JPH03295822A - Method of forming optical element - Google Patents

Method of forming optical element

Info

Publication number
JPH03295822A
JPH03295822A JP9855590A JP9855590A JPH03295822A JP H03295822 A JPH03295822 A JP H03295822A JP 9855590 A JP9855590 A JP 9855590A JP 9855590 A JP9855590 A JP 9855590A JP H03295822 A JPH03295822 A JP H03295822A
Authority
JP
Japan
Prior art keywords
cooling
molding
furnace
mold
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9855590A
Other languages
Japanese (ja)
Inventor
Satoshi Imai
聡 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP9855590A priority Critical patent/JPH03295822A/en
Publication of JPH03295822A publication Critical patent/JPH03295822A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To produce an optical element having no cooling strain and to reduce the time for cooling by providing processes of precooling, rapid heating, compression heating and cooling. CONSTITUTION:A plastic forming material 1 is mounted on a hole 2 of a carrier 3 and carried from a path 20 to a cooling furnace 5 to be precooled. Since the furnace 5 is preliminarily supplied with cool air from a cooler 4 to certain temp., the material 1 is cooled as soon as it is put into the surface, and is enough cooled to the inside area. Then the material 1 is carried from the furnace 5 through a path 21 and rapidly inserted to the adjacent heating furnace 7 through a path 22, where only the surface of the material 1 is rapidly heated. Then the material 1 is carried from the furnace 7 through a path 23 and sent to between upper and lower dies 5a, 8b of the adjacent forming die machine, where the material is subjected to compression heating between the dies. Then the material 1 as molded is cooled by upper and lower temp. controller 9a, 9b and then released.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、加熱圧縮成形によって成形される光学素子の
成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for molding an optical element formed by heat compression molding.

〔従来の技術〕[Conventional technology]

比較的大きい寸法で、しかも、偏肉度の大きい光学素子
を製造する方法が特公平139336号公報および特公
平139337号公報に提案されている。以下に上記公
報の技術内容を説明する。
A method of manufacturing an optical element having relatively large dimensions and a large thickness deviation is proposed in Japanese Patent Publication No. 139336 and Japanese Patent Publication No. 139337. The technical content of the above publication will be explained below.

上記、前者即ち特公平139336号公報に開示されて
いる技術は、成形素材を注型成形用型内にて塊状重合に
よって成形されている。また、後者即ち特公平1393
37号公報に開示されている技術は、成形素材を射出成
形により成形した素材を旋盤あるいはNC旋盤で所定の
形状に切削して製造される方法が開示されている。
In the former technique disclosed in Japanese Patent Publication No. 139336, a molding material is molded in a casting mold by bulk polymerization. In addition, the latter, namely, Tokuho 1393
The technique disclosed in Japanese Patent No. 37 discloses a manufacturing method in which a molded material is molded by injection molding and then cut into a predetermined shape using a lathe or an NC lathe.

上記した各公報における技術は、それぞれの過程で予め
成形、または形成された成形素材を予め素材の応力歪が
最も小さくなる温度に加熱しておいた所定の形状を有す
る圧縮成形用金型内に収納する。収納した成形素材の内
部温度が成形素材のガラス転移点より10℃高い温度で
あって、かつ成形素材の表面近傍の温度が圧縮成形用金
型温度にほぼ等しくなることによって、成形素材の内部
温度が表面近傍の温度より低い状態で成形素材の表面近
傍のみを溶融させて流動状態にする。この時点で圧縮成
形を行うと同時に金型の冷却を始め、成形品を取り出せ
る温度に達した後、金型を開いて成形した光学素子を取
り出すという製造方法である。
The technology in each of the above-mentioned publications is that the molding material that has been formed or formed in each process is heated in advance to a temperature that minimizes the stress strain of the material in a compression molding mold having a predetermined shape. Store it. The internal temperature of the stored molding material is 10°C higher than the glass transition point of the molding material, and the temperature near the surface of the molding material is approximately equal to the compression molding mold temperature, so that the internal temperature of the molding material is increased. When the temperature is lower than the temperature near the surface, only the area near the surface of the molding material is melted into a fluid state. At this point, compression molding is performed and at the same time cooling of the mold is started, and after reaching a temperature at which the molded product can be taken out, the mold is opened and the molded optical element is taken out.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記特公平139336号公報および、特公平1393
37号公報に示されている光学素子の製造方法において
は、成形素材を少なくとも成形素材のガラス転移点より
10℃高い温度まで上昇させている。一般に金型内にお
いて成形素材を冷却するとき成形素材は、表面から冷却
が始まる。そのため、表面が充分冷却されても厚肉部の
内部は熱溜まりが発生する。従って成形素材に温度分布
が発生してしまい薄肉部と厚肉部とで収縮量が異なって
しまう、この収縮量の差のために成形する光学素子は歪
が発生するという問題があった。
The above-mentioned Japanese Patent Publication No. 139336 and Japanese Patent Publication No. 1393
In the method for manufacturing an optical element disclosed in Publication No. 37, the temperature of the molding material is raised to at least 10° C. higher than the glass transition point of the molding material. Generally, when a molding material is cooled in a mold, cooling starts from the surface of the molding material. Therefore, even if the surface is sufficiently cooled, heat remains inside the thick portion. Therefore, a temperature distribution occurs in the molding material, causing a difference in the amount of shrinkage between the thin wall portion and the thick wall portion.This difference in shrinkage amount causes distortion in the optical element to be molded.

本発明は、このような問題点に繻みてなされたもので、
加熱圧縮成形による成形素材の不均一冷却にもとすく歪
を改良し、高精度で歪の少ない光学素子の成形方法を提
供することを目的とするものである。
The present invention has been made in consideration of these problems.
It is an object of the present invention to provide a method for molding an optical element with high precision and less distortion by quickly improving distortion due to non-uniform cooling of a molding material by heat compression molding.

CFllBを解決するための手段および作用〕本発明は
、予め所定の形状に加工または成形された成形素材を冷
却炉内で冷却する予備冷却工程と、この冷却工程にて冷
却した成形素材を瞬間的に加熱する急速加熱工程と、こ
の急速加熱工程にて加熱した成形素材を加熱圧縮用金型
にて加熱圧縮と冷却とを行う工程と、この加熱圧縮と冷
却工程にて冷却した成形素材を加熱圧縮用金型より取り
出す工程とよりなる光学素子の成形方法である。
Means and operation for solving CFllB] The present invention includes a pre-cooling process in which a molding material that has been previously processed or molded into a predetermined shape is cooled in a cooling furnace, and a cooling process that instantly cools the molding material cooled in this cooling process. A rapid heating step in which the molding material heated in this rapid heating step is heated and compressed in a heating compression mold and cooled, and the molding material cooled in this heating compression and cooling step is heated. This is a method of molding an optical element, which includes a step of taking it out from a compression mold.

〔実 施 例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

尚、各実施例において同一構成および同一部材等につい
ては、同一符号を付し、その説明は最初の実施例にて行
い他の実施例においては省略する。
In each embodiment, the same configuration and members are designated by the same reference numerals, and the explanation thereof will be given in the first embodiment and will be omitted in other embodiments.

(第1実施例) 第1図(a)、■)、 (C)、(ロ)は、本発明に係
わる光学素子の第1実施例を示し、その成形方法の各成
形工程の要部を示す正面よりの各断面図である。
(First Embodiment) Figures 1(a), (■), (C), and (b) show a first embodiment of an optical element according to the present invention, and explain the main parts of each molding process of the molding method. FIG. 3 is a sectional view taken from the front;

第1図(a)に示す箱形状は、被成形素材を冷却する冷
却炉5である。この冷却炉5の左右の壁面には、被成形
素材を搬送するための搬送路20゜21が構成されてい
る。また、冷却炉5上部位置には、冷却炉5内を冷却し
、被成形素材1を冷却するための冷却装置4が配設され
ている。
The box shape shown in FIG. 1(a) is a cooling furnace 5 for cooling the material to be formed. Conveyance paths 20.degree. 21 for conveying the material to be formed are formed on the left and right walls of the cooling furnace 5. Further, a cooling device 4 for cooling the inside of the cooling furnace 5 and cooling the material 1 to be formed is disposed above the cooling furnace 5 .

上記被成形素材1を搬送する搬送路20.21には、先
端に成形素材lの面積(径)より小さく、成形素材1の
成形金型8a、8bの径面積より大きい孔2を穿設した
帯状形の搬送部材3が図に示すように左側壁の搬送路2
0から右側壁の搬送路21に通過するように構成されて
いる。
A hole 2 is bored at the tip of the transport path 20.21 for transporting the material to be formed 1, which is smaller in area (diameter) than the forming material 1 and larger in diameter than the molding dies 8a and 8b of the forming material 1. As shown in the figure, the belt-shaped conveyance member 3 is connected to the conveyance path 2 on the left side wall.
0 to the conveyance path 21 on the right side wall.

第1図(ロ)に示すように冷却炉5に隣接した箱形状は
、被成形素材lを加熱する加熱炉7である。
As shown in FIG. 1(B), a box-shaped box adjacent to the cooling furnace 5 is a heating furnace 7 that heats the material 1 to be formed.

この加熱炉7の左右の側壁面には、上記冷却炉5と同欅
に、被成形素材lを搬送するための搬送路22.23が
それぞれ構成されている。また、加熱炉7の上部位置に
は、本体7内を急速に加熱し、搬送されてくる被成形素
材1を加熱するための加熱装置6が配設されている。
Conveyance paths 22 and 23 for conveying the material to be formed 1 are formed on the left and right side wall surfaces of the heating furnace 7, in the same way as the cooling furnace 5, respectively. Furthermore, a heating device 6 is disposed at an upper portion of the heating furnace 7 to rapidly heat the inside of the main body 7 and heat the material 1 to be formed that is being conveyed.

また、第1図(C)に示すように、上記加熱炉7に隣接
する位置には、加熱圧縮成形および冷却用の一対の金型
が配設されている。即ち先端面を所定の凹形状に形成さ
れた上側金型8aがその基端を上側温調器を介して固定
装置24に装着されている。また、上側金型8aと対応
した位置には、先端面を所定の凹形状に形成された下側
金型8bが、その基端を下側温調器9bを介してエアシ
リンダー10と接続構成し、上記上側金型8aの先端面
と一致するよう上昇移動して被成形素材1を成形される
よう構成されている。
Further, as shown in FIG. 1(C), a pair of molds for heating compression molding and cooling are disposed adjacent to the heating furnace 7. That is, an upper mold 8a whose distal end surface is formed into a predetermined concave shape is attached at its base end to the fixing device 24 via an upper temperature controller. Further, at a position corresponding to the upper mold 8a, a lower mold 8b having a predetermined concave shape at its tip end is connected to the air cylinder 10 via a lower temperature controller 9b at its base end. However, the molding material 1 is molded by moving upward to match the tip end surface of the upper mold 8a.

第1図(d)は、第1図(C)にて成形された被成形素
材1を成形金型より搬出する状態を示したものである。
FIG. 1(d) shows the state in which the molded material 1 molded in FIG. 1(C) is carried out from the molding die.

上記構成による本実施例の成形方法を以下に説明する。The molding method of this embodiment with the above configuration will be explained below.

まず、最終形状近くに射出成形されたプラスチックより
なる成形素材1を搬送部材3の孔2に載置し、搬送路2
0より冷却炉5内に挿入し、予備冷却される。
First, a molded material 1 made of plastic that has been injection-molded to a shape close to the final shape is placed in the hole 2 of the conveying member 3, and the conveying path 2
0 into the cooling furnace 5 and pre-cooled.

上記冷却炉5内は、予め冷却器4より冷却した空気が送
り込まれて一定温度に冷却されているため成形素材lは
、挿入後、即冷却を始めその内部まで充分に冷やされる
。この場合例えば、冷却炉5内を0℃以下に設定し、成
形素材1内部を10℃以下に設定しておくことにより充
分に冷却される。
Since the inside of the cooling furnace 5 is cooled to a constant temperature by sending air cooled in advance from the cooler 4, the molding material 1 starts cooling immediately after being inserted, and the inside of the molding material 1 is sufficiently cooled. In this case, for example, by setting the inside of the cooling furnace 5 to 0° C. or lower and setting the inside of the molding material 1 to 10° C. or lower, sufficient cooling can be achieved.

上記予備冷却した成形素材1は、搬送路21より搬送部
材3の駆動により冷却炉5から搬出し、続いて隣接した
加熱炉7の搬送路22より速やかに挿入されて急速加熱
される。即ち、加熱炉7内は、加熱器6によって、成形
素材1のガラス転移点温度よりも非常に高い温度に設定
されている。
The precooled molding material 1 is carried out from the cooling furnace 5 through the conveyance path 21 by driving the conveyance member 3, and then quickly inserted into the conveyance path 22 of the adjacent heating furnace 7 and rapidly heated. That is, the temperature inside the heating furnace 7 is set by the heater 6 to a temperature much higher than the glass transition temperature of the molding material 1.

この場合の急速加熱としては、加熱炉7内で成形素材1
の表面のみを急速加熱する0例えば急速加熱方法として
は、加熱温度を300〜500℃の間で設定とし、加熱
時間を10〜30secの間とする。
In this case, the forming material 1 is heated in the heating furnace 7 for rapid heating.
For example, in a rapid heating method in which only the surface of the substrate is rapidly heated, the heating temperature is set between 300 and 500° C., and the heating time is set between 10 and 30 seconds.

上記急速加熱状態においては、成形素材1の厚肉部の内
部は、成形素材1のガラス転移点温度に比べ充分低い温
度になっている。
In the above-mentioned rapid heating state, the temperature inside the thick portion of the molding material 1 is sufficiently lower than the glass transition point temperature of the molding material 1.

上記急速加熱した成形素材1は、加熱炉7の搬送路23
より搬出し、速やかに隣接する成形金型装置の上側金型
8aと下側金型8b間に、搬送部材3にて搬送される。
The rapidly heated forming material 1 is transferred to the conveying path 23 of the heating furnace 7.
The mold is immediately transported by the transport member 3 between the upper mold 8a and the lower mold 8b of the adjacent mold apparatus.

搬送されてきた成形素材1は、搬送部材3の成形素材1
を載置した孔2の位置と、上記上側金型8aと下側金型
8b間に挿入し、上側金型8aと下側金型8bのの位置
と一致する位置に停止するよう設定されている。
The molding material 1 that has been conveyed is transferred to the molding material 1 of the conveying member 3.
It is inserted between the upper mold 8a and the lower mold 8b, and is set to stop at a position that matches the position of the hole 2 in which the mold is placed, and the position of the upper mold 8a and the lower mold 8b. There is.

上記搬送部材3の停止と同時に、エアシリンダー10が
作動し、下側金型8bを上昇させて搬送部材3の孔2を
貫通して成形素材1の下面と下側金型8bの上面成形面
と当接して、成形素材1は下側金型8bの成形面上に載
置し上方に持ち上げられる。
Simultaneously with the stop of the conveying member 3, the air cylinder 10 is activated to raise the lower mold 8b and pass through the hole 2 of the conveying member 3 to form the lower surface of the molding material 1 and the upper molding surface of the lower mold 8b. The molding material 1 is placed on the molding surface of the lower mold 8b and lifted upward.

持ち上げられた成形素材lは、更に上昇して上側金型8
aの成形面部に挟まれた状態となる。
The lifted molding material l further rises to the upper mold 8
It will be in a state where it is sandwiched between the molding surface parts of a.

この時、上側金型8aと下側金型8bは上側温調器9a
と下側温調器9bによってそれぞれ成形素材1のガラス
転移点前後の温度に保持されている。上側金型8aと下
側金型8bの間に挟まれた成形素材lは、更にエアシリ
ンダー10によって加圧される。また成形素材1の表面
近傍は、ガラス転移点温度よりも非常に高い温度になっ
ているので、上側金型8aと下側金型8bの各面形状が
成形素材lに転写される。転写の終わった成形素材1は
そのままの状態にて上側金型8aと下側金型8bとそれ
ぞれに連設した上側温調!S9aと下側温調器9bとに
よってそれぞれ冷却される。この場合成形素材1は、ガ
ラス転移点温度よりも低い温度にて冷却されるので成形
素材10表面近傍は速やかに冷却される。この加熱圧縮
成形過程において、成形素材1の厚肉部の内部は成形素
材lのガラス転移点温度によりも低い温度になっている
。したがって、冷却時において成形素材1内部は温度分
布がほとんどつかない状態になる。
At this time, the upper mold 8a and the lower mold 8b are connected to the upper temperature controller 9a.
and the lower temperature regulator 9b, respectively, to maintain the temperature around the glass transition point of the molding material 1. The molding material 1 sandwiched between the upper mold 8a and the lower mold 8b is further pressurized by an air cylinder 10. Furthermore, since the temperature near the surface of the molding material 1 is much higher than the glass transition temperature, the shapes of the surfaces of the upper mold 8a and the lower mold 8b are transferred to the molding material 1. After the transfer, the molding material 1 is left as it is, and the upper mold 8a and the lower mold 8b are connected to each other for upper temperature control! It is cooled by S9a and lower temperature controller 9b, respectively. In this case, since the molding material 1 is cooled at a temperature lower than the glass transition temperature, the vicinity of the surface of the molding material 10 is quickly cooled. In this heating compression molding process, the temperature inside the thick portion of the molding material 1 is lower than the glass transition point temperature of the molding material 1. Therefore, during cooling, there is almost no temperature distribution inside the molding material 1.

加熱し、成形して冷却された成形レンズ11は、第1図
(イ)にて示すように、下側金型8bをエアシリンダー
10の作動により下降せしめることによって、上側金型
8aとは離間し、更に搬送部材3の孔2の上面に再度載
置されて外部に取り出されて全成形工程を終了する。
The heated, molded and cooled molded lens 11 is separated from the upper mold 8a by lowering the lower mold 8b by operating the air cylinder 10, as shown in FIG. 1(A). Then, it is placed again on the upper surface of the hole 2 of the conveying member 3 and taken out to the outside, completing the entire molding process.

なお、上記本実施例に用いたプラスチックレンズの材料
としては、PMMA、PCPS等が用いられる。また、
本実施例においては、両凸形状の被成形素材を用いたが
本発明はこれに限定するものではなく、凹レンズまたは
プリズムなどでもよく、更にはガラス材でもよいことは
勿論である。
In addition, PMMA, PCPS, etc. are used as the material of the plastic lens used in the above-mentioned present example. Also,
In this embodiment, a material to be formed having a biconvex shape is used, but the present invention is not limited to this, and it goes without saying that a concave lens or a prism may be used, or even a glass material may be used.

上記成形方法にて光学素子の成形を行うので冷却時に発
生する歪はほとんど発生せずまた加熱圧縮成形によって
得られる光学素子には、はとんど光学歪が発生しない、
更に成形素材の表面近傍のみを加熱しているだけなので
成形時間が短く有利である。
Since the optical element is molded using the above-mentioned molding method, almost no distortion occurs during cooling, and optical elements obtained by heat compression molding rarely experience optical distortion.
Furthermore, since only the vicinity of the surface of the molding material is heated, the molding time is short, which is advantageous.

(第2実施例) 第2図は、本発明に係る第2実施例の光学素子の成形方
法の冷却炉の要部を示す正面よりの断面図である。
(Second Embodiment) FIG. 2 is a sectional view from the front showing essential parts of a cooling furnace of a method for molding an optical element according to a second embodiment of the present invention.

本実施例において、上記した第1実施例と同一成形方法
および同一成形装置については説明を省略する。従って
、上記第1実施例との相違点のみの説明に留める。
In this embodiment, explanations of the same molding method and the same molding apparatus as those of the first embodiment described above will be omitted. Therefore, only the differences from the first embodiment will be explained.

第2図に示すように第1実施例との相違構成は、冷却炉
5内に冷却用金型装置を配設したことにある。即ち円柱
形状の冷却用上側金型12aと冷却用下側金型12b゛
のそれぞれの先端成形面を対向配設し、上側金型12a
の基端部は冷却器13aの先端面に、また、冷却器13
aの基端面ば、冷却炉5の上壁面にそれぞれ装着されて
いる。
As shown in FIG. 2, the difference in configuration from the first embodiment is that a cooling mold device is disposed within the cooling furnace 5. That is, the tip molding surfaces of the cylindrical upper cooling mold 12a and the lower cooling mold 12b are arranged to face each other, and the upper mold 12a
The proximal end of the cooler 13a is attached to the distal end of the cooler 13a.
The proximal end surfaces of a are attached to the upper wall surface of the cooling furnace 5, respectively.

また、下側金型12bの基端は、冷却器13bの先端面
に、冷却器13bの基端面ば、上下方向に可動し冷却炉
5の外部に設けたエアシリンダー14の先端面にそれぞ
れ装着して、エアシリンダー14の上下動による上側金
型12aとにより被成形レンズ1を冷却するように連結
構成されている。
Further, the base end of the lower mold 12b is attached to the tip surface of the cooler 13b, and the base end surface of the cooler 13b is attached to the tip surface of an air cylinder 14 that is movable in the vertical direction and is provided outside the cooling furnace 5. The molded lens 1 is connected to the upper mold 12a by the vertical movement of the air cylinder 14 to cool the lens 1 to be molded.

また、冷却炉5の左右側壁には、被成形レンズ1を搬送
する搬送部材3の搬送口25と26が開口構成されてい
る。
Further, in the left and right side walls of the cooling furnace 5, transport ports 25 and 26 of the transport member 3 for transporting the lens 1 to be molded are opened.

上記構成の本実施例の成形方法を以下に説明する0本実
施例において、上記第1実施例と同一成形工程について
は省略し、相違点のみの説明に留める。
In this embodiment, the molding method of this embodiment having the above-mentioned configuration will be described below, the same molding steps as those of the first embodiment will be omitted, and only the differences will be explained.

搬送部材3の先端部孔2に載置され冷却炉5の搬送口2
5より搬送された被成形素材1は、予め離間した冷却用
上側金型12aと冷却用下側金型12b間に、孔2と上
下側金型12a、12bの成形面と一致する位置に停止
する。停止と同時にエアシリンダー14の作動により下
側金型12bは、上昇し搬送部材3の孔2を貫通し、載
置した被成形素材1の下面と当接して持ち上げられ、更
に上昇して上側金型12aの成形面に被成形素材1の上
面が当接して軽(挟み込む状態となる。
It is placed in the tip hole 2 of the conveying member 3 and is connected to the conveying port 2 of the cooling furnace 5.
The molded material 1 conveyed from 5 is stopped between the upper cooling mold 12a and the lower cooling mold 12b, which are spaced apart from each other, at a position where the hole 2 and the molding surfaces of the upper and lower molds 12a and 12b coincide with each other. do. Simultaneously with the stoppage, the lower mold 12b rises due to the operation of the air cylinder 14, passes through the hole 2 of the conveying member 3, comes into contact with the lower surface of the placed material 1 to be formed, is lifted, and further rises to release the upper mold 12b. The upper surface of the material 1 to be molded comes into contact with the molding surface of the mold 12a, resulting in a light (sandwiched) state.

上記状態において、冷却用上側金型12aと冷却用下側
12bは、冷却器13aおよび13bによって予め一定
温度、例えば、冷却用金型12a。
In the above state, the upper cooling mold 12a and the lower cooling mold 12b are kept at a constant temperature, for example, the cooling mold 12a, by the coolers 13a and 13b.

12bを0℃以下に設定しておくことによって速やかに
予備冷却される。
By setting temperature 12b at 0° C. or lower, preliminary cooling is quickly achieved.

予備冷却された被成形素材1は、エアシリンダー14の
下降作動により冷却用下側金型12bも下降し、冷却用
上側金型12aより離間する。更に、下降して搬送部材
3の孔2上に再び載置されると共に冷却用下側金型12
bは、更に下降して元の位置にて停止する。
The pre-cooled material 1 to be formed is separated from the upper cooling mold 12a by lowering the cooling lower mold 12b as well as by the lowering operation of the air cylinder 14. Furthermore, it is lowered and placed on the hole 2 of the conveying member 3 again, and the lower cooling mold 12
b further descends and stops at the original position.

一方上記搬送部材3の孔2に載置された被成形部材1は
、搬送口26より隣接する次工程である加熱炉7に搬送
されて加熱される。
On the other hand, the molded member 1 placed in the hole 2 of the conveying member 3 is conveyed from the conveying port 26 to the adjacent heating furnace 7, which is the next step, and is heated.

上記成形方法による本実施例によれば、上記第1実施例
に比し、予備冷却工程の時間を短縮することができる。
According to this embodiment using the above molding method, the time for the pre-cooling step can be shortened compared to the first embodiment.

〔発明の効果〕〔Effect of the invention〕

上記成形方法による本発明によれば、成形素材の予備冷
却工程と、急速加熱工程と、加熱圧縮成形工程と、冷却
工程とを設けたことにより、成形された光学素子が冷却
歪のない品質の優れた製品を得られる。また加熱圧縮成
形の冷却工程時間が短縮でき原価的にも優れた効果を差
し得る。
According to the present invention using the above-mentioned molding method, by providing the pre-cooling process of the molding material, the rapid heating process, the heating compression molding process, and the cooling process, the molded optical element has a quality free from cooling distortion. You will get a superior product. In addition, the time required for the cooling process in hot compression molding can be shortened, resulting in an excellent effect in terms of cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、し)、 (C)、 (d)は、本発明に
係る光学素子の成形方法の第1実施例の成形工程を示し
、第1図(a”lは冷却炉の要部を示す正面よりの断面
図、第1図山)は、第1図(a)に続く成形工程の加熱
炉の要部を示す正面よりの断面図、 第1図(C)は、第1図(ハ)に続く成形工程の加熱圧
縮成形工程および冷却工程に用いる装置の要部の一部を
断面にて示す正面図、 第1図(ロ)は、第1図(C)に示す装置の作用状態の
一部を断面にて示す正面よりの断面図、第2図は、本発
明に係る光学素子の成形方法の第2実施例の冷却炉の要
部を示す正面よりの断面図。 ■・・・成形素材 2・・・孔 3・・・搬送部材 4.13a、13b・・・冷却器 5・・・冷却炉 6・・・加熱器 7・・・加熱炉 8a、12a・・・上側金型 8b、12b・・・下側金型 a・・・上側温調器 b・・・下側温調器 0.14・・・エアシリンダー ト・・プラスチックレンズ 24・・・固定装置
FIGS. 1(a), 1), (C), and (d) show the molding process of the first embodiment of the method for molding an optical element according to the present invention, and FIG. Figure 1(C) is a cross-sectional view from the front showing the main parts of the heating furnace in the forming process following Figure 1(a). A front view showing in cross section a part of the main part of the apparatus used in the heating compression molding process and the cooling process of the molding process following Figure 1 (C), Figure 1 (B) is shown in Figure 1 (C) FIG. 2 is a cross-sectional view from the front showing a part of the operating state of the apparatus; FIG. ■... Molding material 2... Hole 3... Conveying member 4.13a, 13b... Cooler 5... Cooling furnace 6... Heater 7... Heating furnace 8a, 12a. ...Upper mold 8b, 12b...Lower mold a...Upper temperature controller b...Lower temperature controller 0.14...Air cylindert...Plastic lens 24...Fixed Device

Claims (1)

【特許請求の範囲】[Claims] (1)予め所定の形状に加工または成形された成形素材
を金型内または冷却炉内で冷却する予備冷却工程と、こ
の冷却工程にて冷却した成形素材を瞬間的に加熱する急
速加熱工程と、この急速加熱工程にて加熱した成形素材
を加熱圧縮用金型にて加熱圧縮と冷却とを行う工程と、
この加熱圧縮と冷却工程にて冷却した成形素材を加熱圧
縮用金型より取り出す工程とよりなることを特徴とする
光学素子の成形方法。
(1) A preliminary cooling process in which a molding material that has been processed or molded into a predetermined shape is cooled in a mold or a cooling furnace, and a rapid heating process in which the molding material cooled in this cooling process is instantaneously heated. , a step of heating and compressing the molding material heated in this rapid heating step in a heating compression mold and cooling it;
A method for molding an optical element, comprising the steps of taking out the molding material cooled in the heating compression and cooling steps from the heating compression mold.
JP9855590A 1990-04-13 1990-04-13 Method of forming optical element Pending JPH03295822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9855590A JPH03295822A (en) 1990-04-13 1990-04-13 Method of forming optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9855590A JPH03295822A (en) 1990-04-13 1990-04-13 Method of forming optical element

Publications (1)

Publication Number Publication Date
JPH03295822A true JPH03295822A (en) 1991-12-26

Family

ID=14222939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9855590A Pending JPH03295822A (en) 1990-04-13 1990-04-13 Method of forming optical element

Country Status (1)

Country Link
JP (1) JPH03295822A (en)

Similar Documents

Publication Publication Date Title
US5588980A (en) Apparatus for molding a glass optical element with a transporting supporting member
JPH10101347A (en) Device for injection-molding optical parts and injection-molding method
KR20210109613A (en) Manufacturing apparatus and manufacturing method of resin container
JP2007131466A (en) Method and apparatus for manufacturing optical lens
JPH03295822A (en) Method of forming optical element
RU2264916C2 (en) Method and a device for a thermal treatment
JP3571803B2 (en) Lens blank molding method, plastic optical element compression molding method, and molding system therefor
KR101845746B1 (en) Molding system for a lens using weight
JP4150214B2 (en) Glass molding equipment
JP2008230005A (en) Plastic lens molding method and lens preform
JPS6011317A (en) Releasing apparatus of mold for plastic lens
JPH10156863A (en) Plastic molding system
JP2763250B2 (en) Glass compression molding machine
JPH01139231A (en) Molding device for plastic optical part
JPH08230027A (en) Blow molding apparatus and method
JPH02252629A (en) Forming of lens
JP3173867B2 (en) Optical element molding method
JPH02275722A (en) Forming apparatus for optical element
JPH08295523A (en) Production of glass cell
JP4214121B2 (en) Resin molding machine
JPH03254911A (en) Apparatus and method for molding optical element
JPH10287434A (en) Formation of optical element material, and apparatus therefor
JP3184584B2 (en) Glass lens molding method
JPH03223126A (en) Apparatus for producing glass lens
JP2002187175A (en) Method for taking out semiconductor resin sealed molded article