JPH0329747B2 - - Google Patents

Info

Publication number
JPH0329747B2
JPH0329747B2 JP58093969A JP9396983A JPH0329747B2 JP H0329747 B2 JPH0329747 B2 JP H0329747B2 JP 58093969 A JP58093969 A JP 58093969A JP 9396983 A JP9396983 A JP 9396983A JP H0329747 B2 JPH0329747 B2 JP H0329747B2
Authority
JP
Japan
Prior art keywords
particle size
particles
refractory
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58093969A
Other languages
Japanese (ja)
Other versions
JPS59223277A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58093969A priority Critical patent/JPS59223277A/en
Publication of JPS59223277A publication Critical patent/JPS59223277A/en
Publication of JPH0329747B2 publication Critical patent/JPH0329747B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明は、炭素質固体燃料と耐火材料の混合物
を、酸素気流とともに窯炉や溶融金属容器内に向
けて噴射することにより、噴射途中における炭素
質固体燃料と酸素との接触により起る燃焼による
高温火炎を介して上記耐火材料の一部(表面)又
は全部を溶融させ、内張り耐火物壁の損傷部位に
圧溶着し、補修する火炎溶射による熱間補修に用
いる吹付け補修材に関するものである。 従来技術 火炎溶射による熱間吹付け補修の技術は、転炉
等の溶融金属精錬容器内張り耐火物の熱間補修等
に用いられ、多大な効果が得られている。 この技術の実施に当つて採用されている従来の
吹付け補修材料は、転炉内張り耐火物と組成がほ
ぼ同一のものであり、例えば死焼マグネサイト、
死焼ドロマイト等の塩基性の耐火性粒子とコーク
ス粒子からなるものである。しかも、この混合物
の全粒子は粒径が0.5mm以下である。粒径が0.5mm
以下の粒子から成る該吹付け補修材を用いると、
一緒に噴射するコークスが酸素に接して気流中で
燃焼し高温の火炎が形成されたとき、その燃焼火
炎中で死焼マグネサイト、死焼ドロマイトなど
は、細かいものが多いために、粒子表面あるいは
全体が溶融することになる。その結果、各粒子相
互間、およびそれらと炉壁耐火物とが強固に付着
し、耐火物損傷部位の補修ができる。 この方法によつて形成された付着層は、れんが
と同等の緻密さを持ち、数回のバツチ精錬に十分
耐え得るが、主として耐火材料の粒度を細かくし
ていることに起因して、高温長時間のバツチ精錬
(たとえばステンレス鋼の精錬)の場合には、1
〜2回程度の耐用回数しか認められなかつた。こ
の点で、従来技術には限界があつた。 発明の目的と要旨構成 本発明の目的は、主として耐用性の面で劣ると
いう従来の火炎溶射吹付け補修材のもつ欠点を克
服するところにある。この目的に対して、本発明
は、 炭素質固体燃料粉と、炭素質固体燃料粉中の灰
分、耐火材料そして添加剤を一まとめに考えた粉
粒状の非燃焼成分との混成になる吹付け補修材に
おいて、 耐火材料は粒径0.5mmを超え3.0mm以下の粗粒が
10〜50重量%、残部粒径0.5mm以下の微粒の粒度
構成になり、耐火材料を除外した非燃料成分は粒
径0.5mm以下の微粒よりなり、 非燃焼成分全体の化学組成はMgO及びCaOの
合計量で80重量%以上と、Al2O3、SiO2及び
Fe2O3の合計量で5〜20重量%とからなり、かつ
Al2O3、SiO2及びFe2O3は非燃焼成分の微粒を構
成することを特徴とする火炎溶射用吹付け補修
材、 を、上記欠点を克服するのに有用な材料として提
供するものである。 本発明の熱間補修用火炎溶射吹付け補修材は塩
基性耐火物を内張りした各種の治金用窯炉、溶融
金属収容容器の内壁補修に適用し得るものである
が、以下は製鋼用転炉に用いる材料の例で説明す
る。 そこで、まず本発明の第1の特徴である耐火材
料の粒度について説明する。 一般に、火炎溶射して熱間補修するのに用いら
れる従来の吹付け補修材料中の耐火材料の粒子は
粒径が0.5mm以下、、より好ましくは0.2mm以下に、
限定されていた。このような粒度としていた理由
は次の2点にある。 (1) 耐火材料と炭素質固体燃料からなる混合物
は、搬送気体によつて材料貯蔵タンクから吹付
け用ノズルまで搬送されるが、この際、粒径が
あまり大きいと、円滑な搬送が困難となり、脈
動や、粗粒と微粒の分離などの問題点が生ず
る。 (2) 高温フレーム中で耐火材料の一部表面あるい
は全部を速やかに溶融させるには、粒径の小さ
い方が粒子への熱伝達が良好であるから好まし
いことは言うまでもない。粒径が大きいとノズ
ルから噴射されたあと炉壁面へ、到達するまで
の飛行時間の間に、十分溶融せず、その結果粒
子同志あるいは粒子と炉壁耐火物間の強固な付
着が得られなくなる。 一般に、付着層の耐用性に関して言えば、通常
の耐火れんがと同様、付着層にも粗粒、中粒、微
粒が適当な割合で存在していた方が、密度が高く
なり、全体の気孔量も減少して、スラグの浸透が
少なくなり、また強度も高くなつて耐用性が向上
すると言える。 そこで、発明者らは、従来材料は微細粒だけで
構成されていたが、これに粗粒を加えてた吹付け
補修材について検討したところ、付着層の耐用性
の向上が図れることを知見して、以下に述べるよ
うな本発明を完成した。 すなわち、まず粗粒を混ぜても搬送性を阻害し
ないようにするために、次のような粒度構成の、
吹付け補修材とした。いわゆる新らたに混合する
粗粒の粒径と重量比限定すれば、搬送中の脈動や
粗粒と微粒の分離という問題を起すことなしに、
気体による搬送が可能である。 実験によれば粗粒の粒径としては、0.5mmを超
え3.0mm以下好ましくは0.5〜2.0mmが適当であり、
重量比としては10〜50%、好ましくは10〜40%の
範囲にあれば搬送が可能であつた。この粒径にす
るのは、吹付け材料中の非燃焼成分としての大半
を占める耐火材料であり、この粒径のもの以外の
該耐火材料の残部と粒径は0.5mm以下であり、そ
して他の非燃焼成分としての添加物、あるいはコ
ークスなどの粉体燃料も粒径0.5mm以下である。 粗粒を採用するときに起る溶融速度の遅延に関
しては次のような手段で対処する。すなわち、上
述したような粗粒の粒径と重量比を限定すること
にあわせ、吹付け補修材中の非燃焼成分の化学組
成を限定することによつて行う。こうすれば、粗
粒を用いても耐火材料の粒子同志あるいは耐火材
料粒子と炉壁耐火物間の融着を強固にすることが
可能である。その理由は、耐火材料中に所定量の
粗粒が含まれていても、非燃料成分全体の中に、
低融点化合物を形成するAl3O3、SiO2、Fe2O3
分がある程度含有されているならば、それらが高
温の火炎中で溶融し、接着剤の役目をはたすこと
によつて、耐火材料同志あるいはそれらの粒子と
炉壁耐火物間が強固に融着されるからである。し
かも、残る粗粒が高純度の耐火性粒子で形成され
ていても、例えば微粒部にAl2O3、SiO2、Fe2O3
などの融点降下成分が多いなら、ノズルから炉壁
面への飛行時間中の粗粒表面の溶融が不十分で
も、十分強固な融着が可能である。 この点従来は、耐火材料はできるだけAl2O3
SiO2、Fe2O3成分が少ないものを用いるのが普通
であつた。これは、低融点化合物を形成する
Al2O3、SiO2、Fe2O3成分が多いと、付着層の耐
食性が悪くなるからである。しかし、付着層の耐
用性を上げるのに粗粒を配合するためには、適当
量のAl2O3+SiO2+Fe2O3を含有させると効果が
あることは上述したとおりであり、またそれが本
発明においては不可欠である。 以上説明したところをまとめると、強固な融着
が可能で、しかも付着層の耐食性が低下しない耐
火材料の粒度配合および吹付け補修材中の非燃焼
成分の化学組成は次のとおりである。すなわち、
耐火材料中に含有させる粗粒の粒径は、0.5mmを
超え3.0mm以下の大きさ、好ましくは0.5〜2.0mmの
大きさのものが適当であり、その含有量は第1図
から明らかなように10〜50重量%、より好ましく
は10〜40重量%が適当であつた。 また、吹付け補修材中非燃焼成分の好適な化学
組成は、第2図(耐火性粒子中に粒径0.5mmを超
え3.0mm以下粗粒30%配合)に示すように、MgO
+CaO80重量%、20重量%Al2O3+SiO2
Fe2O35重量%の範囲好ましくはMgO+CaO
85重量%、15重量%Al2O3+SiO2+Fe2O3
5重量%の範囲である。この化学組成であれば、
付着層の耐食性を下げることなく、粗粒を配合し
ても耐火材料の粒子同志あるいは耐火材料と炉壁
耐火物間の強固な融着が得られるのである。この
数値限定の理由は、例えばAl2O3+SiO2+Fe2O3
の合計量が5重量%より少ないと、耐火材料同志
あるいは耐火材料と炉壁耐火物間の強固な融着が
得られず、またその合計量が20重量%より多いと
耐食性が低下し、耐用性が悪くなるからである。 該吹付け補修中の非燃焼成分の化学組成を、本
発明のごとき範囲にする炭素質固体燃料と耐火材
料および必要に応じて用いる融点低下用添加剤の
組合せは、種々存在する。例えば、低純度のマグ
ネシアクリンカーあるいは低純度のドロマイトク
リンカーと灰分の少ないコークスを組合せる方
法、電融マグネシア等の高純度原料と灰分の多い
コークスを組合せる方法、あるいは電融マグネシ
ア等の高純度原料にスラグやオリビンを加え、灰
分の少ないコークスと組合せる方法等いろいろ考
えられるが、これらの組合せは特に限定されるべ
きものではなく、上述したMgO+CaO、Al2O3
SiO2+Fe2O3の組成範囲にある組み合わせであれ
ば、高耐食性の付着層を得ることができる。特に
当該補修が行われる炉の精錬スラグを用いて、全
体の化学組成制御を行うのは有効である。 なお、Al2O3+SiO2+Fe2O3成分は、粗粒に含
有されていては火炎中で溶融して融着剤の役目を
果し得ず、0.5mm以下の粒に含有されて始めて、
その効果を発揮する。 また、耐火材料の0.5mmを超え3.0mm以下の部分
には死焼マグネサイト、死焼ドロマイト、マグネ
シアクリンカー、ドロマイトクリンカー、電融マ
グネシア粒、電融ドロマイト粒等を単独、あるい
は混合して用い、これらは被吹付け壁面材料に応
じて適宜選択する。 実施例 表−1にマグネシアードロマイト材質で内張り
された鋼精錬用転炉内に火炎溶射したときの実施
例を示す。この表−1に示した5種類の吹付け補
修材を用いて、火炎溶射法により転炉トラニオン
部を熱間補修した。吹付け厚さは、5種類とも約
30mmとなるように吹付けた。吹付けはステンレス
鋼吹錬が続いている時に行ない、損耗速度(mm/
ch)を測定した。また、同種の吹付け補修材を
マグネシアードロマイト系れんがに吹付け(厚さ
30mm)、高周波炉張分け法によつて耐食法を調べ
た。 表−1に示すところから明らかなように、比較
例の2種と比べると本発明の吹付け補修材を使用
すると耐食性が格段に向上し、耐火物原単位の低
減に有効であることが判る。
Technical field The present invention is directed to injecting a mixture of a carbonaceous solid fuel and a refractory material into a kiln or a molten metal container together with an oxygen stream. A spray repair material used for hot repair by flame spraying, in which a part (surface) or all of the above refractory material is melted through high-temperature flames caused by combustion, and pressure welded to the damaged area of the lining refractory wall to repair it. It is. BACKGROUND ART Hot spray repair technology using flame spraying is used for hot repair of refractories lining molten metal refining containers such as converters, and has achieved great results. Conventional spray repair materials used to implement this technology have almost the same composition as the converter lining refractory, such as dead-burned magnesite,
It consists of basic refractory particles such as dead dolomite and coke particles. Furthermore, all the particles in this mixture have a particle size of 0.5 mm or less. Particle size is 0.5mm
When using the spray repair material consisting of the following particles:
When the coke that is injected together comes into contact with oxygen and burns in an air stream to form a high-temperature flame, dead-burned magnesite, dead-burned dolomite, etc. are often fine particles, so they are The whole thing will melt. As a result, each particle adheres firmly to each other and to the furnace wall refractory, and damaged parts of the refractory can be repaired. The adhesion layer formed by this method has a density equivalent to that of brick and can withstand several batch refinings, but it cannot be used for long periods of time at high temperatures, mainly due to the fine grain size of the refractory material. In the case of time batch refining (for example stainless steel refining), 1
It was only possible to use the product about 2 times. In this respect, the conventional technology has limitations. OBJECTS AND SUMMARY OF THE INVENTION An object of the present invention is to overcome the drawbacks of conventional flame spray repair materials, mainly that they are inferior in terms of durability. To this end, the present invention provides a method for spraying which is a mixture of carbonaceous solid fuel powder and a granular non-combustible component which collectively considers the ash content, refractory material and additives in the carbonaceous solid fuel powder. In repair materials, fireproof materials have coarse particles with a particle size of more than 0.5 mm and less than 3.0 mm.
The particle size is 10 to 50% by weight, and the balance is fine particles with a particle size of 0.5 mm or less.The non-fuel component excluding the refractory material consists of fine particles with a particle size of 0.5 mm or less, and the chemical composition of the entire non-combustible component is MgO and CaO. 80% by weight or more in total amount of Al 2 O 3 , SiO 2 and
The total amount of Fe 2 O 3 is 5 to 20% by weight, and
A spray repair material for flame spraying, characterized in that Al 2 O 3 , SiO 2 and Fe 2 O 3 constitute fine particles of non-combustible components, is provided as a material useful for overcoming the above-mentioned drawbacks. It is. The flame-sprayed repair material for hot repair of the present invention can be applied to repairing the inner walls of various metallurgical furnaces and molten metal storage vessels lined with basic refractories, but the following is applicable to the repair of inner walls of metallurgical furnaces and molten metal containers lined with basic refractories. This will be explained using an example of materials used in the furnace. First, the particle size of the refractory material, which is the first feature of the present invention, will be explained. Generally, the particles of refractory material in conventional spray repair materials used for flame spraying hot repairs have a particle size of 0.5 mm or less, more preferably 0.2 mm or less.
It was limited. The reason for choosing such a particle size is as follows. (1) A mixture consisting of refractory material and carbonaceous solid fuel is transported from the material storage tank to the spray nozzle by a carrier gas, but if the particle size is too large, smooth transport will be difficult. , problems such as pulsation and separation of coarse and fine particles occur. (2) Needless to say, in order to quickly melt part or all of the surface of a refractory material in a high-temperature flame, smaller particle sizes are preferable because heat transfer to the particles is better. If the particle size is large, the particles will not melt sufficiently during the flight time until they reach the furnace wall after being injected from the nozzle, and as a result, strong adhesion between the particles or between the particles and the furnace wall refractories will not be achieved. . In general, when it comes to the durability of the adhesion layer, as with ordinary refractory bricks, if the adhesion layer contains appropriate proportions of coarse, medium, and fine particles, the density will be higher and the total pore volume will be higher. It can be said that this decreases the penetration of slag and increases the strength and durability. Therefore, the inventors investigated a spray repair material that added coarse particles to the conventional material, which was composed only of fine particles, and found that the durability of the adhesion layer could be improved. As a result, the present invention as described below was completed. In other words, in order to avoid hindering the transportability even if coarse particles are mixed, the following particle size composition is used:
It was used as a spray repair material. By limiting the particle size and weight ratio of the coarse particles to be newly mixed, problems such as pulsation during conveyance and separation of coarse particles and fine particles can be avoided.
Transport by gas is possible. According to experiments, the appropriate particle size of coarse particles is more than 0.5 mm and less than 3.0 mm, preferably 0.5 to 2.0 mm.
Conveyance was possible if the weight ratio was in the range of 10 to 50%, preferably 10 to 40%. This particle size is determined by the refractory material that accounts for most of the non-combustible components in the sprayed material, and the remainder of the refractory material other than this particle size is 0.5 mm or less, and other Additives as non-combustible components or powdered fuel such as coke also have a particle size of 0.5 mm or less. The delay in melting rate that occurs when coarse particles are used can be addressed by the following measures. That is, in addition to limiting the particle size and weight ratio of the coarse particles as described above, this is done by limiting the chemical composition of the non-combustible components in the spray repair material. In this way, even if coarse particles are used, it is possible to strengthen the fusion between the refractory material particles or between the refractory material particles and the furnace wall refractory. The reason is that even if a certain amount of coarse particles are included in the refractory material, there are
If a certain amount of Al 3 O 3 , SiO 2 , and Fe 2 O 3 components that form low-melting point compounds are contained, they will melt in a high-temperature flame and act as an adhesive, making them fireproof. This is because the materials or their particles and the furnace wall refractories are firmly fused together. Moreover, even if the remaining coarse grains are made of high-purity refractory particles, for example, the fine grains contain Al 2 O 3 , SiO 2 , Fe 2 O 3 .
If there are many melting point lowering components such as, a sufficiently strong fusion is possible even if the surface of the coarse grains is insufficiently melted during the flight time from the nozzle to the furnace wall. In this regard, traditionally, refractory materials were made using Al 2 O 3 as much as possible,
It was common to use materials with low SiO 2 and Fe 2 O 3 components. This forms a low melting point compound
This is because if the Al 2 O 3 , SiO 2 , and Fe 2 O 3 components are too large, the corrosion resistance of the adhesion layer will deteriorate. However, as mentioned above, it is effective to include an appropriate amount of Al 2 O 3 + SiO 2 + Fe 2 O 3 in order to add coarse particles to increase the durability of the adhesion layer. is essential in the present invention. To summarize what has been explained above, the particle size composition of the refractory material that enables strong fusion and does not reduce the corrosion resistance of the adhesion layer, and the chemical composition of the non-combustible components in the spray repair material are as follows. That is,
The appropriate particle size of the coarse particles to be contained in the refractory material is more than 0.5 mm and less than 3.0 mm, preferably 0.5 to 2.0 mm, and the content is as shown in Figure 1. Thus, 10 to 50% by weight, more preferably 10 to 40% by weight, was suitable. In addition, the preferred chemical composition of the non-combustible components in the spray repair material is MgO
+CaO80wt%, 20wt % Al2O3 + SiO2 +
Fe 2 O 3 in the range of 5% by weight, preferably MgO + CaO
85% by weight, 15% by weight Al 2 O 3 + SiO 2 + Fe 2 O 3
It is in the range of 5% by weight. With this chemical composition,
Even if coarse particles are added, strong fusion can be achieved between the particles of the refractory material or between the refractory material and the furnace wall refractory without lowering the corrosion resistance of the adhesion layer. The reason for this numerical limitation is, for example, Al 2 O 3 + SiO 2 + Fe 2 O 3
If the total amount is less than 5% by weight, strong fusion between the refractory materials or between the refractory materials and the furnace wall refractories will not be achieved, and if the total amount is more than 20% by weight, the corrosion resistance will decrease and the durability will be reduced. This is because the sex becomes worse. There are various combinations of carbonaceous solid fuel, refractory materials, and optionally melting point lowering additives that bring the chemical composition of the non-combustible components during the spray repair into the range of the present invention. For example, a method of combining low-purity magnesia clinker or low-purity dolomite clinker with coke with a low ash content, a method of combining a high-purity raw material such as fused magnesia with coke with a high ash content, or a method of combining a high-purity raw material such as fused magnesia with coke with a high ash content, or a method of combining a high-purity raw material such as fused magnesia. Various methods can be considered, such as adding slag or olivine to coke with a low ash content, but these combinations are not particularly limited .
If the combination is within the composition range of SiO 2 +Fe 2 O 3 , a highly corrosion-resistant adhesion layer can be obtained. In particular, it is effective to control the overall chemical composition using the refined slag of the furnace where the repair is performed. Note that if the Al 2 O 3 + SiO 2 + Fe 2 O 3 components are contained in coarse particles, they will not melt in the flame and will not function as a fusion agent. ,
Demonstrate its effectiveness. In addition, for the part of the refractory material exceeding 0.5 mm and 3.0 mm or less, dead-burning magnesite, dead-burning dolomite, magnesia clinker, dolomite clinker, fused magnesia grains, fused dolomite grains, etc. are used alone or in combination. These are appropriately selected depending on the wall surface material to be sprayed. Examples Table 1 shows examples in which flame spraying was applied to a steel refining converter lined with magnesia dolomite material. Using the five types of spray repair materials shown in Table 1, the converter trunnion was hot repaired by flame spraying. The spraying thickness is approx. for all 5 types.
It was sprayed to a thickness of 30 mm. Spraying is carried out while stainless steel blowing is continuing, and the wear rate (mm/
ch) was measured. In addition, the same type of spray repair material is sprayed on magnesia dolomite bricks (thickness
30mm), and the corrosion resistance method was investigated using the high frequency furnace method. As is clear from Table 1, when compared with the two comparative examples, the use of the sprayed repair material of the present invention significantly improves corrosion resistance, proving that it is effective in reducing the unit consumption of refractories. .

【表】 上記実施例では、鋼精錬用転炉について示した
が、この他にも溶融状態で精錬を行なう他の金属
精錬炉にも同様に効果があり、また、精錬炉のみ
でなく、溶融スラグと接触しスラグによる溶損が
顕著な他の耐火物を内張りした高温用容器等にも
応用することができる。 発明の効果 以上説明したように本発明の吹付け補修材によ
れば、補修面の耐用性に優れ、耐火物原単位を低
減するのに効果がある。
[Table] In the above example, a converter for steel refining was shown, but it is also effective for other metal refining furnaces that perform refining in a molten state. It can also be applied to high-temperature containers lined with other refractories that come into contact with slag and are subject to significant erosion by the slag. Effects of the Invention As explained above, the spray repair material of the present invention has excellent durability of the repaired surface and is effective in reducing the unit consumption of refractories.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、耐火材料中における粒径0.5mmを超
え3.0mm以下の粗粒の配合割合と付着層の損耗深
さの関係を示すグラフ、第2図は吹付け補修材中
の非燃焼成分中に占めるAl2O3+SiO2+Fe2O3
成の割合と付着層の損耗深さの関係を示すグラフ
である。
Figure 1 is a graph showing the relationship between the mixing ratio of coarse particles with a particle size of more than 0.5 mm and 3.0 mm or less in the fireproof material and the wear depth of the adhesion layer, and Figure 2 is the non-combustible component in the spray repair material. It is a graph showing the relationship between the ratio of Al 2 O 3 +SiO 2 +Fe 2 O 3 composition occupied in the adhesive layer and the wear depth of the adhesion layer.

Claims (1)

【特許請求の範囲】 1 炭素質固体燃料粉と、炭素質固体燃料粉中の
灰分、耐火材料そして添加剤を一まとめに考えた
粉粒状の非燃焼成分との混成になる吹付け補修材
において、 耐火材料は粒径0.5mmを超え3.0mm以下の粗粒が
10〜50重量%、残部粒径0.5mm以下の微粒の粒度
構成になり、耐火材料を除外した非燃焼成分は粒
径0.5mm以下の微粒よりなり、 非燃焼成分全体の化学組成はMgO及びCaOの
合計量で80重量%以上と、Al2O3、SiO2及び
Fe2O3の合計量で5〜20重量%とからなり、かつ
Al2O3、SiO2及びFe2O3は非燃焼成分の微粒を構
成することを特徴とする火炎溶射用吹付け補修
材。
[Scope of Claims] 1. A spray repair material that is a mixture of carbonaceous solid fuel powder and a powdery non-combustible component that includes the ash content, fireproof material, and additives in the carbonaceous solid fuel powder. , Refractory materials consist of coarse particles with a particle size of more than 0.5 mm and less than 3.0 mm.
The particle size is 10 to 50% by weight, and the balance is fine particles with a particle size of 0.5 mm or less.The non-combustible component excluding the refractory material consists of fine particles with a particle size of 0.5 mm or less, and the chemical composition of the entire non-combustible component is MgO and CaO. 80% by weight or more in total amount of Al 2 O 3 , SiO 2 and
The total amount of Fe 2 O 3 is 5 to 20% by weight, and
A spray repair material for flame thermal spraying, characterized in that Al 2 O 3 , SiO 2 and Fe 2 O 3 constitute fine particles of non-combustible components.
JP58093969A 1983-05-30 1983-05-30 Flame spraying repaiment material Granted JPS59223277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093969A JPS59223277A (en) 1983-05-30 1983-05-30 Flame spraying repaiment material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093969A JPS59223277A (en) 1983-05-30 1983-05-30 Flame spraying repaiment material

Publications (2)

Publication Number Publication Date
JPS59223277A JPS59223277A (en) 1984-12-15
JPH0329747B2 true JPH0329747B2 (en) 1991-04-25

Family

ID=14097226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093969A Granted JPS59223277A (en) 1983-05-30 1983-05-30 Flame spraying repaiment material

Country Status (1)

Country Link
JP (1) JPS59223277A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401003A (en) * 1993-04-29 1995-03-28 Zaptech Corporation Method and apparatus for flame gunning

Also Published As

Publication number Publication date
JPS59223277A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
US4489022A (en) Forming coherent refractory masses
EP0006775B1 (en) Gas-permeable refractory elements
JPH09132469A (en) Flame thermal spray material
US3540897A (en) Gunnable refractory
KR970009993B1 (en) Ceramic welding process and powder mixture for use in the same
US5506181A (en) Refractory for use in casting operations
EP0020022B1 (en) Plastic refractories with fused alumina-chrome grog
JPH0329747B2 (en)
CN104193360B (en) The repair method of RH tubular stinger soldering material and RH tubular stinger
JP3174179B2 (en) Thermal spray material
JPH09286671A (en) Repairing material for kiln
JP2827375B2 (en) Coating method for kiln interior
JPS6158867A (en) Flame spray material for furnace wall maintenance
JP2549035B2 (en) Fireproof powder for thermal spraying
JP3009815B2 (en) Aluminum titanate-alumina spray material
JP2885630B2 (en) Flame spray material
KR20000067290A (en) Fireproot material for hot mending of damage part in melting furnace bady
JP2000302539A (en) Filling material for masonry joint of brick
JPS5848510B2 (en) Hot repair material for fireproof structures
JPH07277842A (en) Mgo-cao based thermal spraying material
JPS5934674B2 (en) Basic refractory composition
JP3874216B2 (en) Flame spraying material
JPS6053273B2 (en) Flame spraying repair method for a furnace
JP3783254B2 (en) Hot baking repair material
JPH0437030B2 (en)