JPH03296536A - Production of imidosilicon polymer article - Google Patents

Production of imidosilicon polymer article

Info

Publication number
JPH03296536A
JPH03296536A JP9885090A JP9885090A JPH03296536A JP H03296536 A JPH03296536 A JP H03296536A JP 9885090 A JP9885090 A JP 9885090A JP 9885090 A JP9885090 A JP 9885090A JP H03296536 A JPH03296536 A JP H03296536A
Authority
JP
Japan
Prior art keywords
crosslinking
imidosilicon
polymer
resistance
electron beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9885090A
Other languages
Japanese (ja)
Other versions
JP2832740B2 (en
Inventor
Toshinori Fujita
藤田 俊徳
Takahiko Hirata
平田 隆彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP9885090A priority Critical patent/JP2832740B2/en
Publication of JPH03296536A publication Critical patent/JPH03296536A/en
Application granted granted Critical
Publication of JP2832740B2 publication Critical patent/JP2832740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain an imidosilicon polymer article improved in heat distortion resistance, solvent resistance and cut-through resistance at high temperature by molding an imidosilicon polymer and crosslinking it by irradiation with electron beams. CONSTITUTION:The purpose article is obtained by molding an imidosilicon polymer into any desired shape and crosslinking it by irradiating with electron beams optionally in the presence of a crosslinking aid having at least two ethylenically unsaturated functional groups. The dose of electron beams used in the crosslinking is generally in the range of 5-50Mrad, especially 10-30Mrad. When the crosslinking is performed in the presence of a crosslinking aid, the crosslinking density can be improved and the improving effect is enhanced. Examples of the crosslinking aids include ones having at least two ethylenically unsaturated groups, particularly desirably trimethylolpropane trimethacrylate and triallyl isocyanurate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、イミドシリコン系重合体にて構成された成形
物品、たとえばシート、バイブ、絶縁電線等の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing molded articles such as sheets, vibrators, insulated wires, etc., made of imidosilicon polymers.

〔従来の技術〕[Conventional technology]

現在、絶縁電線の被覆材料として押出成形可能でしかも
特に耐熱性に優れた樹脂の開発が望まれている。かかる
樹脂の例として米国GE社のエーテルイミド重合体(商
品名11Hem)がある。この樹脂は電気特性、耐熱性
が高いところから有望視されているが、アセトンのよう
な汎用溶剤に対して容易にクラックが発生する問題があ
る。
Currently, there is a desire to develop a resin that can be extruded and has particularly excellent heat resistance as a coating material for insulated wires. An example of such a resin is etherimide polymer (trade name 11Hem) manufactured by GE Corporation in the United States. This resin is seen as promising due to its high electrical properties and heat resistance, but it has the problem of easily cracking when exposed to general-purpose solvents such as acetone.

押出成形可能でしかも特に耐熱性に優れた他の樹脂とし
て、最近イミドシリコン系共重合体が開発された。この
樹脂は、基本的にはシリコン樹脂等のシリコン化合物と
イミドとの共重合体であって上記特性の他に電気特性、
機械的特性、可1茹性、難燃性等にも優れているので電
線用の被覆材としてを望視されている。
Imidosilicon copolymers have recently been developed as other resins that can be extruded and have particularly excellent heat resistance. This resin is basically a copolymer of a silicon compound such as silicone resin and an imide, and in addition to the above properties, it has electrical properties,
Because of its excellent mechanical properties, boilability, flame retardance, etc., it is expected to be used as a coating material for electric wires.

〔解決を要すべき問題点〕[Problems that need to be solved]

ところでイミドシリコン系重合体は、200℃での耐熱
寿命が極めて優れてはいるが、時間と共に若干熱溶融が
生じて成形品が変形する問題、耐溶剤性や150℃前後
の高温でのカットスルー抵抗が必ずしも充分でない等の
問題がある。
By the way, imidosilicon polymers have extremely excellent heat-resistant life at 200°C, but they have problems such as slight thermal melting over time and deformation of molded products, solvent resistance, and cut-through at high temperatures of around 150°C. There are problems such as resistance not necessarily being sufficient.

そこで本発明は、イミドシリコン系重合体の上記の問題
点を解消することにある。
Therefore, the present invention aims to solve the above-mentioned problems of imidosilicon polymers.

〔問題点を解決するための手段〕[Means for solving problems]

イミドシリコン系重合体のこれら問題は、それを電子線
照射して架橋することにより就中特定の架橋助剤の存在
下で電子線照射して架橋することにより予想外の効果で
解消することが判明した。
These problems of imidosilicon polymers can be solved with unexpected effects by crosslinking them by irradiating them with electron beams, especially in the presence of a specific crosslinking aid. found.

而して本発明は、イミドシリコン系重合体を所望の形状
に成形し、次いで電子線照射して、好ましくは少なくと
も2個のエチレン系不飽和官能基を有する架橋助剤の存
在下で電子線照射して架橋することを特徴とするイミド
シリコン系重合体物品の製造方法である。
Accordingly, in the present invention, an imidosilicon polymer is molded into a desired shape, and then irradiated with an electron beam, preferably in the presence of a crosslinking agent having at least two ethylenically unsaturated functional groups. This is a method for producing an imidosilicon polymer article, which is characterized by crosslinking by irradiation.

〔発明の構成並びに作用〕[Structure and operation of the invention]

従来イミドシリコン系重合体を電子線照射により架橋し
゛ζ使用することは知られていなかったが、本発明にお
けるこの架橋により熱変形性、耐溶剤性、高温でのカッ
トスルー抵抗等が予想外の好成績で改善される。
Conventionally, it was not known to crosslink imidosilicon polymers by electron beam irradiation, but this crosslinking in the present invention has unexpectedly improved heat deformability, solvent resistance, cut-through resistance at high temperatures, etc. Improve with good results.

本発明において対象とされるイミドシリコン系重合体と
しては、メチルシリコンモノマー、フェニルシリコンモ
ノマー、各種のシロキサン、等のシリコン化合物とイミ
ドとのブロック共重合体やランダムに共重合体等が例示
され、製造方法例では米国特許第3.325.450号
、米国特許第3.553,282号、米国特許第3.3
38,859号、等に記載されている。また市販品では
、商品名SILTEM−1500があり、イミドシロキ
サン共重合体の市販品では商品名D9000 (以上、
いずれも米国GE社製)がある。
Examples of imidosilicon-based polymers targeted in the present invention include block copolymers and random copolymers of imides and silicon compounds such as methyl silicon monomers, phenyl silicon monomers, various siloxanes, etc. Examples of manufacturing methods include U.S. Patent No. 3.325.450, U.S. Patent No. 3.553,282, and U.S. Patent No. 3.3.
No. 38,859, etc. In addition, there is a commercial product under the trade name SILTEM-1500, and a commercial product of imidosiloxane copolymer is under the trade name D9000.
Both are manufactured by GE Corporation in the United States).

本発明においては、イミドシリコン系重合体を押出等の
方法で所望の形状に成形した後、電子線照射により架橋
する。その際の電子線間は、一般に5〜50Mrad程
度の範囲であり、特にはlO〜30Mradが好ましい
。なお電子線照射による架橋の際、架橋助剤の存在下で
電子線照射して架橋すると一層架橋密度が向上して特定
の改善効果が高まる。
In the present invention, an imidosilicon polymer is formed into a desired shape by extrusion or the like, and then crosslinked by electron beam irradiation. The distance between the electron beams at that time is generally in the range of about 5 to 50 Mrad, and particularly preferably 10 to 30 Mrad. Note that when crosslinking is performed by electron beam irradiation, if the crosslinking is performed by electron beam irradiation in the presence of a crosslinking auxiliary agent, the crosslinking density is further improved and the specific improvement effect is enhanced.

架橋助剤としては、少なくとも2個のエチレン系不飽和
官能基を有するもの、たとえばトリメチロールプロパン
トリメタクリレート、エチレングリコールジメタクリレ
ート、トリエチレングリコールジメタクリレート、テト
ラエチレングリコールジメタクリレート、ポリエチレン
グリコールジメタクリレート、ラウリルメタクリレート
、トリアリルシアヌレート、トリアリルイソシアネート
、ジアリルフタレート、トリアリルトリメリテート、ト
リアリルホスフェート、ジアリルイタコネート、トリア
リルアコニテート、ジアリルフマレート、ジアリルシト
ラネート、オルソ−シリシック酸テトラアリルエステル
、テトラアリルオキシエタン、N、N“−メタ−フェニ
レンビスマレイミド、フェニルマレイミド、トリアクリ
ルヘキサハイドロトリアジンシアヌレート、ペンタエリ
スリトールトリアクリレート、ペンタエリスリトールテ
トラアクリレート、1.6−ヘキサンジオールジアクリ
レート、エチレングリコールジアクリレート、ジヒニル
ベンゼン、トリビニルベンゼン 、1.2−ポリブタジ
ェン(分子量1000〜5000)などであり、就中好
ましいものは、トリメチロールプロパントリメタクリレ
ート、トリアリルイソシアヌレート、トリアリルキリメ
リテートなどである。
Examples of crosslinking aids include those having at least two ethylenically unsaturated functional groups, such as trimethylolpropane trimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, lauryl Methacrylate, triallyl cyanurate, triallyl isocyanate, diallyl phthalate, triallyl trimellitate, triallyl phosphate, diallylutaconate, triallylaconitate, diallyl fumarate, diallyl citranate, ortho-silicic acid tetraallyl ester, tetra Allyloxyethane, N,N"-meta-phenylene bismaleimide, phenylmaleimide, triacrylhexahydrotriazine cyanurate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, Dihinylbenzene, trivinylbenzene, 1,2-polybutadiene (molecular weight 1,000 to 5,000), etc., and preferred among them are trimethylolpropane trimethacrylate, triallyl isocyanurate, triallyl chirimellitate, and the like.

架橋助剤を使用する場合、その配合量はイミドシリコン
系重合体100重量部あたり0.1〜10重量部重量部
時に1.0〜5.0程度が適当である。架橋助剤は、イ
ミドシリコン系重合体を押出機のホッパーに投入しつつ
必要量をホッパー中の該重合体に滴下する、押出機バレ
ルの途中から注入する、あるいは予めヘンンエルミキサ
にて混合しておく、等の方法で添加してよく、またイミ
ドシリコン系重合体の成形品を得た後に架橋助剤または
その有機溶剤溶液と接触して拡散浸透させてもよい。
When a crosslinking aid is used, the appropriate amount thereof is 0.1 to 10 parts by weight per 100 parts by weight of the imidosilicon polymer, and approximately 1.0 to 5.0 parts by weight. The crosslinking aid can be added by dropping the required amount onto the imidosilicon polymer in the hopper of the extruder, by injecting it from the middle of the extruder barrel, or by mixing it in advance in a Hennel mixer. Alternatively, after obtaining a molded product of the imidosilicon polymer, it may be brought into contact with the crosslinking aid or its organic solvent solution and diffused into the product.

また本発明においては、イミドシリコン系重合体に他の
配合剤、たとえばカーボンブラック、シリカ、クレー等
の充填剤、酸化防止剤、難燃剤、等を通常量配合しても
よい。
Further, in the present invention, other compounding agents such as fillers such as carbon black, silica, and clay, antioxidants, flame retardants, etc. may be added to the imidosilicon polymer in normal amounts.

〔発明の効果〕〔Effect of the invention〕

本発明において対象とするイミドシリコン系重合体は、
機械的特性、電気特性、難燃性に優れ、且つ成形加工性
に優れているので押出機等にて容易に所望の形状に成形
できる。たとえば銅導体の上に通常のクロスヘツドを用
いてイミドシリコン系重合体を押出被覆して被覆電線を
得ることかできる。またその成形品を本発明の方法によ
り架橋することにより熱変形性、耐溶剤性、高温でのカ
ットスルー抵抗等が予想外の好成績で改善される。
The imidosilicon-based polymer targeted in the present invention is
It has excellent mechanical properties, electrical properties, flame retardancy, and moldability, so it can be easily molded into a desired shape using an extruder or the like. For example, a coated wire can be obtained by extrusion coating an imidosilicon polymer onto a copper conductor using a conventional crosshead. Further, by crosslinking the molded article by the method of the present invention, thermal deformability, solvent resistance, cut-through resistance at high temperature, etc. are improved with unexpectedly good results.

而して本発明は、被覆電線のみならず、イミドシリコン
系重合体からなる各種の成形品の製造に有用である。
Therefore, the present invention is useful not only for producing covered electric wires but also for producing various molded products made of imidosilicon polymers.

〔実施例〕〔Example〕

以下に実施例及び比較例により本発明を一層詳細に説明
する。
The present invention will be explained in more detail below using Examples and Comparative Examples.

実施例1 イミドシリコン重合体(SILTEM−1500、米国
GE社製商品名)のベレットのままプレス成形して0.
6m厚のシートを作成した後、シートの片面に15Mr
adずつ両面を電子照射し架橋して架橋シートを得た。
Example 1 A pellet of imidosilicon polymer (SILTEM-1500, trade name manufactured by GE Corporation, USA) was press-molded as it was.
After creating a 6m thick sheet, apply 15Mr on one side of the sheet.
Both sides were irradiated with electrons and crosslinked to obtain a crosslinked sheet.

実施例2 イミドシリコン重合体(D 9000、米国GE社製商
品名)を用いた以外は実施例1と同様にして架橋シート
を得た。
Example 2 A crosslinked sheet was obtained in the same manner as in Example 1, except that an imidosilicon polymer (D 9000, trade name, manufactured by GE, USA) was used.

実施例3 イミドシリコン重合体(SILTEM−1500、米国
GE社製商品名)とその100重量部あたり2重量部の
トリアリルイソシアヌレートとをブラベンダーブラスト
ミル(東洋精機社製品)を用いて混練し、ついでプレス
成形してQ、5mn厚のシートを作成した後、シートの
片面に15Mradずつ両面を電子照射し架橋して架橋
シートを得た。
Example 3 An imidosilicon polymer (SILTEM-1500, trade name manufactured by GE, USA) and 2 parts by weight of triallyl isocyanurate per 100 parts by weight were kneaded using a Brabender blast mill (manufactured by Toyo Seiki Co., Ltd.). Then, press molding was performed to prepare a sheet with a thickness of 5 mm, and then each side of the sheet was irradiated with electrons at a dose of 15 Mrad to crosslink the sheet to obtain a crosslinked sheet.

比較例1 実施例1の未照射シートを比較例1とした。Comparative example 1 The unirradiated sheet of Example 1 was designated as Comparative Example 1.

比較例2 実施例2の未照射シートを比較例2とした。Comparative example 2 The unirradiated sheet of Example 2 was designated as Comparative Example 2.

実施例1〜3及び比較例1〜2で得た各架橋シートにつ
き、引張り強さ、引張伸び、高温熱変形性、高温カット
スルー抵抗、酸素指数、耐有機溶剤性、低温脆化性並び
に体積抵抗率を評価した。
For each crosslinked sheet obtained in Examples 1 to 3 and Comparative Examples 1 to 2, tensile strength, tensile elongation, high temperature thermal deformability, high temperature cut-through resistance, oxygen index, organic solvent resistance, low temperature embrittlement, and volume Resistivity was evaluated.

その結果を第1表に示す。なお高温熱変形性は200℃
で1日加熱した後における変形の有無で評価した。高温
カットスルー抵抗は、150℃で評価した。耐有機溶剤
性は、試験シートを常温のアセトン中に7日間浸漬後、
取り出して7字状に折り曲げ14日間常温で放置した後
、再び同様に折り曲げて割れの発生有無を調べた。低温
脆化性は、JIS規格C−3005に基づき一30℃で
行った。
The results are shown in Table 1. In addition, high temperature heat deformability is 200℃
Evaluation was made based on the presence or absence of deformation after heating for one day. High temperature cut-through resistance was evaluated at 150°C. Organic solvent resistance was determined by immersing the test sheet in acetone at room temperature for 7 days.
After taking it out, folding it into a figure 7 shape and leaving it at room temperature for 14 days, it was folded again in the same way and examined for cracks. Low-temperature embrittlement was measured at -30°C based on JIS standard C-3005.

第1表 度と比較例して名かに軽度であった。Table 1 The symptoms were mild compared to the comparative example.

各実施は、高温熱変形性、高温カットスルー抵抗が良好
であって、さらに難燃性も良好であることが明らかであ
る。また、引張り強さは少なくとも1.0kg/m■:
、伸びは少なくとも50%あれば電線被覆材料として適
用可能と考えられ、各実施例はそれらの基準に合格して
いる。
It is clear that each implementation has good high-temperature thermal deformability, high-temperature cut-through resistance, and also good flame retardancy. In addition, the tensile strength is at least 1.0 kg/m■:
If the elongation is at least 50%, it is considered to be applicable as a wire covering material, and each of the examples passed those standards.

Claims (2)

【特許請求の範囲】[Claims] (1)イミドシリコン系重合体を所望の形状に成形し、
次いで電子線照射して架橋することを特徴とするイミド
シリコン系重合体物品の製造方法。
(1) Molding the imidosilicon polymer into the desired shape,
A method for producing an imidosilicon polymer article, which comprises then crosslinking it by irradiating it with an electron beam.
(2)イミドシリコン系重合体を所望の形状に成形し、
次いで少なくとも2個のエチレン系不飽和官能基を有す
る架橋助剤の存在下で電子線照射して架橋することを特
徴とするイミドシリコン系重合体物品の製造方法。
(2) Molding the imidosilicon polymer into the desired shape,
A method for producing an imidosilicon polymer article, which is then crosslinked by electron beam irradiation in the presence of a crosslinking aid having at least two ethylenically unsaturated functional groups.
JP9885090A 1990-04-13 1990-04-13 Method for producing imidosilicon polymer article Expired - Fee Related JP2832740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9885090A JP2832740B2 (en) 1990-04-13 1990-04-13 Method for producing imidosilicon polymer article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9885090A JP2832740B2 (en) 1990-04-13 1990-04-13 Method for producing imidosilicon polymer article

Publications (2)

Publication Number Publication Date
JPH03296536A true JPH03296536A (en) 1991-12-27
JP2832740B2 JP2832740B2 (en) 1998-12-09

Family

ID=14230712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9885090A Expired - Fee Related JP2832740B2 (en) 1990-04-13 1990-04-13 Method for producing imidosilicon polymer article

Country Status (1)

Country Link
JP (1) JP2832740B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576140B2 (en) 2005-10-18 2009-08-18 Sabic Innovative Plastics Ip B.V. Method of improving abrasion resistance of plastic article and article produced thereby
US7855241B2 (en) 2005-10-18 2010-12-21 Sabic Innovative Plastics Ip B.V. Method of improving abrasion resistance of plastic article using nanoparticles and article produced thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576140B2 (en) 2005-10-18 2009-08-18 Sabic Innovative Plastics Ip B.V. Method of improving abrasion resistance of plastic article and article produced thereby
US7855241B2 (en) 2005-10-18 2010-12-21 Sabic Innovative Plastics Ip B.V. Method of improving abrasion resistance of plastic article using nanoparticles and article produced thereby

Also Published As

Publication number Publication date
JP2832740B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
ES2335894T3 (en) PROCEDURE TO PREPARE RETICULATED POLYMERIC COMPOSITIONS.
US3974132A (en) Process for curing olefin polymers
KR102080451B1 (en) Crosslinkable polymer composition and cable with advantageous electrical properties
JP2012241129A (en) Resin composition, and wire and cable using the same
EP2418255A1 (en) Polymer compositions and their use as cable coverings
US3580829A (en) Process for irradiating polyvinylidene fluoride and a compatible polyfunctional monomer and product thereof
Gheysari et al. The effect of high-energy electron beam irradiation and content of ATH upon mechanical and thermal properties of EVA copolymer
JPH03296536A (en) Production of imidosilicon polymer article
US4960837A (en) Polyetherimides
JP3383924B2 (en) Flame retardant polyester elastomer composition and molded article therefrom
JP2858264B2 (en) Flame retardant resin composition
JP2002332384A (en) Heat-resistant flame-retardant resin composition
JPH07179705A (en) Method for crosslinking fluororubber composition and its crosslinked molded product
JP3224015B2 (en) Crosslinkable vinyl chloride resin composition for covering electric wires and method for producing crosslinked vinyl chloride resin for covering electric wires
JPH037755A (en) Phenylene oxide polymer composition
JPS5844700B2 (en) Method for manufacturing flame-retardant molded products
KR930003229B1 (en) Cable and insulating material compositions
JP2954639B2 (en) Wire coating material
JPS6210254B2 (en)
SU1613452A1 (en) Method of producing conducting articles from polyolefins
JPS6345692B2 (en)
JPS6015655B2 (en) Method for producing a flame-retardant polymer composition molded article
JPS60260635A (en) Radiation-crosslinkable fluororesin composition
JPS6215250A (en) Fluororesin composition crosslinkable by irradiation
JP2023057885A (en) Polypropylene film and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees