇行制御方
法。 2、磁界の強さと方向を一定にして、通電電流の強さと
方向を変えることにより、被搬送物の蛇行力を制御する
請求項1記載の帯状搬送物の蛇行制御方法。 3、通電電流の強さと方向を一定にして、磁界の強さと
方向を変えることにより、被搬送物の蛇行力を制御する
請求項1記載の帯状搬送物の蛇行制御方法。 4、板幅内において、互いに中心方向を向く力を発生す
るように磁界をかけ、かつ、板のパスライン中心からの
変位により発生する中心方向が変化して、自己求心性を
持つように磁界を発生させる請求項1記載の帯状搬送物
の蛇行制御方法。 5、流体浮上装置により、浮上搬送を行う搬送系に請求
項1記載の蛇行制御を適用してなる帯状搬送物の蛇行制
御装置。 6、磁界の発生装置として、永久磁石を用いて請求項1
記載の制御を行う帯状搬送物の蛇行制御装置。
[Scope of Claims] 1. A means for applying current to a belt-shaped conveyed object being transported, and a means for applying a magnetic field perpendicular to the current direction within the current-carrying area, and controlling the strength and direction of the current to be applied, as well as the strength of the magnetic field. A meandering control method for a belt-shaped conveyed object, characterized in that the meandering of a conveyed object is controlled by controlling both or one of the two directions, thereby generating an electromagnetic force in a direction perpendicular to the conveyance direction. 2. The meandering control method for a belt-shaped conveyed object according to claim 1, wherein the meandering force of the conveyed object is controlled by keeping the strength and direction of the magnetic field constant and changing the strength and direction of the applied current. 3. The meandering control method for a belt-shaped conveyed object according to claim 1, wherein the meandering force of the conveyed object is controlled by keeping the strength and direction of the applied current constant and changing the strength and direction of the magnetic field. 4. Apply a magnetic field to generate forces pointing toward the center of each other within the width of the plate, and create a magnetic field so that the center direction changes due to displacement from the center of the pass line of the plate, making it self-centripetal. 2. The method for controlling meandering of a belt-shaped conveyed object according to claim 1, wherein: 5. A meandering control device for a belt-shaped conveyed object, which applies the meandering control according to claim 1 to a conveyance system that carries out floating conveyance using a fluid flotation device. 6. Claim 1 using a permanent magnet as the magnetic field generator
A meandering control device for a belt-shaped conveyed object that performs the described control.
JP9634290A 1990-04-13 1990-04-13 Method and device for controlling zigzagging of beltlike conveyance substance Pending JPH03297753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9634290A JPH03297753A (en) 1990-04-13 1990-04-13 Method and device for controlling zigzagging of beltlike conveyance substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9634290A JPH03297753A (en) 1990-04-13 1990-04-13 Method and device for controlling zigzagging of beltlike conveyance substance

Publications (1)

Publication Number Publication Date
JPH03297753A true JPH03297753A (en) 1991-12-27

Family

ID=14162338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9634290A Pending JPH03297753A (en) 1990-04-13 1990-04-13 Method and device for controlling zigzagging of beltlike conveyance substance

Country Status (1)

Country Link
JP (1) JPH03297753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867014B1 (en) * 2007-07-04 2008-11-10 재단법인 포항산업과학연구원 Center positioning controller using driving principle of linear induction
KR20200034837A (en) * 2015-06-09 2020-03-31 노벨리스 인크. Non-contact magnetic steering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130957A (en) * 1985-11-30 1987-06-13 Nippon Steel Corp Preventing method for meandering of metal strip
JPS62130956A (en) * 1985-11-30 1987-06-13 Nippon Steel Corp Preventing method for meandering of metal strip
JPS62167163A (en) * 1986-01-16 1987-07-23 Mitsubishi Heavy Ind Ltd Floating type strip passing device
JPS6312556A (en) * 1986-07-01 1988-01-19 Mitsubishi Heavy Ind Ltd Steering device for conveying metal plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130957A (en) * 1985-11-30 1987-06-13 Nippon Steel Corp Preventing method for meandering of metal strip
JPS62130956A (en) * 1985-11-30 1987-06-13 Nippon Steel Corp Preventing method for meandering of metal strip
JPS62167163A (en) * 1986-01-16 1987-07-23 Mitsubishi Heavy Ind Ltd Floating type strip passing device
JPS6312556A (en) * 1986-07-01 1988-01-19 Mitsubishi Heavy Ind Ltd Steering device for conveying metal plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867014B1 (en) * 2007-07-04 2008-11-10 재단법인 포항산업과학연구원 Center positioning controller using driving principle of linear induction
KR20200034837A (en) * 2015-06-09 2020-03-31 노벨리스 인크. Non-contact magnetic steering
US10738828B2 (en) 2015-06-09 2020-08-11 Novelis Inc. Non-contact magnetic steering
US11125271B2 (en) 2015-06-09 2021-09-21 Novelis Inc. Non-contact magnetic steering

Similar Documents

Publication Publication Date Title
KR940005452A (en) Maglev Transfer Device
KR960010485A (en) Maglev Carrier
KR0123025B1 (en) Ac magnetic floating conveyor and operation method thereof
JPH03297753A (en) Method and device for controlling zigzagging of beltlike conveyance substance
US3827370A (en) Passive switching system
JP3209844B2 (en) Magnetic levitation transfer device
JP2602810B2 (en) Floating transfer device
JP2539679Y2 (en) AC magnetic levitation transfer device
JPH05236610A (en) Magnetic levitation conveyor
JPS6146756A (en) Conveyor
JP2760491B2 (en) Floating transfer device
JP2882850B2 (en) AC magnetic levitation transfer device
JPH01133817A (en) Non-ferrous metal can conveyer
JPH04251508A (en) Submersible linear transportation system
JPS6369402A (en) Carrier device
JPS6181106A (en) Noncontact support conveying apparatus
JPH03124623A (en) Diverging device of carrying path in carrying device
JP2516787Y2 (en) Magnetic levitation carrier
JPH04248303A (en) Magnetic levitation carrier
JPS6312555A (en) Steering system for conveying metal plate
JPH0664806A (en) Vibration damping device for steel strip
JPS6096171A (en) Carrier drive device
JPH101904A (en) Ac electromagnetic type magnetic attraction levitation linear motor conveyance device
JPS61136818A (en) Magnetic levitating apparatus
JPS592023Y2 (en) Magnetic suction levitation conveyance device