JPH03296502A - Apparatus and method for continuous reversed-phase suspension polymerization - Google Patents

Apparatus and method for continuous reversed-phase suspension polymerization

Info

Publication number
JPH03296502A
JPH03296502A JP10091290A JP10091290A JPH03296502A JP H03296502 A JPH03296502 A JP H03296502A JP 10091290 A JP10091290 A JP 10091290A JP 10091290 A JP10091290 A JP 10091290A JP H03296502 A JPH03296502 A JP H03296502A
Authority
JP
Japan
Prior art keywords
tower
dispersion medium
polymerizable
polymerization
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10091290A
Other languages
Japanese (ja)
Inventor
Hideaki Kubo
英明 久保
Naoki Katada
片田 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP10091290A priority Critical patent/JPH03296502A/en
Publication of JPH03296502A publication Critical patent/JPH03296502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously produce polymer particles having a uniform particle diameter by causing a dispersion medium to flow as an upward current through a polymn. tower and by using the tower in which the sectional area decreases with coming down from the upper to the lower part of the tower. CONSTITUTION:The title apparatus comprises a polymerizable liq. drop- generating apparatus 1; a polymn. tower 2 which communicates with the apparatus 1; a dispersion medium line 3 which causes a dispersion medium to recirculate and to flow through the polymn. tower 2 as an upward current and comprises a dispersion medium-feeding line 8, a dispersion medium storage vessel 3, and a recirculation pump 4; and a recovery line 7 for recovering produced polymer particles. In the polymn. tower 2, the sectional area decreases step by step or continuously with coming down from the upper to the lower part of the tower.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、逆相懸濁重合法の改良に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to improvements in reverse-phase suspension polymerization.

[従来の技術] 従来懸濁重合において、モノマー液滴及びポリマー粒子
の分散媒中への分散は、通常、懸濁安定上側の存在下、
機械的に強力に撹拌する事により行なわれる。
[Prior Art] In conventional suspension polymerization, monomer droplets and polymer particles are dispersed in a dispersion medium, usually in the presence of a suspension stabilizing upper side.
This is done by powerful mechanical stirring.

しかし上記撹拌による分散法では、モノマー液滴は撹拌
剪断力により破壊されたり、合一したりするため、モノ
マー液滴の粒径を均一に揃えることが困難である。その
為、生成ポリマー粒子の粒径分布は広いという問題を有
する。
However, in the dispersion method using stirring, the monomer droplets are destroyed or coalesced by the shear force of stirring, so it is difficult to make the particle size of the monomer droplets uniform. Therefore, there is a problem that the particle size distribution of the produced polymer particles is wide.

上記問題を解決する方法として、塔径が一定の重合反応
塔を用いる方法が特開昭51−150592号公報に提
案されている。これは、分散媒を塔内に下降流又は、上
昇流として流通させ、塔内においてモノマー液適群を流
動層状態にして重合させ1ものである。
As a method for solving the above problem, a method using a polymerization reaction tower having a constant diameter is proposed in JP-A-51-150592. This is a method in which a dispersion medium is passed through a column as a downward flow or an upward flow, and a monomer liquid is polymerized in a fluidized bed state within the column.

しかし上記方法においては、ポリマーの生成は回分式で
あり、実際の工業的規模の生産には非効率的である。又
、得られるポリマー粒子の粒径分布も十分に狭いものと
は言い難い。
However, in the above method, the polymer is produced in a batch manner, which is inefficient for actual industrial scale production. Moreover, the particle size distribution of the resulting polymer particles is also not sufficiently narrow.

別の方法として、重合反応塔を2基用い、第1反応塔内
では下降流、第2反応塔内では上昇流として分散媒を流
通させ、ポリマー生成を連続的に行なう特開昭57−2
05402号公報に開示されたもの、及びその改良法で
ある特開昭58−91701号公報に開示されたものが
ある。
As another method, two polymerization reaction towers are used, and the dispersion medium is passed as a downward flow in the first reaction tower and as an upward flow in the second reaction tower, and polymer production is continuously performed in JP-A-57-2.
There is one disclosed in Japanese Patent Publication No. 05402, and one disclosed in Japanese Patent Application Laid-open No. 58-91701, which is an improved method thereof.

しかし上記何れの方法も、モノマー液の方か分散媒より
も比重が小さい順相懸濁重合に限られ、モノマー液の方
が分散媒より比重が大きい逆相懸濁重合に適用する事は
出来ない。また、複数の反応部からなるため、装置が複
雑である。
However, both of the above methods are limited to normal-phase suspension polymerization, where the monomer liquid has a lower specific gravity than the dispersion medium, and cannot be applied to reverse-phase suspension polymerization, where the monomer liquid has a higher specific gravity than the dispersion medium. do not have. Furthermore, since it consists of a plurality of reaction sections, the apparatus is complicated.

[発明が解決しようとする課題] 本発明は、粒径の均一なポリマー粒子を連続的に取得す
る事が出来る逆相懸濁重合法を提供する事を、目的とす
る。
[Problems to be Solved by the Invention] An object of the present invention is to provide a reverse-phase suspension polymerization method that can continuously obtain polymer particles having a uniform particle size.

[課題を解決するための手段] 上記目的を達成する為に、塔内で分散媒を上昇流として
流通させ、且つ塔内の上部、中部、及び下部に於ける分
散媒の上昇速度がそれぞれ異なるような構造を有する重
合反応塔を用いれば、優れた功を奏する事を見出し、本
発明を成すに至った。
[Means for solving the problem] In order to achieve the above object, the dispersion medium is circulated in the tower as an upward flow, and the rising speed of the dispersion medium in the upper, middle, and lower parts of the tower is different. The inventors have discovered that excellent results can be achieved by using a polymerization reaction tower having such a structure, and have accomplished the present invention.

即ち本発明は、重合性液滴生成装置、該重合性液滴生成
装置と接続する重合反応塔、該反応塔内を分散媒溶液か
上昇流として流れるように循環させる分散媒溶液循環ラ
イン、及び生成ポリマー粒子の回収ラインより構成され
、 該重合反応塔が塔上部から塔下部にいくに従って塔断面
積が減少するものであることを特徴とする逆相懸濁連続
重合装置を提供する。
That is, the present invention provides a polymerizable droplet generating device, a polymerization reaction tower connected to the polymerizable droplet generating device, a dispersion medium solution circulation line that circulates the dispersion medium solution as an upward flow through the reaction tower, and Provided is a reversed-phase suspension continuous polymerization apparatus comprising a recovery line for produced polymer particles, and characterized in that the polymerization reaction column has a column cross-sectional area that decreases from the top of the column to the bottom of the column.

本発明においては、上記モノマーを含む重合性溶液は、
懸濁安定化剤を含む上記分散媒溶液より比重が大きけれ
ばよい。本発明の一態様として上記重合性溶液が水溶液
、分散媒溶液が油性溶液の場合をとり上げて以下に本発
明を説明する。
In the present invention, the polymerizable solution containing the above monomer is
It is sufficient if the specific gravity is larger than the above-mentioned dispersion medium solution containing the suspension stabilizer. The present invention will be described below by taking up a case where the polymerizable solution is an aqueous solution and the dispersion medium solution is an oily solution as one embodiment of the present invention.

分散媒溶液中に分散させる重合性溶液は、分散媒溶液よ
り大きい比重を有し、分散媒溶液と殆ど若しくは全く相
溶性の無い水溶液であり、モノマ、重合開始剤、架橋剤
、及び水性媒体等を含む。
The polymerizable solution to be dispersed in the dispersion medium solution is an aqueous solution that has a higher specific gravity than the dispersion medium solution and has little or no compatibility with the dispersion medium solution, and contains monomers, polymerization initiators, crosslinking agents, aqueous medium, etc. including.

上記モノマーとしては水溶性モノマーであれば特に限定
されない。具体的には、(メタ)アクリルアミド、フマ
ルアミド、不飽和カルボン酸のアミノアルキルエステル
(例えば、ジメチルアミンエチルメタクリレート等)、
(メタ)アクリル酸及びその場等か挙げられる。
The above monomer is not particularly limited as long as it is a water-soluble monomer. Specifically, (meth)acrylamide, fumaramide, aminoalkyl esters of unsaturated carboxylic acids (for example, dimethylamine ethyl methacrylate, etc.),
Examples include (meth)acrylic acid and in situ.

上記重合開始剤も水溶性のものが好ましい。具体的には
、過硫酸塩(例えば、ナトリウム塩、カリウム塩、及び
アンモニウム塩等)、アブ系開始剤(例えば、2,2−
アゾビス−(2−アミジノプロパン)ジ塩酸塩等)が挙
げられる。
The above polymerization initiator is also preferably water-soluble. Specifically, persulfates (e.g., sodium salts, potassium salts, ammonium salts, etc.), ab-based initiators (e.g., 2,2-
azobis-(2-amidinopropane) dihydrochloride, etc.).

上記架橋剤は上記モノマーに易溶なものが好ましい。具
体的には、エチレングリコールジクリシジルエーテル、
ポリエチレングリコールジグリンジルエーテル等のポリ
グリシジルエーテル、エピクロルヒドリン、α−メチル
クロルヒドリン等のハロエポキシ化合物、ゲルタールア
ルデヒド、グリオキザール等のポリアルデヒド、グリセ
リン、ペンタエリスリトール、エチレンクリコール等ノ
ボリオール及びエチレンジアミン等のポリアミン類が挙
げられる。
The crosslinking agent is preferably one that is easily soluble in the monomer. Specifically, ethylene glycol dicrycidyl ether,
Polyglycidyl ethers such as polyethylene glycol diglycidyl ether, haloepoxy compounds such as epichlorohydrin and α-methylchlorohydrin, polyaldehydes such as geltaraldehyde and glyoxal, noboliols such as glycerin, pentaerythritol, and ethylene glycol, and polyamines such as ethylene diamine. Examples include:

上記水性媒体としては、脱イオン水等が挙げられる。Examples of the aqueous medium include deionized water and the like.

その他上記重合性水溶液には添加剤として、希釈剤、発
泡剤、可塑剤等を加えてもよい。
In addition, a diluent, a blowing agent, a plasticizer, etc. may be added to the polymerizable aqueous solution as additives.

上記重合性水溶液の組成において、モノマーは10重量
%〜飽和濃度、特に20重量%〜飽和濃度が好ましい。
In the composition of the above polymerizable aqueous solution, the monomer preferably has a concentration of 10% by weight to saturated concentration, particularly 20% by weight to saturated concentration.

重合開始剤の種類及び量は、モノマーの種類、ポリマー
粒子の使用目的に応じて適宜選ばれる。また、架橋剤は
用いなくてもよいが、ポリマー粒子の用途に応じて適宜
使用することができる。
The type and amount of the polymerization initiator are appropriately selected depending on the type of monomer and the intended use of the polymer particles. Further, although a crosslinking agent does not have to be used, it can be used as appropriate depending on the use of the polymer particles.

分散媒溶液は、上記重合性水溶液より比重が小さ(、重
合性水溶液と殆ど若しくは全く相溶性の無い油性溶液で
、懸濁安定化剤及び分散媒等を含む。
The dispersion medium solution is an oily solution having a smaller specific gravity than the polymerizable aqueous solution (and has little or no compatibility with the polymerizable aqueous solution), and contains a suspension stabilizer, a dispersion medium, and the like.

上記懸濁安定化剤としては、ソルビタン脂肪酸エステル
類、高分子分散剤等の通常用いられるもので良い。具体
的には、ソルビタンモノステアレート、ソルビタンモノ
ラウレート、エチルセルロース、ベンジルセルロース、
エチルヒドロキシエチルセルロース、マレイン化ポリエ
チレン等が挙げられる。
As the suspension stabilizer, commonly used ones such as sorbitan fatty acid esters and polymeric dispersants may be used. Specifically, sorbitan monostearate, sorbitan monolaurate, ethyl cellulose, benzyl cellulose,
Examples include ethyl hydroxyethyl cellulose and maleated polyethylene.

上記分散媒は、上記水性媒体より比重が小さく、水性媒
体に全く若しくは殆ど溶解しないものであれば特に限定
されず、芳香族炭化水素、脂肪族炭化水素、及び)\ロ
ゲン化炭化水素等が挙げられる。
The dispersion medium is not particularly limited as long as it has a specific gravity lower than the aqueous medium and is completely or hardly soluble in the aqueous medium, and examples thereof include aromatic hydrocarbons, aliphatic hydrocarbons, and )\logenated hydrocarbons. It will be done.

具体的には、ヘプタン、ベンセン、キシレン、ンクロへ
牛サン、トルエン、鉱油類、メチレンクロライド等が挙
げられる。
Specific examples include heptane, benzene, xylene, chloride, toluene, mineral oils, methylene chloride, and the like.

分散媒溶液の組成において、上記懸濁安定化剤は0.0
5〜IO重量%、特に0.5〜5重量%か好ましい。
In the composition of the dispersion medium solution, the suspension stabilizer is 0.0
5 to 5% by weight of IO is preferred, especially 0.5 to 5% by weight.

上記重合性水溶液及び分散媒溶液の調製法は通常の方法
でよく、各配合剤を撹拌機等を用いて混合する事により
行なわれる。
The above-mentioned polymerizable aqueous solution and dispersion medium solution may be prepared by a conventional method, which is carried out by mixing the respective ingredients using a stirrer or the like.

上記重合性溶液及び分散媒溶液の重量比は特に限定され
ないが、例えば分散媒溶液100重量部に対し重合性溶
液は1〜100重量部、特に10〜50重量部が好まし
い。
Although the weight ratio of the polymerizable solution and the dispersion medium solution is not particularly limited, for example, the ratio of the polymerizable solution to 100 parts by weight of the dispersion medium solution is preferably 1 to 100 parts by weight, particularly 10 to 50 parts by weight.

本発明の重合法に用いる逆相懸濁連続重合装置において
重合反応塔は、塔上部から塔下部にいくに従って次第に
塔断面積が減少する事を特徴とする。従って本発明の重
合反応塔は、そのように塔断面積が減少するのであれば
如何なる形状のものでもよい。具体的にはそのような形
状としては、例えば第3図に示すような塔断面積か段階
的に減少する段型のもの、第4図に示すような無段階的
に減少するもの、成るいは第5図に示すような一部分は
段階的に又別の一部分は無段階的に減少する混合型のも
の等が挙げられる。尚、重合反応塔が段型構造を少なく
とも有する場合、その段数は特に限定されず適宜選択し
てよい。又、段と段との接続面は、第6図に示すように
水平面であってもよいが、接続面における重合性液滴及
び/又は生成ポリマー粒子の堆積を避けるために第7図
に示すように傾斜面であるのが望ましい。
In the reversed-phase suspension continuous polymerization apparatus used in the polymerization method of the present invention, the polymerization reaction tower is characterized in that the cross-sectional area of the tower gradually decreases from the upper part of the tower to the lower part of the tower. Therefore, the polymerization reaction tower of the present invention may have any shape as long as the cross-sectional area of the tower is reduced in this way. Specifically, such shapes include, for example, a step-shaped column in which the cross-sectional area of the column decreases in stages as shown in Figure 3, a column in which the cross-sectional area decreases in a stepless manner as shown in Figure 4, and As shown in FIG. 5, examples include a mixed type in which one part decreases stepwise and the other part decreases steplessly. In addition, when the polymerization reaction tower has at least a stage structure, the number of stages is not particularly limited and may be selected as appropriate. Furthermore, the connecting surfaces between the steps may be horizontal surfaces as shown in FIG. 6, but in order to avoid the accumulation of polymerizable droplets and/or generated polymer particles on the connecting surfaces, as shown in FIG. It is desirable that the surface be sloped as shown in the figure.

以上述べたように本発明の重合反応塔の形状は所望によ
り種々の形状を採り得るが、最も標準的で一般的である
第1図に示す構造の重合反応塔を用いた場合を一例とし
て、以下に本発明の重合法を具体的に説明する。
As mentioned above, the shape of the polymerization reaction tower of the present invention can take various shapes as desired, but as an example, the case where the most standard and common polymerization reaction tower having the structure shown in FIG. 1 is used. The polymerization method of the present invention will be specifically explained below.

先ず上記分散媒溶液を供給ライン(8)から貯槽(3)
に導入する。次いでこの分散媒溶液をこの貯槽(3)か
ら循環ポンプ(4)で循環ライン(5)を通して塔下部
(11)に導入する。分散媒溶液か重合反応塔(2)内
を上昇して塔内が充液された後、塔上部(9)から循環
ライン(5)を通して分散媒溶液を再び貯槽(3)に戻
し、循環させる。次いで貯槽(3)内に取付けた加熱装
置で、分散媒溶液循環流を所望の重合温度に加熱する。
First, the dispersion medium solution is transferred from the supply line (8) to the storage tank (3).
to be introduced. Next, this dispersion medium solution is introduced from this storage tank (3) into the column lower part (11) through a circulation line (5) by a circulation pump (4). After the dispersion medium solution rises in the polymerization reaction tower (2) and fills the tower, the dispersion medium solution is returned to the storage tank (3) from the top of the tower (9) through the circulation line (5) and circulated. . A heating device installed in the storage tank (3) then heats the circulating dispersion medium solution stream to the desired polymerization temperature.

重合温度は用いる重合開始剤の分解温度、分散媒の沸点
等により適宜選択すればよい。
The polymerization temperature may be appropriately selected depending on the decomposition temperature of the polymerization initiator used, the boiling point of the dispersion medium, etc.

尚、上記重合反応塔(2)は、相対的に小さな塔断面積
を有する塔下部(11)、中程度の塔断面積を有する塔
中部(10)、及び大きな塔断面積を有する塔上部(9
)から成る3段型塔構造を有する。
The polymerization reaction tower (2) has a lower part (11) having a relatively small cross-sectional area, a middle part (10) having a medium cross-sectional area, and an upper part (10) having a large cross-sectional area. 9
) It has a three-tiered tower structure.

その為、分散媒溶液を循環させて重合反応塔(2)内で
上昇流として流通させると、流体の速度は一般に通過断
面積に反比例するので、上昇流の流速は、塔下部(11
)、塔中部(10)、そして塔上部(9)を通過するに
従って小さくなり、塔内において上昇流の軸方向流速分
布が形成される。そしてこの流速分布に関しては、塔上
部(9)においては重合性液滴が沈降し、塔中部(10
)においては重合性液滴か滞留し、塔下部(11)にお
いては生成ポリマー粒子か沈降するように、各塔断面積
及び循環ポンプの流量等か決定される。
Therefore, when the dispersion medium solution is circulated and passed as an upward flow in the polymerization reaction tower (2), the velocity of the fluid is generally inversely proportional to the passage cross-sectional area, so the flow rate of the upward flow is
), the middle part of the column (10), and the upper part of the column (9), the flow becomes smaller, and an ascending axial flow velocity distribution is formed in the column. Regarding this flow velocity distribution, polymerizable droplets settle in the upper part of the tower (9), and in the middle part of the tower (10
), the cross-sectional area of each column, the flow rate of the circulation pump, etc. are determined so that the polymerizable droplets stay in the column (11), and the produced polymer particles settle in the column lower part (11).

尚、上記重合性液滴及び生成ポリマー粒子の塔内ての沈
降挙動は分散溶液の流速だけでなく、それら液滴及び/
又は粒子の分散媒中での濃度等の影響を受けるので、使
用する重合性液滴の組成、供給速度、液滴の濃度、更に
モノマーの重合速度等に応じて、各塔断面積を設計する
とともに、循環ポンプの流量を最適設定するのがよい。
The sedimentation behavior of the polymerizable droplets and produced polymer particles in the tower depends not only on the flow rate of the dispersion solution but also on the droplets and/or the produced polymer particles.
Alternatively, the cross-sectional area of each column should be designed according to the composition of the polymerizable droplets used, the supply rate, the concentration of the droplets, and the polymerization rate of the monomer, etc., as it is affected by the concentration of the particles in the dispersion medium. At the same time, it is recommended to optimally set the flow rate of the circulation pump.

一方上記重合性溶液を、供給ライン(6)から重合反応
塔(2)の最上部に取付けた重合性液滴生成装置(1)
に導入する。尚この装置(1)は、1個以上のオリフィ
スまたはノズルにより重合性溶液の液柱を生成させ、生
成した液柱に機械的又は電気的手段により規則正しい振
動を与えて均一な液滴径を持つ液滴群を発生させるもの
である。
On the other hand, the polymerizable droplet generating device (1) is attached to the top of the polymerization reaction tower (2) from the supply line (6) to the polymerizable solution.
to be introduced. This device (1) generates a liquid column of a polymerizable solution using one or more orifices or nozzles, and gives regular vibrations to the generated liquid column by mechanical or electrical means to have a uniform droplet diameter. This generates a group of droplets.

上記振動を与える方法としては公知の方法が使用出来る
。例えば、ノズルを直接、機械的に振動させる方法(E
、に、タポラ(E、 K、 Dabora)、「ザ・レ
ブユー・オブ・サイエンティフィック・インストルメン
ツ(The  Review  of  5cient
ificI nstruments) J、Vo138
、N014.502(1967乃、流体に圧電素子によ
り圧力パルスを与える方法(W、E、エーゾ(W、 E
 、 Y ates)等、「ブロシーディングズ・オブ
・イクラス“ 78(Proceedings of 
ICLAS’ 78 )J、181(1978))、及
びノズルから噴出した流体に交流高電圧パルスを加える
方法(M、サト−(M、 S ato)、「ジャーナル
・オブ・エレクトロスタティックス(J ourr+a
l ofE Iectrostatics)J、Vol
15.237(1984)等が挙げられる。
Any known method can be used to apply the vibration. For example, a method of directly mechanically vibrating the nozzle (E
, E. K. Dabora, “The Review of Scientific Instruments.”
ificI instruments) J, Vo138
, No. 14.502 (1967), Method of applying pressure pulses to a fluid using a piezoelectric element (W, E, Ezo (W, E
, Yates) et al., “Proceedings of Ikhlas” 78
ICLAS' 78) J, 181 (1978)) and a method of applying an AC high voltage pulse to a fluid ejected from a nozzle (M, Sato, ``Journal of Electrostatics (Jourr+a)
l ofE Electrostatics) J, Vol.
15.237 (1984), etc.

生成液滴径は液流速、液粘度、オリフィスまたはノズル
の口径、振動周波数等により決定される。
The diameter of the generated droplets is determined by the liquid flow rate, liquid viscosity, orifice or nozzle diameter, vibration frequency, etc.

又液滴生成の場は気相中、液相中のどちらでも良い。Further, the droplets may be generated either in the gas phase or in the liquid phase.

本発明においては、かかる均一液滴生成装置を用いるこ
とにより、均一粒子径のポリマー粒子を得ることができ
る。また、その粒子径は上記液滴の発生条件を選択する
ことにより任意に調整でき分散媒溶液を循環させなから
上記装置(1)より、均一な粒径の重合性液滴を塔上部
(9)に導入する。
In the present invention, by using such a uniform droplet generating device, polymer particles having a uniform particle size can be obtained. In addition, the particle size can be arbitrarily adjusted by selecting the droplet generation conditions described above. Since the dispersion medium solution is not circulated, polymerizable droplets with a uniform particle size are collected from the above device (1) in the upper part of the column (9). ).

導入されだ液滴は、塔上部(9)において分散媒溶液の
流速か小さいためゆっくり沈降する。この為、一般には
、液滴は塔上部(9)に取付けた循環ライン(5)に流
出する事は無い。
The introduced droplets settle slowly because the flow rate of the dispersion medium solution is low in the upper part of the column (9). For this reason, droplets generally do not flow out into the circulation line (5) attached to the upper part (9) of the tower.

重合性液滴が塔中部(10)まで沈降すると、分散媒溶
液の上昇速度は塔上部に比べて大きいため、液滴は上下
運動を繰り返しながら塔中部に滞留し、重合が進行する
。この浮遊状態においては重合性液滴は破壊される事も
合一する事も無いので、液滴径を均一に保持したまま重
合は進行する。その結果得られるポリマー粒子も又、均
一な粒径のものとなる。重合が進行するにつれて重合性
液滴はその比重が増大するので、徐々に沈降し始める。
When the polymerizable droplets settle to the tower center (10), the rising speed of the dispersion medium solution is greater than that at the top of the tower, so the droplets stay in the tower center while repeating vertical movements, and polymerization progresses. In this floating state, the polymerizable droplets are neither destroyed nor coalesced, so polymerization proceeds while maintaining a uniform droplet diameter. The resulting polymer particles are also of uniform size. As the polymerization progresses, the specific gravity of the polymerizable droplets increases, so they gradually begin to settle.

そして所望の重合率に達し、比重が更に増大したポリマ
ー粒子のみ塔下部(11)中へと沈降していく。
Then, only the polymer particles whose specific gravity has further increased after reaching the desired polymerization rate settle into the lower part of the column (11).

塔下部(11)中を、ポリマー粒子は沈降していきポリ
マー回収ライン(7)よりスラリーとして連続的にもし
くは間欠的に抜き出し回収される。このときボリマース
ラ+)−として排出された分散媒溶液に相当する量の分
散媒溶液を、分散媒溶液供給ライン(8)から供給し、
循環系内の分散媒溶液量を一定量に保持する。
The polymer particles settle in the lower part of the column (11) and are continuously or intermittently extracted and recovered as a slurry from the polymer recovery line (7). At this time, an amount of the dispersion medium solution corresponding to the dispersion medium solution discharged as the polymer slurry +)- is supplied from the dispersion medium solution supply line (8),
The amount of dispersion medium solution in the circulation system is maintained at a constant amount.

又ポリマー粒子を効率的に回収するために、第8図に示
すように塔下部(11)の下に生成ポリマー粒子の分離
部(13)を更に設けておくのが好ましい。この場合循
環分散媒溶液は、第8図に示すように分離部(13)内
を流通する事が無いので、分離部(13)内において流
体は殆ど静止している。
In order to efficiently recover the polymer particles, it is preferable to further provide a separation section (13) for the produced polymer particles under the lower part (11) of the column, as shown in FIG. In this case, the circulating dispersion medium solution does not flow through the separation section (13) as shown in FIG. 8, so the fluid remains almost stationary within the separation section (13).

従って生成ボッマー粒子が分離部(13)内を効率的に
沈降し沈澱する。こうして沈澱した生成ポリマー粒子を
、スラリー移送ポンプ等により連続的に又は間欠的にポ
リマー回収ライン(7)から取出す。
Therefore, the generated bomber particles efficiently settle and precipitate within the separation section (13). The produced polymer particles thus precipitated are continuously or intermittently taken out from the polymer recovery line (7) using a slurry transfer pump or the like.

回収されたポリマー粒子は分散媒溶液の流速等を適宜選
択する事により所望の重合率とする事が出来るが、更に
重合率を高めたい時は、通常の撹拌機付き重合容器等で
反応させる事も出来る。
The desired polymerization rate of the recovered polymer particles can be achieved by appropriately selecting the flow rate of the dispersion medium solution, but if you wish to further increase the polymerization rate, the polymer particles can be reacted in an ordinary polymerization vessel equipped with a stirrer, etc. You can also do it.

[発明の効果] 本発明によれば、逆相懸濁重合において、重合の充分に
進んだ粒子のみが排出されるため、生成ポリマー粒子の
分別が効果的に行われ、はぼ均一なポリマー粒子を連続
的に取得することができる。
[Effects of the Invention] According to the present invention, in reverse-phase suspension polymerization, only particles that have sufficiently progressed in polymerization are discharged, so that the generated polymer particles are effectively separated, resulting in highly uniform polymer particles. can be obtained continuously.

即ち、得られたポリマー粒子は特に分級操作を施さなく
ても粒径の均一度が高く、高収率で均一ポリマー粒子を
得ることができる。
That is, the obtained polymer particles have a high degree of uniformity in particle size without any particular classification operation, and uniform polymer particles can be obtained at a high yield.

更に、本発明の重合反応装置は反応塔が1基ですみ、構
成がシンプルである。
Furthermore, the polymerization reaction apparatus of the present invention requires only one reaction column and has a simple configuration.

[実施例] 以下、本発明を第1図に示す重合装置を用いた実施例で
更に具体的に説明する。
[Example] Hereinafter, the present invention will be explained in more detail with reference to an example using a polymerization apparatus shown in FIG.

(実施例1) gQwt%のアクリル酸510gを30wt%の水酸化
ナトリウム水溶液600gで中和し、重合開始剤として
過硫酸カリウム0.4g、架橋剤としてブナコールEX
−810(ナガセ化成工業(株)製)20.4gをイオ
ン交換水40gと共に加えて重合性水溶液を調製した。
(Example 1) 510 g of gQwt% acrylic acid was neutralized with 600 g of 30 wt% sodium hydroxide aqueous solution, 0.4 g of potassium persulfate was used as a polymerization initiator, and Bunacol EX was used as a crosslinking agent.
A polymerizable aqueous solution was prepared by adding 20.4 g of -810 (manufactured by Nagase Chemical Industries, Ltd.) together with 40 g of ion-exchanged water.

該重合性水溶液をモノマー供給ライン(6)より連続的
に均−重き性液滴生成装置(1)に供給した。均一重合
性液滴生成装置(1)は口径0.1mmのオリフィス口
を1個有し、該重合性水溶液に6000Hzの機械的振
動を与えて毎分1.5gの均一重合性液滴群を生成した
。生成した均一重合性液滴群は分散媒溶液が流通してい
る重合反応塔(2)の上部に連続的に供給された。
The polymerizable aqueous solution was continuously supplied to the uniformly weighted droplet generator (1) from the monomer supply line (6). The homogeneous polymerizable droplet generating device (1) has one orifice opening with a diameter of 0.1 mm, and applies mechanical vibration of 6000 Hz to the polymerizable aqueous solution to generate a group of uniformly polymerizable droplets of 1.5 g per minute. generated. The generated homogeneous polymerizable droplet group was continuously supplied to the upper part of the polymerization reaction tower (2) through which the dispersion medium solution was flowing.

重合反応塔(2)は3つの反応部からなり、塔上部(9
)は内径125mm、高さ140II1m、塔中部(1
0)は内径50mm、高さ400 mm、塔下部(11
)は内径45mm、高さ1100aであり、塔内を流通
する分散媒溶液は循環ポンプ(4)により毎分1゜51
2に調整された。分散媒溶液としては02wt%のエチ
ルセルロースを溶解したシクロヘキサン溶液を用いた。
The polymerization reaction tower (2) consists of three reaction sections, the upper part of the tower (9
) has an inner diameter of 125 mm, a height of 140 II 1 m, and a tower center (1
0) has an inner diameter of 50 mm, a height of 400 mm, and a tower lower part (11
) has an inner diameter of 45 mm and a height of 1100 a, and the dispersion medium solution flowing in the column is circulated at a rate of 1°51 per minute by the circulation pump (4).
It was adjusted to 2. As the dispersion medium solution, a cyclohexane solution in which 0.2 wt% ethyl cellulose was dissolved was used.

重合反応塔(2)内の重合温度は分散媒溶液貯槽(3)
において循環分散媒温度を調整することで75℃に維持
された。重合反応塔(2)の下部より生成ポリマーを含
むスラリーを毎分12x(lの速度でポリマー回収ライ
ン(7)より連続的に抜き出し、補充の分散媒を分散媒
供給ライン(8)より分散媒貯槽(3)に供給した。回
収したポリマーを乾燥し粒径を測定(顕微鏡写真より直
接測定)した結果、120μlのほぼ均一なポリマーが
得られた(写真参照)。
The polymerization temperature in the polymerization reaction tower (2) is the same as that in the dispersion medium solution storage tank (3).
The temperature of the circulating dispersion medium was maintained at 75°C by adjusting the temperature. The slurry containing the produced polymer is continuously extracted from the lower part of the polymerization reaction tower (2) at a rate of 12x (l/min) through the polymer recovery line (7), and supplementary dispersion medium is added to the dispersion medium through the dispersion medium supply line (8). The recovered polymer was dried and the particle size was measured (directly measured from a micrograph), and as a result, 120 μl of almost uniform polymer was obtained (see photo).

(実施例2) 実施例1と同様の方法及び装置で重合を行った。(Example 2) Polymerization was carried out using the same method and equipment as in Example 1.

ただし、均一重合性液滴生成装置(1)の振動周波数を
2000Hzに、また重合反応塔(2)中を流通する分
散媒溶液流量を毎分3.Orに変更した。
However, the vibration frequency of the homogeneous polymerizable droplet generating device (1) was set to 2000 Hz, and the flow rate of the dispersion medium solution flowing through the polymerization reaction tower (2) was set to 3.0 Hz per minute. Changed to Or.

回収したポリマーを乾燥し粒径を測定した結果、170
μlのほぼ均一なポリマーが得られた。
As a result of drying the recovered polymer and measuring the particle size, it was found that 170
μl of nearly homogeneous polymer was obtained.

(実施例3) 実施例1.2と同様の方法及び装置で重合を行った。た
だし、均一重合性液滴生成装置(1)のオリフィス口径
を0 、3 am、振動周波数を2000Hz。
(Example 3) Polymerization was carried out using the same method and equipment as in Example 1.2. However, the orifice diameter of the homogeneous polymerizable droplet generator (1) was 0.3 am, and the vibration frequency was 2000 Hz.

重合性液流量を毎分7.5gに、また重合反応塔(2)
中を流通する分散媒溶液流量を毎分8.012に変更し
た。回収したポリマーを乾燥し粒径を測定した結果、2
90μ肩のほぼ均一なポリマーが得られた。
The flow rate of polymerizable liquid was increased to 7.5 g per minute, and the polymerization reaction tower (2)
The flow rate of the dispersion medium solution flowing therethrough was changed to 8.012 per minute. As a result of drying the recovered polymer and measuring the particle size, 2
A nearly uniform polymer with a 90μ shoulder was obtained.

(比較例1)(通常のバッチ式逆相懸濁重合法)撹拌機
、還流冷却器、滴下ロート及び窒素導入管を付した5g
の4つ口丸底フラスコにシクロヘキサン1600t+2
.エチルセルロース5gを仕込み、75℃まで昇温した
。上記の4つロフラスコより、実施例1と同様の重合性
水溶液を窒素雰囲気下で1.5時間かけて滴下し、回転
速度400rpmにて重合した後、70〜75℃の温度
で0.5時間保持し重合を完了させた。得られたポリマ
ー粒子を乾燥し粒径を測定した結果、表1の通り粒径分
布の広いポリマー粒子が得られた。分級により所望の粒
径のポリマー粒子のみを得ようとすると収率が極めて悪
くなった。
(Comparative Example 1) (Usual batch type reversed-phase suspension polymerization method) 5g with a stirrer, reflux condenser, dropping funnel and nitrogen inlet tube
Cyclohexane 1600t+2 in a 4 neck round bottom flask
.. 5 g of ethyl cellulose was charged and the temperature was raised to 75°C. The same polymerizable aqueous solution as in Example 1 was added dropwise from the above four-bottle flask over 1.5 hours under a nitrogen atmosphere, polymerized at a rotation speed of 400 rpm, and then heated at a temperature of 70 to 75°C for 0.5 hours. The polymerization was completed by holding. As a result of drying the obtained polymer particles and measuring the particle size, polymer particles with a wide particle size distribution as shown in Table 1 were obtained. When attempting to obtain only polymer particles of a desired particle size by classification, the yield became extremely poor.

表1 12・・・段と段との接続面、 子の分離部。Table 1 12... Connection surface between steps, Separation of children.

生成ポリマー粒generated polymer particles

Claims (5)

【特許請求の範囲】[Claims] (1)重合性液滴生成装置、該重合性液滴生成装置と接
続する重合反応塔、該反応塔内を分散媒溶液が上昇流と
して流れるように循環させる分散媒溶液循環ライン、及
び生成ポリマー粒子の回収ラインより構成され、 該重合反応塔が塔上部から塔下部にいくに従って塔断面
積が減少するものであることを特徴とする逆相懸濁連続
重合装置。
(1) A polymerizable droplet generating device, a polymerization reaction tower connected to the polymerizable droplet generating device, a dispersion medium solution circulation line that circulates the dispersion medium solution as an upward flow in the reaction tower, and a generated polymer 1. A reversed-phase suspension continuous polymerization apparatus comprising a particle recovery line, the polymerization reaction column having a column cross-sectional area that decreases from the top of the column to the bottom of the column.
(2)重合反応塔の塔上部から塔下部にわたる塔断面積
の減少が、段階的及び/又は無段階的である請求項(1
)記載の逆相懸濁連続重合装置。
(2) Claim (1) wherein the reduction in the cross-sectional area of the polymerization reaction tower from the upper part to the lower part is stepwise and/or stepless.
) Reverse-phase suspension continuous polymerization apparatus described.
(3)重合反応塔が、重合性液滴生成装置と接続する塔
上部、塔上部の塔断面積より小さく塔下部の塔断面積よ
り大きい塔断面積を有する塔中部、及び塔下部から成る
ものである請求項(1)記載の逆相懸濁連続重合装置。
(3) The polymerization reaction tower consists of an upper part connected to the polymerizable droplet generator, a middle part having a cross-sectional area smaller than the cross-sectional area of the upper part and larger than a cross-sectional area of the lower part, and a lower part. The reversed-phase suspension continuous polymerization apparatus according to claim (1).
(4)重合反応塔が、更に生成ポリマー粒子の分離部を
有する請求項(1)〜(3)のいずれかに記載の逆相懸
濁連続重合装置。
(4) The reversed-phase suspension continuous polymerization apparatus according to any one of claims (1) to (3), wherein the polymerization reaction tower further has a separation section for separating produced polymer particles.
(5)分散媒溶液が反応塔の下から上に流れる重合反応
塔内に重合性液滴を導入し、該重合反応塔内において重
合して、塔下部から生成ポリマー粒子を回収する逆相懸
濁重合法において、 該重合反応塔内の分散媒溶液の上昇速度が、塔下部から
塔上部に上昇するに従って塔断面積の拡大に伴って小さ
くなり、塔上部においては重合性液滴が沈降し、塔中部
においては重合性液滴が滞留し、塔下部においては生成
ポリマー粒子が沈降するように調整されることを特徴と
する逆相懸濁連続重合法。
(5) A reverse phase suspension in which polymerizable droplets are introduced into a polymerization reaction tower in which a dispersion medium solution flows from the bottom to the top of the reaction tower, polymerized in the polymerization reaction tower, and the produced polymer particles are recovered from the bottom of the tower. In the turbidity polymerization method, the rate of rise of the dispersion medium solution in the polymerization reaction tower decreases as the cross-sectional area of the tower increases as it rises from the bottom of the tower to the top, and polymerizable droplets settle at the top of the tower. , a reversed-phase suspension continuous polymerization method characterized in that the polymerizable droplets are retained in the middle part of the tower, and the produced polymer particles are settled in the lower part of the tower.
JP10091290A 1990-04-17 1990-04-17 Apparatus and method for continuous reversed-phase suspension polymerization Pending JPH03296502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10091290A JPH03296502A (en) 1990-04-17 1990-04-17 Apparatus and method for continuous reversed-phase suspension polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10091290A JPH03296502A (en) 1990-04-17 1990-04-17 Apparatus and method for continuous reversed-phase suspension polymerization

Publications (1)

Publication Number Publication Date
JPH03296502A true JPH03296502A (en) 1991-12-27

Family

ID=14286553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10091290A Pending JPH03296502A (en) 1990-04-17 1990-04-17 Apparatus and method for continuous reversed-phase suspension polymerization

Country Status (1)

Country Link
JP (1) JPH03296502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227377A (en) * 2012-04-24 2013-11-07 Sumitomo Seika Chem Co Ltd Method for producing water absorbing resin
KR20170095268A (en) 2014-12-05 2017-08-22 가부시키가이샤 닛폰 쇼쿠바이 Method for manufacturing super absorbent polymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227377A (en) * 2012-04-24 2013-11-07 Sumitomo Seika Chem Co Ltd Method for producing water absorbing resin
KR20170095268A (en) 2014-12-05 2017-08-22 가부시키가이샤 닛폰 쇼쿠바이 Method for manufacturing super absorbent polymer
US10640591B2 (en) 2014-12-05 2020-05-05 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin

Similar Documents

Publication Publication Date Title
US4623706A (en) Process for preparing uniformly sized polymer particles by suspension polymerization of vibratorily excited monomers in a gaseous or liquid stream
US8883939B2 (en) Method for producing polymers and reactor for carrying out said method
EP0184198A2 (en) A method of preparation of droplets
US10370461B2 (en) Reverse-phase polymerization process
EP0067415B1 (en) A process of continuous suspension polymerization
JP6227140B2 (en) Reversed phase polymerization
CA1203345A (en) Method of continuous polymerization in fluidized bed
JP2016525622A (en) Reversed phase polymerization
JP4833001B2 (en) Method for producing hydrophilic polymer particles
JPS63156804A (en) Method for suspension polymerization and apparatus therefor
US4331787A (en) Continuous polymerization of water-miscible monomers
JPS6128436A (en) Manufacture of polymer particle
JPH03296502A (en) Apparatus and method for continuous reversed-phase suspension polymerization
CN110681330B (en) Device and method for regulating and controlling morphology and pore structure of microparticles
US2847405A (en) Continuous process for the polymerization of acrylonitrile
US20180022837A1 (en) Reverse-phase polymerisation process incorporating a microfluidic device
JP2001508099A (en) Polymerization method and polymer
JPS5891701A (en) Continuous suspension polymerization
WO2017076784A1 (en) Reverse-phase polymerisation process
JPH0212962B2 (en)
WO2016120817A1 (en) Preparation of aqueous solutions or dispersions of polymeric bead products