JPH03296327A - Travelling object satellite communication/position measuring system - Google Patents

Travelling object satellite communication/position measuring system

Info

Publication number
JPH03296327A
JPH03296327A JP9784890A JP9784890A JPH03296327A JP H03296327 A JPH03296327 A JP H03296327A JP 9784890 A JP9784890 A JP 9784890A JP 9784890 A JP9784890 A JP 9784890A JP H03296327 A JPH03296327 A JP H03296327A
Authority
JP
Japan
Prior art keywords
signal
communication
positioning
chirp
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9784890A
Other languages
Japanese (ja)
Inventor
Osamu Ichiyoshi
市吉 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9784890A priority Critical patent/JPH03296327A/en
Publication of JPH03296327A publication Critical patent/JPH03296327A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the system not to be made large in the circuit scale even when a mobile station is used as a reception section by using a chirp signal so as to measure the position thereby solving a problem of synchronization. CONSTITUTION:A chirp signal from a base station is multiplied with a modulated position measuring signal, the result is synthesized with an SCPC signal, the result is arranged in a prescribed frequency interval location and then sent to a transmission IF section for a communication satellite. Signals from three communication satellites are received by an antenna high frequency section, branched into three by a branching device 14 and inputted to a demodulation circuit (15-1-15-3). A correlation device 20 multiplies a received chirp signal and a local chirp signal to take the correlation of the both. A timing signal generating circuit 22 adjusts the output timing of a clock signal so that a frequency error is made zero thereby controlling a local chirp signal generating circuit 21. A position measuring signal demodulator 24 receiving the output of the correlation device 20 reproduces accurately a timing signal required for measuring the position.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1つの基地局と多数の移動局が複数の通信衛
星を介して通信と測位を行う移動体衛星通信/測位方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mobile satellite communication/positioning system in which one base station and a large number of mobile stations perform communication and positioning via a plurality of communication satellites.

(従来の技術) 本発明が対象とする移動体衛星通信/測位方式は、例え
ば第1図に示すように、複数の通信衛μ(1−1〜1−
3(N))を用いて1つの基地局2と多数の移動局(3
,3,・・・・・・)との間で通信を行うとともに、移
動局の測位のサービスも行うシステムである。
(Prior Art) The mobile satellite communication/positioning system to which the present invention is directed is, for example, as shown in FIG.
3(N)), one base station 2 and many mobile stations (3(N)) are used.
, 3, . . .), and also provides mobile station positioning services.

周知のように、この種の移動体衛星通信/測位方式は、
各方面で鋭意研究開発がなされており、従来、基地局は
例えば第7図に示すように構成し、移動局は例えば第8
図に示すように構成したものが知られている。なお、第
7図及び第8図では通信衛星は3個(N=3>とし、そ
れぞれA、B。
As is well known, this type of mobile satellite communication/positioning method is
Intensive research and development is being carried out in various fields. Conventionally, base stations have been configured as shown in Figure 7, and mobile stations have been configured as shown in Figure 8.
A device configured as shown in the figure is known. In addition, in FIGS. 7 and 8, there are three communication satellites (N=3>, A and B, respectively).

Cなる符号で区別するとする。Suppose that they are distinguished by a code C.

第7図は基地局の送信系を示し、通信測位システム制御
部4と、各通信衛星(A、B、C)に対応して設けられ
る変調回路(29−1〜29−3)とで基本的に構成さ
れる。
Figure 7 shows the transmission system of the base station, which basically consists of the communication positioning system control unit 4 and the modulation circuits (29-1 to 29-3) provided corresponding to each communication satellite (A, B, C). It is composed of

通信測位システム制御部4は、通信信号を変調回路(2
9−1〜29−3)のそれぞれに出力するとともに、通
信衛星(A、B、C)の最新軌道情報を保持し、対応す
る衛星に向けて送信すべき測位信号を発生し変調回路(
29−1〜29−3)の対応するものに出力する。
The communication positioning system control unit 4 transmits the communication signal to a modulation circuit (2).
9-1 to 29-3), it also holds the latest orbit information of the communication satellites (A, B, C), generates a positioning signal to be transmitted to the corresponding satellite, and outputs the positioning signal to the modulation circuit (
29-1 to 29-3).

変調回路(29−1〜29−3>は、変調回路29−1
に詳示するようになっている。フレーム発生回路6は通
信信号を受けて所定フォーマットのデータ信号とクロッ
ク信号を発生する。5cpC(Sfngle Chan
nel Per Carrier)変調器7はデータ信
号とクロック信号に基づき各通信信号ごとの変調操作を
する。
The modulation circuit (29-1 to 29-3> is the modulation circuit 29-1
The details are as follows. Frame generation circuit 6 receives the communication signal and generates a data signal and a clock signal in a predetermined format. 5cpC(Sfngle Chan
The modulator 7 performs a modulation operation for each communication signal based on the data signal and the clock signal.

PN信号発生器28は、クロック信号を受けて高速のP
N信号(擬似ランダム信号)を発生し、乗算器10の一
方の入力に出力する。測位信号変調器9は、測位信号と
クロック信号を受けて変調操作をし、それを乗算器10
の他方の入力に出力する。乗算器10はPN信号と被変
調測位信号とを乗算操作、即ち、スペクトラム拡散(S
S)変調をする。
The PN signal generator 28 receives the clock signal and generates a high-speed P
An N signal (pseudorandom signal) is generated and output to one input of the multiplier 10. The positioning signal modulator 9 receives the positioning signal and the clock signal, performs a modulation operation, and transmits the modulated signal to the multiplier 10.
output to the other input of The multiplier 10 performs a multiplication operation on the PN signal and the modulated positioning signal, that is, spread spectrum (S
S) Modulate.

5cpc変調器7の出力と乗算器10の出力は信号合成
器11にて合成されて周波数変換器12に入り、ここで
シンセサイザ13の出力に基づき送信チャネル周波数の
信号に変換され、対応する通信衛星用の送信IF部へ送
出される。
The output of the 5cpc modulator 7 and the output of the multiplier 10 are combined by a signal combiner 11 and input to a frequency converter 12, where the output is converted into a transmission channel frequency signal based on the output of a synthesizer 13, and the signal is transmitted to the corresponding communication satellite. The data is sent to the designated transmission IF section.

その結果、基地局からは、通信衛星(A、B。As a result, communication satellites (A, B) are transmitted from the base station.

C)のそれぞれに向けて、通常の5cpc信号を周波数
分割多重化したFDMA信号と被変調測位信号を高速の
PN信号でSS変調した符号分割多重(CDMA)信号
とが重畳されて送信される(第9図)。
For each of C), an FDMA signal obtained by frequency division multiplexing a normal 5 cpc signal and a code division multiplexing (CDMA) signal obtained by SS modulating a modulated positioning signal with a high-speed PN signal are superimposed and transmitted ( Figure 9).

つまり、基地局は、通信衛星のそれぞれに対し相互に十
分な分離度を有する高指向性のアンテナを備え、各通信
衛星ごとに独立した通信路を設定しているのである。
In other words, the base station is equipped with a highly directional antenna having a sufficient degree of separation from each other for each communication satellite, and establishes an independent communication path for each communication satellite.

一方、移動局は、十分に広い指向性のアンテナを有し、
3個の通信衛星に対し同時に送受信可能であり、第8図
に示すように3個の通信衛星からの信号はアンテナ高周
波部で受信され分岐器27を介して5cpc変復調器3
4とSS復調器(30−1〜3O−3)に入力する。
On the other hand, the mobile station has a sufficiently wide directional antenna,
It is possible to simultaneously transmit and receive signals to and from three communication satellites, and as shown in FIG.
4 and input to the SS demodulators (30-1 to 30-3).

5cpc変復調器34では、入力信号からFDMA中の
1つの5cpc信号を抽出しそれを復調して通信端末3
3に出力する。なお、通信端末33で発生した通信信号
は5cpc変復調器34にて変調操作されアンテナ高周
波部から衛星回線へ送出される。
The 5cpc modem 34 extracts one 5cpc signal in FDMA from the input signal, demodulates it, and transmits it to the communication terminal 3.
Output to 3. Note that the communication signal generated by the communication terminal 33 is modulated by the 5cpc modulator/demodulator 34 and sent from the antenna high frequency section to the satellite line.

各5Sfx調器(30−1〜30−3>t−G、t、対
応する通信衛星に固有の局部PN信号を用いてCDMA
信号から対応する測位信号を選択復調するとともに、P
N信号のチップ単位での受信測位信号のタイミング再生
を行い、その精タイミングからなる再生測位信号を時間
差検出回路31に出力する。
Each 5Sfx modulator (30-1 to 30-3>t-G, t, CDMA using local PN signal specific to the corresponding communication satellite)
While selectively demodulating the corresponding positioning signal from the signal, P
The timing of the received positioning signal is reproduced in units of chips of the N signal, and a reproduced positioning signal consisting of the precise timing is output to the time difference detection circuit 31.

時間差検出回路31では、測位演算部32の制御下に、
3つの再生測位信号(精タイミング)と5cpc変復調
器34からのタイミング信号(粗タイミング)とに基づ
き3つの通信衛星からの伝搬時間差をそれぞれ検出し、
その検出内容を位置情報信号として測位演算部32に出
力する。
In the time difference detection circuit 31, under the control of the positioning calculation section 32,
Detecting the propagation time differences from the three communication satellites based on the three reproduced positioning signals (fine timing) and the timing signal (coarse timing) from the 5cpc modem 34,
The detected content is output to the positioning calculation unit 32 as a position information signal.

測位演算部32では、3角測量の原理に基づき当該移動
局の位置を決定する。
The positioning calculation unit 32 determines the position of the mobile station based on the principle of triangulation.

ここに、上述した従来の測位方式では、広帯域のSS信
号を用いるので高い精度で伝搬時間差の測定ができ、高
精度の測位ができる。即ち、PN信号発生器28で発生
するPN信号のチップ速度を通信信号のデータ速度のM
倍とすると、第10図に示すように、PN信号の自己相
関特性はデータ速度のM倍の時間精度を有し、それだけ
精密な測定が可能となる。
Here, in the conventional positioning method described above, since a broadband SS signal is used, it is possible to measure the propagation time difference with high accuracy, and high-precision positioning can be performed. That is, the chip speed of the PN signal generated by the PN signal generator 28 is the data speed of the communication signal M.
If it is doubled, as shown in FIG. 10, the autocorrelation characteristic of the PN signal has a time accuracy that is M times the data rate, and measurement becomes possible with that much precision.

(発明が解決しようとする課題) 上述した従来の測位方式では、SS信号としてPN符号
を用いるので、SS復調器(30−1〜3O−3)にお
いて行われるPN信号の同期に長大な時間を要するとい
う問題がある。
(Problems to be Solved by the Invention) In the conventional positioning method described above, since the PN code is used as the SS signal, it takes a long time to synchronize the PN signal in the SS demodulators (30-1 to 3O-3). There is a problem that it is necessary.

また、同期を迅速に行う方策として、タップ付遅延線を
用いた整合フィルタを用いる方法があるが、これだと回
路規模が増大するという問題がある。
Further, as a method for quickly synchronizing, there is a method of using a matched filter using a tapped delay line, but this method has the problem of increasing the circuit scale.

本発明は、このような問題に鑑みなされたもので、その
目的は、移動局の回路規模を増大させずに簡単な構成で
迅速に同期がどれで測位をなし得る移動体衛星通信/測
位方式を提供することにある。
The present invention has been made in view of these problems, and its purpose is to provide a mobile satellite communication/positioning system that allows quick synchronization and positioning with a simple configuration and without increasing the circuit scale of the mobile station. Our goal is to provide the following.

(課題を解決するための手段) 前記目的を達成するために、本発明の移動体衛星通信/
測位方式は次の如き構成を有する。
(Means for Solving the Problem) In order to achieve the above object, the mobile satellite communication/
The positioning method has the following configuration.

即ち、本発明の移動体衛星通信/測位方式は、1つの基
地局は、複数の通信衛星の各々について独立した通信路
を設定すべく相互に十分な分離度を有する高指向性アン
テナと; 移動局の測位を行うために前記複数の通信衛
星の最新の軌道情報を常時保持する手段と; を備え、
多数の移動局は、前記複数の通信衛星と同時に通信を行
えるような十分に広い指向性のアンテナ: を備え、1
つの基地局と多数の移動局が複数の通信衛星を介した通
信をSCPC/FDMA方式で行うようにした移動体衛
星通信/測位方式における測位方式であって; この測
位方式は、1つの基地局と多数の移動局それぞれとの一
方に設けられる送信部と; 他方に設けられる受信部と
; からなり、送信部は、前記SCPC/FDMA方式
のディジタル変調で用いられるタロツク信号の周期を基
準にして通信衛星の全帯域幅内において周波数掃引され
るチャープ信号を発生する手段と; 測位信号を変調す
る手段と; チャープ信号と被変調測位信号とを乗算し
た被変調チャープ信号にSCPC/FDMA方式の通信
信号を重畳して送出する手段と; を備え、受信部は、
各通信衛星に対応して設けられる複数の復調部と; 各
復調部からの再生測位信号を受けて複数の通信衛星から
の信号伝搬時間差を求め、3角測量の原理に基づき移動
局の地理的値1を決定する測位演算部と: で構成され
、前記各復調部は、受信信号中の通信信号から再生され
た再生クロック信号のタイミングをタイミング誤差信号
に基づき調整した精タイミング信号を発生する手段と;
 前記送信部で生成されるチャープ信号と同形式の局部
チャープ信号を精タイミング信号に基づき発生する手段
と;受信信号中の被変調チャープ信号と局部信号との相
関を検出する手段と: 相関検出結果を狭帯域でろ波す
る手段と; 狭帯域ろ波された相関結果信号に基づき両
チャープ信号間のタイミング誤差を検出し前記タイミン
グ誤差信号を出力する手段と; 前記相関結果から前記
再生測位信号を復調出力する手段と: を備えたことを
特徴とするものである。
That is, in the mobile satellite communication/positioning system of the present invention, one base station has highly directional antennas having sufficient separation from each other to establish independent communication paths for each of a plurality of communication satellites; means for constantly holding the latest orbit information of the plurality of communication satellites in order to perform station positioning;
The plurality of mobile stations are equipped with antennas with sufficiently wide directional characteristics to enable simultaneous communication with the plurality of communication satellites;
A positioning method in a mobile satellite communication/positioning system in which one base station and many mobile stations communicate via multiple communication satellites using the SCPC/FDMA method; and a transmitting section provided on one side of each of the large number of mobile stations; and a receiving section provided on the other side; means for generating a chirp signal whose frequency is swept within the entire bandwidth of a communication satellite; means for modulating a positioning signal; and SCPC/FDMA communication on a modulated chirp signal obtained by multiplying the chirp signal by a modulated positioning signal. The receiving section includes: means for superimposing and transmitting signals;
A plurality of demodulators are provided corresponding to each communication satellite; Receiving the reproduced positioning signals from each demodulator, the difference in signal propagation time from the plurality of communication satellites is determined, and the geographical positioning of the mobile station is determined based on the principle of triangulation. a positioning calculation unit that determines a value 1; and each demodulation unit generates a precise timing signal by adjusting the timing of a regenerated clock signal regenerated from a communication signal in a received signal based on a timing error signal. and;
Means for generating a local chirp signal having the same format as the chirp signal generated by the transmitting section based on the precise timing signal; Means for detecting the correlation between the modulated chirp signal in the received signal and the local signal; and Correlation detection result. means for narrowband filtering; means for detecting a timing error between both chirp signals based on the narrowband filtered correlation result signal and outputting the timing error signal; demodulating the reproduced positioning signal from the correlation result. It is characterized by comprising: a means for outputting; and a means for outputting.

(作 用) 次に、前記の如く構成される本発明の移動体衛星通信/
測位方式の作用を説明する。
(Function) Next, the mobile satellite communication system of the present invention configured as described above will be described.
The operation of the positioning method will be explained.

送信部は、測位信号を乗せたチャープ信号を通常のSC
PC/FDMA通信信号と重畳して送出する。ここで、
基地局が送信部のときは、測位信号には通信衛星の軌道
情報が含まれる。一方、移動局が送信部のときは、測位
信号には当該移動局の識別符号等が含まれ、軌道情報は
含まれない。
The transmitter transmits the chirp signal carrying the positioning signal to the normal SC
It is sent out superimposed on the PC/FDMA communication signal. here,
When the base station is the transmitter, the positioning signal includes orbit information of the communication satellite. On the other hand, when the mobile station is a transmitter, the positioning signal includes the identification code of the mobile station and does not include orbit information.

受信部は、受信信号中の通信信号から再生したクロック
信号に基づき局部チャープ信号を発生し、受信信号中の
チャープ信号と局部チャープ信号の周波数誤差、即ち、
タイミング誤差が零となるように制御し、測位信号を再
生する。受信部が移動局であるときは、測位信号に衛星
の軌道情報が含まれているので、当該移動局において測
位が行われる。一方、受信部が基地局であるときは、予
め保持している衛星の軌道情報を用いて該当移動局の位
置決定を行い、その結果を5cpcチヤネルにて該当移
動局に伝達する。
The receiving section generates a local chirp signal based on the clock signal recovered from the communication signal in the received signal, and detects the frequency error between the chirp signal in the received signal and the local chirp signal, that is,
Control is performed so that the timing error is zero, and the positioning signal is regenerated. When the receiving unit is a mobile station, the positioning signal includes satellite orbit information, so positioning is performed at the mobile station. On the other hand, when the receiving unit is a base station, it determines the position of the mobile station using pre-held satellite orbit information, and transmits the result to the mobile station through a 5cpc channel.

ここで、受信部では、相関結果出力を復調再生するので
あるが、チャープ信号ではタイミングが一致していない
時でも相関信号は得られるので、復調に際しての同期動
作は迅速に行われる。また、移動局が送信部となるとき
は、移動局の構成が非常に簡単になる。
Here, the receiving section demodulates and reproduces the correlation result output, but since the correlation signal can be obtained even when the timings of the chirp signals do not match, the synchronization operation during demodulation is quickly performed. Furthermore, when the mobile station serves as a transmitter, the configuration of the mobile station becomes very simple.

(実 施 例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

本発明の移動体衛星通信/測位方式は、第1図に示す如
くに構成され、通信信号の授受は従来と同様にSCPC
/FDMA方式で行われ、移動局の測位は以下に説明す
るようにして行われる。以下、従来例と同様に3個の通
信衛星を用いた本発明の測位方式を説明する。なお、本
実施例では、基地局が測位信号の送信部、移動局が測位
信号の受信部となっている。
The mobile satellite communication/positioning system of the present invention is configured as shown in FIG.
/FDMA system, and mobile station positioning is performed as described below. Hereinafter, the positioning method of the present invention using three communication satellites as in the conventional example will be explained. In this embodiment, the base station serves as a positioning signal transmitter, and the mobile station serves as a positioning signal receiver.

基地局は、例えば第2図に示すように、従来例回路(P
N信号発生器28)に代えてチャープ信号発生器8を備
える。他は従来例(第7区)と同様である。
For example, as shown in FIG. 2, the base station has a conventional circuit (P
A chirp signal generator 8 is provided in place of the N signal generator 28). The rest is the same as the conventional example (7th ward).

ここに、チャープ信号とは、SCPC/FDMA方式の
ディジタル変調で用いられるクロック信号の周期Tを基
準にして通信衛星の全帯域幅F内において周波数が掃引
される信号であり、その周波数掃引の態様には第3図や
第4図に示すように種々のものがある。第3図及び第4
図(イ)(ロ)はクロック信号の周期Tを1周期とする
もの、第4図(ハ)(ニ)は計を1周期とするものであ
り、それぞれ周波数を正方向(負方向)に掃引し全帯域
幅Fの上限(下限)に来れば瞬時に下限(上限)に移動
して掃引を繰り返すのである。
Here, the chirp signal is a signal whose frequency is swept within the entire bandwidth F of the communication satellite based on the period T of the clock signal used in SCPC/FDMA digital modulation, and the mode of the frequency sweep is There are various types as shown in FIGS. 3 and 4. Figures 3 and 4
Figures (a) and (b) show cases in which the period T of the clock signal is one period, and figures (c) and (d) show cases in which the total period is one period, and the frequency is changed in the positive direction (negative direction). When it sweeps and reaches the upper limit (lower limit) of the total bandwidth F, it instantly moves to the lower limit (upper limit) and repeats the sweep.

このようなチャープ信号が被変調測位信号と乗算され、
5cpc信号と合成され、所定の周波数間隔に配置され
て対応する通信衛星向けの送信IF部へ送出される。
Such a chirp signal is multiplied by the modulated positioning signal,
It is combined with the 5cpc signal, arranged at predetermined frequency intervals, and sent to the transmission IF section for the corresponding communication satellite.

次に、移動局の受信系は、例えば第5図に示すように衛
星対応に設けられる復調回路(15−1〜15−3)と
通信及び測位演算部26を備える。
Next, the reception system of the mobile station includes demodulation circuits (15-1 to 15-3) provided corresponding to the satellites and a communication and positioning calculation section 26, as shown in FIG. 5, for example.

3個の通信衛星からの信号はアンテナ高周波部で受信さ
れ、分岐器14にて3分岐され、復調回路(15−1〜
15−3)に入力する。
Signals from three communication satellites are received by the antenna high frequency section, branched into three by the splitter 14, and sent to the demodulation circuits (15-1 to 15-1).
15-3).

復調回路(15−1〜15−3)では、入力信号はまず
周波数変換器16にてシンセサイザ17の出力に基づき
受信チャネル周波数の信号に変換され、5cpc復調器
19と相関器20とに入力する。
In the demodulation circuits (15-1 to 15-3), the input signal is first converted by the frequency converter 16 into a signal at the reception channel frequency based on the output of the synthesizer 17, and input to the 5cpc demodulator 19 and correlator 20. .

5cpc復調器19では、入力信号からFDMA中の1
つのs’cpc信号を抽出しデータ信号とクロック信号
を再生し、通信及び測位演算部26に出力するとともに
、クロック信号をタイミング信号発生回路22に出力す
る。
The 5cpc demodulator 19 converts the input signal into 1 in FDMA.
s'cpc signals, regenerates a data signal and a clock signal, and outputs them to the communication and positioning calculation section 26, as well as outputs the clock signal to the timing signal generation circuit 22.

タイミング信号発生回路22では、タイミング誤差検出
回路23の出力に基づきクロック信号のタイミングを調
整し、その調整した精タイミング信号を通信及び測位演
算部26と局部チャープ信号発生回路21とに出力する
The timing signal generation circuit 22 adjusts the timing of the clock signal based on the output of the timing error detection circuit 23, and outputs the adjusted fine timing signal to the communication and positioning calculation section 26 and the local chirp signal generation circuit 21.

局部チャープ信号発生回路21では、入力した精タイミ
ング信号に応答して送信側と同形式のチャープ信号を発
生する。ここに、局部チャープ信号発生回路21では、
当初は任意のタイミングで発生する。従って、相関器2
0に出力される局部チャープ信号は、相関器20の他方
の入力たる受信チャープ信号(正しくは被変調チャープ
信号)に対し例えば第6図(a)の■〜■に示すように
程々のタイミング関係となる。
The local chirp signal generation circuit 21 generates a chirp signal of the same format as that on the transmitting side in response to the inputted fine timing signal. Here, in the local chirp signal generation circuit 21,
Initially, it occurs at any timing. Therefore, correlator 2
The local chirp signal outputted to 0 has a moderate timing relationship with the received chirp signal (correctly, the modulated chirp signal) which is the other input of the correlator 20, as shown in, for example, ■ to ■ in FIG. 6(a). becomes.

相関器20では、受信チャープ信号と局部チャープ信号
とを乗算し、両者の相関をとる。受信チーブ信号と局部
チャープ信号が第6図<a>の関係にあるときの相関結
果は第6図(b)のようになる。第6図(a)に例示す
るように、受信チャープ信号の1周期の期間内で、局部
チャープ信号のタイミングとして■から■まで順々に所
定タイミングずつずれているとする。受信チャープ信号
が掃引終点周波数から掃引起点周波数に反転するタイミ
ングでは局部チャープ信号は掃引中であり、両者間には
大きな周波数誤差f、があるが、局部チャープ信号が反
転した後では小さな周波数誤差f8となる。これらの周
波数誤差でやは局部チャープ信号の発生タイミングの誤
差(■〜■)に対応しているのである(第6図(b))
The correlator 20 multiplies the received chirp signal and the local chirp signal and correlates them. When the received chirp signal and local chirp signal have the relationship shown in FIG. 6<a>, the correlation result is as shown in FIG. 6(b). As illustrated in FIG. 6(a), it is assumed that within one cycle of the received chirp signal, the timing of the local chirp signal is sequentially shifted by a predetermined timing from ■ to ■. At the timing when the received chirp signal is inverted from the sweep end point frequency to the sweep start point frequency, the local chirp signal is being swept, and there is a large frequency error f between the two, but after the local chirp signal is inverted, there is a small frequency error f8. becomes. These frequency errors correspond to the errors (■ to ■) in the generation timing of the local chirp signal (Figure 6 (b)).
.

そこで、相関器20の出力を狭帯域の低域ろ波器(LP
F)25に導き、周波数誤差f、の小さいタイミング■
または同■の周波数誤差で。を抽圧し、それをタイミン
グ誤差検出回路にて周波数弁別し、その周波数誤差f0
に対応したタイミング誤差を検出する。タイミング信号
発生回路22では、周波数誤差が零となるようにクロッ
ク信号の出力タイミングを調整し局部チャープ信号発生
回路21を制御するのである。
Therefore, the output of the correlator 20 is passed through a narrow band low pass filter (LP).
F) Timing with small frequency error f, leading to 25 ■
Or with the same frequency error. is extracted, its frequency is discriminated by a timing error detection circuit, and the frequency error f0
Detect timing errors corresponding to The timing signal generation circuit 22 controls the local chirp signal generation circuit 21 by adjusting the output timing of the clock signal so that the frequency error becomes zero.

今、5cpcチヤネルのデータ長く即ち、クロック周期
)をT(秒)、衛星の全帯域幅をF(I(z)とすると
、掃引速度は少なくともF/T(Hz/秒)であるから
、相関器20の出力における信号周波数誤差がf8であ
れば、タイミング誤差tやは1、=1゜ F (1) となる、Fに比べてfやは非常に精密に検出できるので
、七〇は5cpcのデータ長に比べて遥かに細かなタイ
ミングで制御できるのである。
Now, if the data length of the 5cpc channel (i.e., clock period) is T (seconds) and the total bandwidth of the satellite is F (I (z)), the sweep speed is at least F/T (Hz/second), so the correlation is If the signal frequency error in the output of the device 20 is f8, the timing error t is 1, = 1°F (1) Since f can be detected very precisely compared to F, 70 is 5 cpc. This allows for much more detailed timing control than the data length.

斯くして、相関器20の出力を受ける測位信号復調器2
4では、測位に必要なタイミング信号を精確に再生でき
ることになる。
Thus, the positioning signal demodulator 2 receiving the output of the correlator 20
4, it is possible to accurately reproduce the timing signal necessary for positioning.

なお、相関器20では、両チャープ信号のタイミングが
一致していないときでも、相関信号を出力するので、測
位信号復調器24では、容易に同期動作をなし得、従来
のPN信号を用いる方式のように同期に時間がかかると
いうこともない。
In addition, since the correlator 20 outputs a correlation signal even when the timings of both chirp signals do not match, the positioning signal demodulator 24 can easily perform synchronized operation, which is different from the conventional method using a PN signal. It doesn't take much time to synchronize.

最後に、通信及び測位演算部26では、各SCPC復調
器19からの受信通信信号の受信処理をするとともに、
各測位信号復調器24から再生測位信号とタイミング信
号を得、再生測位信号に含まれる衛星の位1情報によっ
て衛星ごとの伝搬時間を求め、3角測量の原理に基づき
当該移動局の地理的位置を求める。
Finally, the communication and positioning calculation unit 26 processes the received communication signals from each SCPC demodulator 19, and
A reproduced positioning signal and a timing signal are obtained from each positioning signal demodulator 24, and the propagation time for each satellite is determined based on the satellite position information included in the reproduced positioning signal, and the geographical position of the mobile station is determined based on the principle of triangulation. seek.

以上の説明では、基地局から測位信号を送出し、移動局
が独自に自己の測位を行う場合を示したが、反対に移動
局が5cpcディジタル変調信変調側位信号を乗せた被
変調チャープ信号を送出し、基地局が受信測位処理を行
うことも全く同様に可能である。
In the above explanation, the base station transmits a positioning signal and the mobile station independently performs its own positioning. However, in contrast, the mobile station transmits a modulated chirp signal carrying a 5 cpc digitally modulated signal and a modulated side signal. It is also possible for the base station to transmit and perform reception positioning processing in exactly the same way.

この場合には、移動局では、チャープ信号発生回路をオ
ン・オフするスイッチを設け、測位するときにチャープ
信号発生回路をオンにするようにすれば良い、また、測
位信号には自局の識別符号を含ませるのである。衛星の
軌道情報は基地局が常時保持しているから、測位に支障
を来なすことはない、この方式とすれば、移動局は衛星
を特定できないから、同時に測位可能なチャネル数は限
定されるが、移動局の構成が単純化される利点がある。
In this case, the mobile station should be equipped with a switch to turn on and off the chirp signal generation circuit, and the chirp signal generation circuit should be turned on when positioning. It includes a sign. Since satellite orbit information is always held by the base station, there is no problem with positioning.With this method, the mobile station cannot identify the satellite, so the number of channels that can be used for simultaneous positioning is limited. However, it has the advantage of simplifying the configuration of the mobile station.

(発明の効果) 以上説明したように、本発明の移動体衛星通信/測位方
式によれば、測位はチャープ信号を用いて行うようにし
たので、同期の問題を解消でき、移動局が受信部となる
場合でも回路規模を増大させずに済み、また簡単な回路
で極めて高い精度の測位サービスを通常のSCPC/F
DMA方式による通信サービスと同時に提供できる効果
がある。
(Effects of the Invention) As explained above, according to the mobile satellite communication/positioning method of the present invention, since positioning is performed using chirp signals, the synchronization problem can be solved, and the mobile station can Even in the case of
This has the advantage that it can be provided simultaneously with communication services based on the DMA method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が対象とする移動体衛星通信/測位方式
の一般的な構成ブロック図、第2図は本発明の一実施例
に係る基地局(送信系)の構成ブロック図、第3図は5
cpcディジタル変調信変調側測位信号を乗せるチャー
プ信号の時間−周波数関係図、第4図はチャープ信号の
周波数掃引の各種態様図、第5図は本発明の一実施例に
係る移動局(受信系ンの構成ブロック図、第6図はタイ
ミング誤差の測定原理図、第7図は従来の基地局(送信
系)の構成ブロック図、第8図は従来の移動局の構成ブ
ロック図、第9図はCDMA/FDMA併用による従来
の通信測位方式における信号スペクトル図、第10図は
PN信号の自己相関特性図である。 1−1〜1−3・・・・・・通信衛星、 2・・・・・
・基地局、3・・・・・・移動局、 4・・・・・・通
信測位システム制御部、5−1〜5−3・・・・・・変
調回路、 6・・・・・・フレーム発生回路57・・・
・・・5cpc変調器、 8・・・・・・チャープ信号
発生器、 9・・・・・・測位信号変調器、10・・・
・・・乗算器、 11・・・・・・信号合成器、  1
2・・・・・・周波数変換器、  13・・・・・・送
信チャネル周波数のシンセサイザ、 14・・・・・・
分岐器、 15−1〜15−3・・・・・・復調回路、
 16・・・・・・周波数変換器、 コア・・・・・・
受信チャネル周波数のシンセサイザ、 18・・・・・
・分岐器、 19・・・・・・5cpc復調器、 20
・・・・・・相関器、 21・・・・・・局部チャープ
信号発生回路、 22・・・・・タイミング信号発生回
路、 23・・・・・タイミング誤差検出回路、24・
・・・・・測位信号復調器、 25・・・・・低域ろ波
器(LPF)、 26・・・・・通信及び測位演算部。
FIG. 1 is a general configuration block diagram of a mobile satellite communication/positioning system targeted by the present invention, FIG. 2 is a configuration block diagram of a base station (transmission system) according to an embodiment of the present invention, and FIG. The diagram is 5
A time-frequency relationship diagram of a chirp signal carrying a positioning signal on the modulated side of a CPC digital modulation signal, FIG. 4 is a diagram showing various aspects of frequency sweep of the chirp signal, and FIG. Figure 6 is a diagram of the timing error measurement principle; Figure 7 is a diagram of the configuration of a conventional base station (transmission system); Figure 8 is a diagram of the configuration of a conventional mobile station; Figure 9 is a signal spectrum diagram in a conventional communication positioning system using CDMA/FDMA combination, and Fig. 10 is an autocorrelation characteristic diagram of a PN signal. 1-1 to 1-3...Communication satellite, 2...・・・
- Base station, 3...Mobile station, 4...Communication positioning system control unit, 5-1 to 5-3...Modulation circuit, 6... Frame generation circuit 57...
...5 cpc modulator, 8... chirp signal generator, 9... positioning signal modulator, 10...
... Multiplier, 11 ... Signal combiner, 1
2... Frequency converter, 13... Transmission channel frequency synthesizer, 14...
Brancher, 15-1 to 15-3... Demodulation circuit,
16... Frequency converter, core...
Receive channel frequency synthesizer, 18...
・Brancher, 19...5cpc demodulator, 20
... Correlator, 21 ... Local chirp signal generation circuit, 22 ... Timing signal generation circuit, 23 ... Timing error detection circuit, 24.
... Positioning signal demodulator, 25 ... Low pass filter (LPF), 26 ... Communication and positioning calculation section.

Claims (1)

【特許請求の範囲】[Claims]  1つの基地局は、複数の通信衛星の各々について独立
した通信路を設定すべく相互に十分な分離度を有する高
指向性アンテナと;移動局の測位を行うために前記複数
の通信衛星の最新の軌道情報を常時保持する手段と;を
備え、多数の移動局は、前記複数の通信衛星と同時に通
信を行えるような十分に広い指向性のアンテナ;を備え
、1つの基地局と多数の移動局が複数の通信衛星を介し
た通信をSCPC/FDMA方式で行うようにした移動
体衛星通信/測位方式における測位方式であって;この
測位方式は、1つの基地局と多数の移動局それぞれとの
一方に設けられる送信部と;他方に設けられる受信部と
;からなり、送信部は、前記SCPC/FDMA方式の
ディジタル変調で用いられるクロック信号の周期を基準
にして通信衛星の全帯域幅内において周波数掃引される
チャープ信号を発生する手段と;測位信号を変調する手
段と;チャープ信号と被変調測位信号とを乗算した被変
調チャープ信号にSCPC/FDMA方式の通信信号を
重畳して送出する手段と;を備え、受信部は、各通信衛
星に対応して設けられる複数の復調部と;各復調部から
の再生測位信号を受けて複数の通信衛星からの信号伝搬
時間差を求め、3角測量の原理に基づき移動局の地理的
位置を決定する測位演算部と;で構成され、前記各復調
部は、受信信号中の通信信号から再生された再生クロッ
ク信号のタイミングをタイミング誤差信号に基づき調整
した精タイミング信号を発生する手段と;前記送信部で
生成されるチャープ信号と同形式の局部チャープ信号を
精タイミング信号に基づき発生する手段と;受信信号中
の被変調チャープ信号と局部信号との相関を検出する手
段と;相関検出結果を狭帯域でろ波する手段と;狭帯域
ろ波された相関結果信号に基づき両チャープ信号間のタ
イミング誤差を検出し前記タイミング誤差信号を出力す
る手段と;前記相関結果から前記再生測位信号を復調出
力する手段と;を備えたことを特徴とする移動体衛星通
信/測位方式。
One base station includes highly directional antennas having sufficient separation from each other to establish independent communication paths for each of the plurality of communication satellites; means for constantly maintaining orbital information of the plurality of mobile stations; and the plurality of mobile stations are equipped with antennas with sufficiently wide directional characteristics to enable simultaneous communication with the plurality of communication satellites; A positioning method in a mobile satellite communication/positioning system in which a station communicates via multiple communication satellites using the SCPC/FDMA method; a transmitter provided on one side; a receiver provided on the other side; means for generating a frequency-swept chirp signal; means for modulating the positioning signal; superimposing an SCPC/FDMA communication signal on the modulated chirp signal obtained by multiplying the chirp signal and the modulated positioning signal and transmitting the signal; means; and a receiving section; a plurality of demodulation sections provided corresponding to each communication satellite; and; receiving a reproduced positioning signal from each demodulation section to obtain a signal propagation time difference from a plurality of communication satellites; a positioning calculation unit that determines the geographical position of a mobile station based on the principles of surveying; means for generating an adjusted fine timing signal; means for generating a local chirp signal in the same format as the chirp signal generated by the transmitting section based on the fine timing signal; and means for generating a local chirp signal based on the fine timing signal; means for detecting the correlation between the two chirp signals; means for filtering the correlation detection result in a narrow band; and means for detecting a timing error between both chirp signals based on the narrow band filtered correlation result signal and outputting the timing error signal. A mobile satellite communication/positioning method, comprising: means for demodulating and outputting the reproduced positioning signal from the correlation result.
JP9784890A 1990-04-13 1990-04-13 Travelling object satellite communication/position measuring system Pending JPH03296327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9784890A JPH03296327A (en) 1990-04-13 1990-04-13 Travelling object satellite communication/position measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9784890A JPH03296327A (en) 1990-04-13 1990-04-13 Travelling object satellite communication/position measuring system

Publications (1)

Publication Number Publication Date
JPH03296327A true JPH03296327A (en) 1991-12-27

Family

ID=14203155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9784890A Pending JPH03296327A (en) 1990-04-13 1990-04-13 Travelling object satellite communication/position measuring system

Country Status (1)

Country Link
JP (1) JPH03296327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063359A1 (en) * 1996-08-30 1999-12-09 Harris Corporation A system and method for geolocating plural remote transmitters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063359A1 (en) * 1996-08-30 1999-12-09 Harris Corporation A system and method for geolocating plural remote transmitters

Similar Documents

Publication Publication Date Title
EP0929823B1 (en) Passive position determination using two low-earth orbit satellites
KR100771410B1 (en) System and method for synchronizing base stations in cellular and pcs networks
AU719703B2 (en) Position determination using one low-earth orbit satellite
CN1878042B (en) Orthogonal code synchronization system and method for spread spectrum CDMA communications
JP3078997B2 (en) Multiple access method of direct spreading communication system and multiple access device used therefor
US6327534B1 (en) Unambiguous position determination using two low-earth orbit satellites
KR0144770B1 (en) Mobile station porition acquisition device
AU599552B2 (en) Satellite-based vehicle communication/position determination system
EP1143652A2 (en) Apparatus and method for reducing multipath components associated with a received CDMA signal, in particular for GPS receivers
MXPA00006936A (en) Mobile station assisted timing synchronization in a cdma communication system.
JPH10509848A (en) Antenna diversity technology
EP0515675A1 (en) Synchronous spread-spectrum communications system and method
JPH025344B2 (en)
JPH08146110A (en) Location measuring unit
JPS5817434B2 (en) Shutoshite (Omega Sadow System)
JPH10285140A (en) Time synchronizing system and time synchronizing method therefor
JP2002523752A (en) Split C / A code receiver
JPH03296327A (en) Travelling object satellite communication/position measuring system
US8976844B2 (en) Receiver for detection and time recovery of non-coherent signals and methods of operating same
JP2000050343A (en) Method for detecting position of mobile station and position detection system for base station and mobile station
JPH057176A (en) Mobile station radio equipment
JPH11275057A (en) Cdma spread code phase synchronization method
KR20010062128A (en) Transmission system comprising a station of a first type and a station of a second type and synchronization method
KR20010004635A (en) Synchronous signal transceiver and synchronization acquisition method its in communication system
JP3354668B2 (en) Jammer detector