JPH0212962B2 - - Google Patents

Info

Publication number
JPH0212962B2
JPH0212962B2 JP9131481A JP9131481A JPH0212962B2 JP H0212962 B2 JPH0212962 B2 JP H0212962B2 JP 9131481 A JP9131481 A JP 9131481A JP 9131481 A JP9131481 A JP 9131481A JP H0212962 B2 JPH0212962 B2 JP H0212962B2
Authority
JP
Japan
Prior art keywords
reaction section
droplets
aqueous dispersion
dispersion medium
polymerizable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9131481A
Other languages
Japanese (ja)
Other versions
JPS57205402A (en
Inventor
Shinji Kato
Kyoji Uku
Hisashi Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP9131481A priority Critical patent/JPS57205402A/en
Priority to US06/384,936 priority patent/US4487898A/en
Priority to AU84672/82A priority patent/AU556043B2/en
Priority to DE8282105065T priority patent/DE3276320D1/en
Priority to EP82105065A priority patent/EP0067415B1/en
Publication of JPS57205402A publication Critical patent/JPS57205402A/en
Publication of JPH0212962B2 publication Critical patent/JPH0212962B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、粒度の揃つた重合体粒子を得る改良
された連続懸濁重合方法に関するものである。 ビニール基を有する不飽和化合物を粒状重合さ
せる一般の方法としては、分散剤を含んだ水性分
散媒中に単量体を投入し、撹拌機等の機械的手段
により粒状に分散させながら加熱重合する回分操
作が採用されている。この方法によると、取得重
合体粒子径は撹拌効果に影響され易く、反応器の
いずれの場所に於ても均一な撹拌効果をもたせる
ことは極めて困難な為に、取得される重合体粒子
群の粒度分布は巾広いものとなる。 このような一般法の欠点を改善する方法とし
て、単量体を一般法の如く、撹拌機等の機械的撹
拌、混合操作により水性分散媒中に分散させず
に、ノズル等を介して水性分散媒中に粒度の揃つ
た単量体の液滴群を分散させた後、液滴群の形状
を破壊させずに加熱重合させることにより粒度の
揃つた重合体粒子を製造する方法が研究されてき
た。 本発明は、上記の改善された製造方法に関する
ものであり、本発明者は鋭意研究してきた結果、
重合性液滴が重合の進行にともない比重が増大
し、水性分散媒との比重差が変化するのに対応し
て、重合性液滴の重合開始から重合完結迄の間
を、各々所望の分離操作をともなう3つの反応部
に分割し、各反応部への重合液滴の移行は水性分
散媒の循環流と重合液滴の浮揚力及び沈降力を利
用して制御することにより、粒度の揃つた重合体
粒子を連続的に製造する新たな方法を得るに至つ
た。 本発明は、少くとも重合開始剤を溶解した単量
体からなる重合性液体をほぼ粒度の揃つた液滴群
を生成する液滴生成装置に導入し、生成した重合
性液滴群を、重合が開始される温度の水性分散媒
が下向きに流れる第一反応部に該液滴の浮揚力を
利用して導入し、該液滴の浮揚力と水性分散媒の
下向き流れの作用で該液滴群の流動層を形成させ
ながら重合を進行させ、重合の進行に併う該液滴
の比重の増大により、水性分散媒の比重近く迄重
合が進んだ液滴は、水性分散媒の流れとともに動
くことを利用して水性分散媒の下向流にのせて、
液滴スラリーとして第一反応部下部より導管を経
由して水性分散媒のみ通過するフイルターが装備
された第二反応部に移行させ重合を進行させ、次
に水性分散媒の比重より大きくなつた液滴の沈降
力を利用して、水性分散媒が上向きに流れる第三
反応部へ移行させ液滴流動層を形成しながら更に
重合を進行させ、所望の重合転化率に対応する比
重に達した液滴のみが水性分散媒の上向き流に逆
らつて第三反応部の底部に沈降し回収されるよう
に、第二反応部のフイルターを通過した水性分散
媒を第一反応部の下向き流れ及び第三反応部の上
向き流れに循環使用することを特徴としたほぼ粒
度の揃つた重合体粒子を連続的に製造する方法で
ある。 本発明に用いられる重合性液体は、ビニール系
不飽和化合物の単量体に少くとも重合開始剤を溶
解したものが用いられる。また上記に可溶なビニ
ール系不飽和化合物の重合体を溶解したものも用
いることが出来るが、該重合性液体を粒度の揃つ
た液滴群に液滴化させる操作が可能な範囲の粘度
によつて制限を受け、20%以下の重合体が単量体
中に溶解されている重合性液体が好ましい。 本発明に用いられる水性分散媒は、懸濁重合で
一般に使用される分散安定剤を水に溶解又は分散
させたものを用いることができる。即ち例えば
PVA、PVP、CMC等の有機高分子分散剤及びリ
ン酸カルシウム、炭酸カルシウム等の無機微粉末
及びそれらの組合せを使用することができる。 本発明に用いられる液滴生成装置は、粒度の揃
つた液滴群を生成させることが必要で、1孔以上
のオリフイスから水性分散媒中に重合性液体を吐
出させ、生成する液柱に規則正しい機械的振動を
与えて均一な液滴径をもつ液滴群を発生させる方
法が用いられる。本発明に於ける取得重合体粒子
群の粒度は、液滴生成装置で生成される液滴群の
粒度で支配的に決定され、目的の粒度を得る為の
条件は、重合性液体のオリフイス通過速度、重合
性液体の粘度、重合性液体のオリフイス通過後に
生成する液柱に与える振動の周波数と振巾が支配
的要因として選択され得る。 以下、本発明を図面を参照して説明する。 重合開始剤が溶解されているビニール系不飽和
化合物よりなる重合性液体が導管1を経由して液
滴生成装置2に導入され所望の粒度の揃つた液滴
群となり、水性分散媒が満たされた導入管3の中
を、液滴の浮揚力で第一反応部である筒4の中に
導入される。 筒4の上部より、所定の重合温度に設定された
水性分散媒が導管6より分散器5を経由して筒4
の中に導入され、筒4の底部より導管8を経由し
て第二反応部である槽9へ循環されることにより
筒4の中では水性分散媒の下向き流れが形成され
ている。導管7よりプロセスの定常性を維持する
為に第三反応部である筒14より重合体粒子とと
もに抜き取られる水性分散媒に相当した量の水性
分散媒が分散器5を経由して筒4の中に導入され
る。筒4の中では、導入された重合性液滴の浮揚
力と水性分散媒の下向き流れの作用で上層部では
重合性液滴の流動層が形成され、そこで液滴群の
重合が進行する。 重合転化率が進み、重合液滴の比重が水性分散
媒の比重近く迄上昇した液滴は、水性分散媒の下
向き流れに逆らうだけの浮揚力を失い筒4の下部
へ移行し水性分散媒の循環流とともに槽10へ移
行される。従つて筒4の下層部では、重合開始前
の投入された液滴の上昇と、重合が所定の転化率
迄到達した液滴の下降が同時に行なわれている分
離ゾーンが形成される。 上記したように筒4の上層部で安定した重合性
液滴の流動層が形成され、液滴生成装置で生成し
た重合性液滴の合一や分裂を発生させずに重合を
進行させ、筒4の下層部で所定の重合転化率に達
した重合性液滴だけを第二反応部へ移行させる為
には、以下に示す筒4への水性分散媒の導入条件
及び筒4の中での水性分散媒の下向き流速を満足
することで達成できる。 筒4への水性分散媒の導入方法は、重合性液滴
に強い剪断力がかかり、該液滴の分裂を発生させ
るような局部的な強い剪断場の発生を防止する為
に、水性分散媒の流速を低流速に拡散する機能を
もつた分散器5を通すことで達成できる。分散器
5は、水性分散媒の泡末層が充填されたもの、又
は下部が拡大した1ケ以上のテーパー管からなる
分散管、等を採用することができる。 筒4の中での水性分散媒の下向き流速は、上層
部では0.2〜1.0cm/秒が好ましく、第二反応部へ
移行する重合液滴の重合転化率を高める為に下層
部では0.2cm/秒以下が好ましい。以上の下向き
流速を得る為の筒4のデザインは容易に決定し得
る。 フイルター10を装備した第二反応部である槽
9に移行した重合性液滴の比重は、水性分散媒の
比重よりやや小さいが第二反応部で滞留中にすぐ
水性分散媒の比重より大きくなり沈降し第三反応
部へ移行する。 第二反応部に移行する重合性液滴の重合転化率
は第一反応部の水性分散媒の下向き流速の適切な
制御により50%以上にすることは容易であり、そ
のような重合転化率に於て重合性液滴は液滴とい
うより安定なビーズ状に変化しており、第二反応
部に滞留中にフイルター10を通して水性分散媒
を循環用に抜き取つても重合液滴の形状の変化な
く槽9の中に保持することが出来る。第二反応部
に緩やかな撹拌を与える撹拌翼を設置しても、又
フイルターの目詰り防止用として振動機構を設置
することも可能である。 第三反応部14は、第二反応部で抜き取られた
水性分散媒の一部が導管13により導入され上向
きの循環流がつくられ第二反応部から沈降してき
た重合液滴(ビーズ)は、水性分散媒の上向き流
に逆らつて沈降するだけの比重に対応する重合転
化率に達する迄、第三反応部上部に流動層を形成
し滞留し所望の重合転化率に達した重合体粒子
が、第三反応部下部に選択的に沈降し、濃縮スラ
リーとして反応系外に取り出される。取得する重
合体粒子の重合転化率は第三反応部の上向き流速
の選択で所望のものを得ることが出来る。 本方法に於て、所望の重合温度の制御は各反応
部を結ぶ導管に熱交換器を設置する事と、各反応
部の断熱保温で可能となり、また重合性液滴と水
性分散媒の比重差を最大限に利用した方法である
ことより、従来法に比較し、粒度の揃つた重合体
粒子を得ることが出来る長所だけでなく、他の利
点が大きいことは容易に推察される所である。 以下に実施例によつて説明する。 実施例 スチレンに過酸化ベンゾイル0.32PHRを溶解
した重合性液体を導管1を通して液滴生成装置2
に供給した。液滴生成装置2は、直径0.4mmのオ
リフイス孔1ケを有するステンレス板からなり
250Hzの機械的微振動を上下方向に加振し毎分10
mlで重合性液滴を生成した。生成した重合性液滴
は、水性分散媒が満たされた内径25mmの導入管の
中を上昇し、筒4の中に導入された。 筒4は上部が内径70mm、直胴部高さ1000mm、下
部が内径140mm、直胴部高さ400mmのステンレス製
の空筒で、上部から分散器5により水性分散媒の
空筒基準速度が上部で0.35cm/秒、下部で0.09
cm/秒で下向き流れをつくつた。 水性分散媒は純水にリン酸カルシウム微粉末
2000ppm、ポリビニルアルコール50ppm、陰イオ
ン界面活性剤(アルキルオレフインスルホン酸ソ
ーダ)50ppmを調合して用いた。 筒4の中の重合温度は、水性分散媒の循環流の
導管6に熱交換器を設置し88〜90℃になるように
制御した。第一反応部の筒4で重合が進行し導管
8を通り第二反応部の槽9に導入された重合液滴
の重合転化率は60〜65%であつた。 第二反応部の槽9は内径140mm、直胴部高さ200
mmのステンレス槽を用い、100メツシユのステン
レス網からなるフイルター10を設置し、フイル
ターを通し水性分散媒を循環用に用いる量を抜き
取つた。第二反応部からその下部に接続する第三
反応部に沈降し移行する重合液滴の重合転化率は
65〜70%であつた。 第三反応部は、第二反応部の下部に接続して設
置し、内径140mm、直胴部高さ50mm及び内径55mm
直胴部高さ400mmをテーパー部で接続したステン
レス製の筒14を用い、内径55mmの筒の途中から
水性分散媒を導管13を通して導入し筒14の中
に上昇流を生じさせた。 上昇流速に逆らつて沈降し筒14の底部に回収
された重合体粒子の重合転化率は表1の通りとな
り、回収された重合体粒子を乾燥し粒度を測定し
た結果は、表2の通り、ほぼ粒度の揃つたもので
あつた。
The present invention relates to an improved continuous suspension polymerization process that yields uniformly sized polymer particles. A general method for granular polymerization of an unsaturated compound having a vinyl group is to add a monomer to an aqueous dispersion medium containing a dispersant, and heat polymerize while dispersing it into granules using a mechanical means such as a stirrer. Batch operation is used. According to this method, the particle size of the obtained polymer particles is easily affected by the stirring effect, and it is extremely difficult to provide a uniform stirring effect anywhere in the reactor. The particle size distribution becomes wide. As a method to improve the shortcomings of such general methods, monomers are not dispersed in an aqueous dispersion medium by mechanical stirring or mixing using a stirrer as in the general method, but are dispersed in an aqueous medium through a nozzle or the like. Research has been conducted on methods for producing polymer particles with uniform particle sizes by dispersing monomer droplets with uniform particle sizes in a medium and then heating and polymerizing them without destroying the shape of the droplets. Ta. The present invention relates to the above-mentioned improved manufacturing method, and as a result of the inventor's extensive research,
The specific gravity of the polymerizable droplets increases as the polymerization progresses, and the difference in specific gravity with the aqueous dispersion medium changes. It is divided into three reaction sections that involve operations, and the transfer of polymerization droplets to each reaction section is controlled using the circulation flow of an aqueous dispersion medium and the buoyancy and settling forces of the polymerization droplets, thereby achieving uniform particle size. We have developed a new method for continuously producing polymer particles. In the present invention, a polymerizable liquid made of a monomer in which at least a polymerization initiator is dissolved is introduced into a droplet generation device that generates a group of droplets with substantially uniform particle size, and the generated polymerizable droplets are polymerized. An aqueous dispersion medium having a temperature at which the dispersion medium starts to flow downward is introduced into the first reaction section using the buoyancy force of the droplets, and the droplets are Polymerization proceeds while forming a fluidized bed of particles, and as the specific gravity of the droplets increases as the polymerization progresses, the droplets whose polymerization has progressed to a specific gravity close to that of the aqueous dispersion medium move with the flow of the aqueous dispersion medium. Taking advantage of this fact, it is placed on the downward flow of the aqueous dispersion medium.
The droplet slurry is transferred from the lower part of the first reaction section via a conduit to the second reaction section equipped with a filter that allows only the aqueous dispersion medium to pass through to proceed with polymerization, and then the liquid whose specific gravity is larger than that of the aqueous dispersion medium is Utilizing the sedimentation force of the droplets, the aqueous dispersion medium flows upward to the third reaction section, forming a fluidized bed of droplets, while further polymerizing the liquid until it reaches a specific gravity corresponding to the desired polymerization conversion rate. The aqueous dispersion medium that has passed through the filter of the second reaction section is transferred to the downward flow of the first reaction section and the droplets of the aqueous dispersion medium that have passed through the filter of the second reaction section, so that only the droplets settle and are collected at the bottom of the third reaction section against the upward flow of the aqueous dispersion medium. This is a method for continuously producing polymer particles of substantially uniform particle size, characterized by recycling the polymer particles in the upward flow of three reaction sections. The polymerizable liquid used in the present invention is one in which at least a polymerization initiator is dissolved in a vinyl unsaturated compound monomer. It is also possible to use a solution obtained by dissolving a polymer of a soluble vinyl unsaturated compound in the above, but the viscosity must be within a range that allows the polymerizable liquid to be formed into a group of droplets with uniform particle size. Therefore, subject to limitations, polymerizable liquids in which less than 20% of the polymer is dissolved in the monomer are preferred. The aqueous dispersion medium used in the present invention may be a dispersion stabilizer commonly used in suspension polymerization dissolved or dispersed in water. That is, for example
Organic polymer dispersants such as PVA, PVP, and CMC, inorganic fine powders such as calcium phosphate and calcium carbonate, and combinations thereof can be used. The droplet generation device used in the present invention needs to generate a group of droplets with uniform particle size, and the polymerizable liquid is discharged into an aqueous dispersion medium from an orifice with one or more holes, so that the generated liquid column has a regular pattern. A method is used in which a group of droplets having a uniform diameter is generated by applying mechanical vibration. The particle size of the obtained polymer particles in the present invention is determined predominantly by the particle size of the droplets generated by the droplet generation device, and the conditions for obtaining the desired particle size are the passage of the polymerizable liquid through the orifice. The speed, the viscosity of the polymerizable liquid, and the frequency and amplitude of the vibrations imparted to the liquid column generated after the polymerizable liquid passes through the orifice can be selected as the dominant factors. Hereinafter, the present invention will be explained with reference to the drawings. A polymerizable liquid made of a vinyl unsaturated compound in which a polymerization initiator is dissolved is introduced into a droplet generation device 2 via a conduit 1, forming a group of droplets with a desired particle size, and filled with an aqueous dispersion medium. The liquid droplet is introduced into the cylinder 4, which is the first reaction part, through the introduced tube 3 due to the buoyancy force of the droplet. An aqueous dispersion medium set at a predetermined polymerization temperature is supplied from the upper part of the cylinder 4 through a conduit 6 and a disperser 5 to the cylinder 4.
A downward flow of the aqueous dispersion medium is formed in the cylinder 4 by introducing the aqueous dispersion medium into the cylinder 4 and circulating it from the bottom of the cylinder 4 via the conduit 8 to the tank 9 which is the second reaction part. An amount of aqueous dispersion medium corresponding to the aqueous dispersion medium that is extracted from the pipe 7 together with the polymer particles from the cylinder 14, which is the third reaction part, passes through the disperser 5 and enters the cylinder 4. will be introduced in In the cylinder 4, a fluidized bed of polymerizable droplets is formed in the upper layer due to the buoyancy force of the introduced polymerizable droplets and the downward flow of the aqueous dispersion medium, and polymerization of the droplet group proceeds there. As the polymerization conversion rate progresses and the specific gravity of the polymerized droplets increases to near the specific gravity of the aqueous dispersion medium, the droplets lose their buoyancy force to resist the downward flow of the aqueous dispersion medium and move to the lower part of the tube 4, where they move to the bottom of the tube 4 and move toward the bottom of the tube 4. It is transferred to the tank 10 along with the circulating flow. Therefore, in the lower part of the cylinder 4, a separation zone is formed in which the injected droplets before the start of polymerization rise and the droplets that have reached a predetermined conversion rate in polymerization simultaneously descend. As described above, a stable fluidized bed of polymerizable droplets is formed in the upper part of the tube 4, and polymerization proceeds without coalescence or splitting of the polymerizable droplets generated by the droplet generation device. In order to transfer only the polymerizable droplets that have reached a predetermined polymerization conversion rate in the lower layer of tube 4 to the second reaction section, the following conditions for introducing the aqueous dispersion medium into tube 4 and the conditions in tube 4 must be met. This can be achieved by satisfying the downward flow velocity of the aqueous dispersion medium. The method for introducing the aqueous dispersion medium into the tube 4 is to prevent the generation of a strong local shearing field that would apply strong shearing force to the polymerizable droplets and cause the droplets to break up. This can be achieved by passing through the disperser 5 which has the function of diffusing the flow rate from 1 to 5 to a low flow rate. The disperser 5 may be one filled with a foam layer of an aqueous dispersion medium, or a dispersion tube consisting of one or more tapered tubes with an enlarged lower part. The downward flow rate of the aqueous dispersion medium in the cylinder 4 is preferably 0.2 to 1.0 cm/sec in the upper layer, and 0.2 cm/sec in the lower layer in order to increase the polymerization conversion rate of the polymerization droplets transferred to the second reaction section. Preferably it is less than a second. The design of the cylinder 4 to obtain the above downward flow velocity can be easily determined. The specific gravity of the polymerizable droplets transferred to the tank 9, which is the second reaction section equipped with the filter 10, is slightly lower than the specific gravity of the aqueous dispersion medium, but the specific gravity quickly becomes larger than that of the aqueous dispersion medium while staying in the second reaction section. It settles and moves to the third reaction section. The polymerization conversion rate of the polymerizable droplets transferred to the second reaction section can be easily increased to 50% or more by appropriately controlling the downward flow rate of the aqueous dispersion medium in the first reaction section. The polymerizable droplets change into stable beads rather than droplets, and even if the aqueous dispersion medium is removed for circulation through the filter 10 while remaining in the second reaction section, the shape of the polymerized droplets will not change. It can be held in the tank 9 without any problems. It is also possible to install a stirring blade to provide gentle stirring in the second reaction section, or to install a vibration mechanism to prevent clogging of the filter. In the third reaction section 14, a part of the aqueous dispersion medium extracted in the second reaction section is introduced through the conduit 13 to create an upward circulating flow, and the polymerized droplets (beads) that have settled from the second reaction section are The polymer particles that have reached the desired polymerization conversion rate form a fluidized bed in the upper part of the third reaction section until they reach a polymerization conversion rate corresponding to the specific gravity that allows them to settle against the upward flow of the aqueous dispersion medium. , selectively settles at the bottom of the third reaction section and is taken out of the reaction system as a concentrated slurry. A desired polymerization conversion rate of the obtained polymer particles can be obtained by selecting the upward flow rate in the third reaction section. In this method, the desired polymerization temperature can be controlled by installing a heat exchanger in the conduit connecting each reaction section and by insulating each reaction section. Since this is a method that makes the most of the differences, it can be easily inferred that it not only has the advantage of being able to obtain polymer particles with uniform particle sizes, but also has other advantages compared to conventional methods. be. Examples will be explained below. Example: A polymerizable liquid containing 0.32 PHR of benzoyl peroxide dissolved in styrene is passed through conduit 1 to droplet generator 2.
supplied. The droplet generator 2 is made of a stainless steel plate with one orifice hole of 0.4 mm in diameter.
250Hz mechanical vibration is applied in the vertical direction at 10 times per minute.
Polymerizable droplets were generated in ml. The generated polymerizable droplets rose through an introduction tube with an inner diameter of 25 mm filled with an aqueous dispersion medium and were introduced into the cylinder 4. The tube 4 is a stainless steel hollow tube with an inner diameter of 70 mm at the top and a height of 1000 mm at the bottom, an inner diameter of 140 mm at the bottom, and a height of 400 mm at the bottom. 0.35cm/sec at bottom, 0.09 at bottom
It created a downward flow at cm/sec. The aqueous dispersion medium is pure water and fine calcium phosphate powder.
2000 ppm, polyvinyl alcohol 50 ppm, and anionic surfactant (sodium alkyl olefin sulfonate) 50 ppm were mixed and used. The polymerization temperature in the cylinder 4 was controlled to 88-90° C. by installing a heat exchanger in the conduit 6 for circulating the aqueous dispersion medium. Polymerization proceeded in the tube 4 of the first reaction section, and the polymerization conversion rate of the polymerized droplets introduced into the tank 9 of the second reaction section through the conduit 8 was 60 to 65%. The tank 9 in the second reaction section has an inner diameter of 140 mm and a straight body height of 200 mm.
A stainless steel tank with a diameter of 1 mm was used, a filter 10 made of a 100 mesh stainless steel net was installed, and an amount of the aqueous dispersion medium used for circulation was extracted through the filter. The polymerization conversion rate of the polymerization droplets that settle and transfer from the second reaction section to the third reaction section connected to the lower part is
It was 65-70%. The third reaction section is connected to the bottom of the second reaction section and has an inner diameter of 140 mm, a straight body height of 50 mm, and an inner diameter of 55 mm.
A stainless steel cylinder 14 having a straight body part height of 400 mm connected by a tapered part was used, and an aqueous dispersion medium was introduced through the conduit 13 from the middle of the cylinder with an inner diameter of 55 mm to generate an upward flow in the cylinder 14. The polymerization conversion rate of the polymer particles that settled against the upward flow rate and was collected at the bottom of the tube 14 is shown in Table 1, and the results of drying the collected polymer particles and measuring the particle size are shown in Table 2. The grain size was almost uniform.

【表】【table】

【表】 分級巾はタイラー標準篩を用いた。
[Table] A Tyler standard sieve was used as the classification width.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の方法に使用する装置の説明用断面
図である。 1…重合性液体導管、2…液滴生成装置、3…
重合性液滴導入管、4,14…筒、5…水性分散
媒分散器、6,7…水性分散媒導管、8…スラリ
ー導管、9…槽、10…フイルター、11,13
…水性分散媒導管、12…水性分散媒循環ポン
プ、100…第一反応部、200…第二反応部、
300…第三反応部。
The figure is an explanatory cross-sectional view of an apparatus used in the method of the present invention. 1... Polymerizable liquid conduit, 2... Droplet generator, 3...
Polymerizable droplet introduction pipe, 4, 14... cylinder, 5... aqueous dispersion medium disperser, 6, 7... aqueous dispersion medium conduit, 8... slurry conduit, 9... tank, 10... filter, 11, 13
... aqueous dispersion medium conduit, 12 ... aqueous dispersion medium circulation pump, 100 ... first reaction section, 200 ... second reaction section,
300...Third reaction section.

Claims (1)

【特許請求の範囲】 1 1孔以上のオリイフイスから水性分散媒中に
重合性液体を吐出させ、生成する液柱に規則正し
い機械的振動を与えて均一な液滴径をもつ重合性
液体の液滴群をつくり、この液滴群を水性分散媒
中へ投入した後、重合性液滴の比重が水性分散媒
の比重より小さい範囲で、重合性液滴の分裂や合
一をさせずに保持しながら重合させる第一反応
部、次に重合性液滴の比重が水性分散媒の比重に
ほぼ等しい範囲で重合性液滴群と水性分散媒から
なるスラリーから水性分散媒のみを循環用に回収
する第二反応部、更に次に重合性液滴の比重が水
性分散媒の比重より大きい範囲で重合性液滴の比
重が所望の重合転化率に対応する比重に到達した
もののみ沈降回収させる第三反応部を、重合性液
滴が順次経由するように導管で導き、第二反応部
で抜き取つた水性分散媒を、第一反応部では下向
き流れで、第三反応部では上向き流れで、循環さ
せることを特徴とするほぼ粒度の揃つた重合体粒
子を取得する連続懸濁重合方法。 2 重合性液体が、あらかじめ20%以下の重合体
物質が単量体に溶解されているものからなる特許
請求の範囲第1項記載の連続懸濁重合方法。 3 第一反応部の水性分散媒の下向き流れが、反
応器空筒基準で1cm/秒以下である特許請求の範
囲第1項記載の連続懸濁重合方法。 4 第一反応部の後に第二反応部に移行される重
合性液滴の重合転化率を上げる為の滞留槽を設け
る特許請求の範囲第1項記載の連続懸濁重合方
法。 5 第一反応部から流出するスラリーを第三反応
部の上向き流として用いた後、第二反応部のフイ
ルターを通して第一反応部に循環する特許請求の
範囲第1項記載の連続懸濁重合方法。 6 重合温度の制御を導管の間に熱交換器を設置
することにより行う特許請求の範囲第1項記載の
連続懸濁重合方法。
[Claims] 1. Droplets of polymerizable liquid having a uniform droplet diameter by discharging a polymerizable liquid into an aqueous dispersion medium from an orifice with one or more holes and applying regular mechanical vibrations to the resulting liquid column. After forming a group of droplets and introducing this group of droplets into an aqueous dispersion medium, the polymerizable droplets are held without splitting or coalescing within a range where the specific gravity of the polymerizable droplets is smaller than the specific gravity of the aqueous dispersion medium. The first reaction part undergoes polymerization while the polymerizable droplets are polymerized, and then only the aqueous dispersion medium is recovered for circulation from the slurry consisting of the polymerizable droplets and the aqueous dispersion medium within a range where the specific gravity of the polymerizable droplets is approximately equal to the specific gravity of the aqueous dispersion medium. The second reaction section is followed by a third reaction section where only those droplets whose specific gravity has reached a specific gravity corresponding to a desired polymerization conversion rate within a range where the specific gravity of the polymerizable droplets is greater than the specific gravity of the aqueous dispersion medium are sedimented and recovered. The reaction section is guided through a conduit so that the polymerizable droplets pass through it in sequence, and the aqueous dispersion medium extracted in the second reaction section is circulated in a downward flow in the first reaction section and an upward flow in the third reaction section. A continuous suspension polymerization method for obtaining polymer particles of substantially uniform particle size. 2. The continuous suspension polymerization method according to claim 1, wherein the polymerizable liquid has 20% or less of the polymer substance dissolved in the monomer. 3. The continuous suspension polymerization method according to claim 1, wherein the downward flow of the aqueous dispersion medium in the first reaction section is 1 cm/sec or less based on the reactor cavity. 4. The continuous suspension polymerization method according to claim 1, wherein a retention tank is provided to increase the polymerization conversion rate of the polymerizable droplets transferred to the second reaction section after the first reaction section. 5. The continuous suspension polymerization method according to claim 1, wherein the slurry flowing out from the first reaction section is used as an upward flow in the third reaction section, and then circulated to the first reaction section through a filter in the second reaction section. . 6. The continuous suspension polymerization method according to claim 1, wherein the polymerization temperature is controlled by installing a heat exchanger between the conduits.
JP9131481A 1981-02-13 1981-06-12 Continuous suspension polymerization Granted JPS57205402A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9131481A JPS57205402A (en) 1981-06-12 1981-06-12 Continuous suspension polymerization
US06/384,936 US4487898A (en) 1981-06-12 1982-06-04 Process of continuous suspension polymerization
AU84672/82A AU556043B2 (en) 1981-02-13 1982-06-08 Continuous suspension polymerisation process
DE8282105065T DE3276320D1 (en) 1981-06-12 1982-06-09 A process of continuous suspension polymerization
EP82105065A EP0067415B1 (en) 1981-06-12 1982-06-09 A process of continuous suspension polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9131481A JPS57205402A (en) 1981-06-12 1981-06-12 Continuous suspension polymerization

Publications (2)

Publication Number Publication Date
JPS57205402A JPS57205402A (en) 1982-12-16
JPH0212962B2 true JPH0212962B2 (en) 1990-04-03

Family

ID=14022999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9131481A Granted JPS57205402A (en) 1981-02-13 1981-06-12 Continuous suspension polymerization

Country Status (1)

Country Link
JP (1) JPS57205402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589047U (en) * 1992-05-12 1993-12-03 関東自動車工業株式会社 Door lock device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336510B2 (en) * 1972-05-15 1978-10-03
GB1410832A (en) * 1973-01-23 1975-10-22 Shell Int Research Process for continuous polymer preparation
JPS5336510A (en) * 1976-09-17 1978-04-04 Fujio Mori Method and apparatus for casting ceramics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589047U (en) * 1992-05-12 1993-12-03 関東自動車工業株式会社 Door lock device

Also Published As

Publication number Publication date
JPS57205402A (en) 1982-12-16

Similar Documents

Publication Publication Date Title
KR910005664B1 (en) Preparing uniformly sized polymer particles
EP0184198B1 (en) A method of preparation of droplets
US3922255A (en) Method of producing uniform polymer beads
US4487898A (en) Process of continuous suspension polymerization
US5380496A (en) Process and apparatus for suspension polymerization
KR890000216B1 (en) Process and apparatus for preparing uniform size polymer beads
US4666673A (en) Apparatus for preparing large quantities of uniform size drops
US9095832B2 (en) Method and apparatus for preparing polymer beads of uniform particle size by suspension polymerisation
US4424318A (en) Continuous production of polymer beads of controlled size
EP1408053A1 (en) Controlled suspension polymerization process without mechanical agitation
EP0271922B1 (en) Process for suspension polymerization
EP1591158B1 (en) Controlled shear and turbulence flow pattern within a liquid phase in a vessel
EP0432508B1 (en) Method for preparing an oil-in-water type uniform dispersion of liquid droplets and polymerization method for preparing polymer beads of uniform particle size
JPH0212962B2 (en)
EP0402662B1 (en) Process and apparatus for suspension polymerization
DE60305120T2 (en) Controlled shear and turbulence flow condition in a liquid in a container
JPH0225922B2 (en)
JPH04202501A (en) Production of polymer bead
US4259023A (en) Apparatus and process for mixing or reacting incompletely miscible phases
JPH06192305A (en) Suspension polymerization
JPH03296502A (en) Apparatus and method for continuous reversed-phase suspension polymerization
JPH0610201B2 (en) Method for producing solidified latex