JPH0329461B2 - - Google Patents

Info

Publication number
JPH0329461B2
JPH0329461B2 JP61249591A JP24959186A JPH0329461B2 JP H0329461 B2 JPH0329461 B2 JP H0329461B2 JP 61249591 A JP61249591 A JP 61249591A JP 24959186 A JP24959186 A JP 24959186A JP H0329461 B2 JPH0329461 B2 JP H0329461B2
Authority
JP
Japan
Prior art keywords
classification
particles
tank
particle size
dispersion liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61249591A
Other languages
Japanese (ja)
Other versions
JPS63104664A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61249591A priority Critical patent/JPS63104664A/en
Publication of JPS63104664A publication Critical patent/JPS63104664A/en
Publication of JPH0329461B2 publication Critical patent/JPH0329461B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は湿式法によつて数μm〜数十μmの粒径
を有する微小粒子をその粒径(粒度)に分級する
分級方法に関し、特に湿式法において超音波振動
を利用した分級方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a classification method for classifying microparticles having a particle size of several μm to several tens of μm into the particle size (particle size) by a wet method. This article relates to a classification method using ultrasonic vibration in a wet method.

(従来の技術及び解決すべき問題点) 重合ビーズなどのプラスチツク球やセラミツク
の原料粉末などの微小粒子を分級する方法として
は微小粒子の粒径自体で分級する方法と微小粒子
の重量は水或は空気に対する抵抗若しくは運動エ
ネルギー等の性質を利用して間接的に分級する方
法とに大別することが出来る。前者の方法は所謂
篩による分級方法であり、また後者の方法は遠心
分離法、重力による静置沈降法、粒子の飛距離の
違いによる分級方法等である。しかして、この後
者の方法は間接的な分級方法であるため何れも目
的物以外の粒状物が混入することが避けられな
い。篩による分級方法には大気中で行う乾式法と
粒子を分散媒に懸濁させて行う湿式法とがある。
湿式法での篩による分級法は最も簡単な方法であ
り、原料粒子が比較的大粒子ならばこの方法によ
るのが最も容易であるが、この方法は微粒子が凝
集を起しやすく目詰まりによる分級効率の低下が
ある。この点を改善したのが湿式法である。すな
わち、微粒子を分散液中に分散させて粒子の表面
電荷をなくして粒子の凝集を防止し微小粒子を篩
分けする方法であるが、このような微粒子に対し
ては細かい孔径の篩を使用するため、この方法で
も目詰まりが生じ時間と共に分級効率の低下す
る。そこで、分散液に振動を与え脈動させて分級
する方法が提案されている(特開昭54−131173号
公報参照)。この方法は目詰まりが起こりにくく
連続式で分級が可能であるが、脈動させることに
より篩の目を通り抜けた粒子がまた元に戻る現象
が起るため分級効率が低いという欠点がある。
(Prior art and problems to be solved) There are two methods for classifying microparticles such as plastic spheres such as polymer beads and ceramic raw material powder: one is to classify the microparticles by their particle size itself, and the other is to classify the microparticles by their weight based on water or water. can be broadly divided into indirect classification methods that utilize properties such as resistance to air or kinetic energy. The former method is a classification method using a so-called sieve, and the latter method is a centrifugal separation method, a static sedimentation method using gravity, a classification method based on differences in particle flight distance, etc. However, since this latter method is an indirect classification method, it is inevitable that particulate matter other than the target product will be mixed in. Classification methods using a sieve include a dry method performed in the atmosphere and a wet method performed by suspending particles in a dispersion medium.
Classification using a wet sieve is the simplest method, and if the raw material particles are relatively large, it is easiest to use this method, but this method tends to cause fine particles to aggregate, resulting in classification due to clogging. There is a decrease in efficiency. The wet method has improved this point. In other words, the method involves dispersing fine particles in a dispersion liquid to eliminate surface charge on the particles to prevent particle agglomeration and sieve out the fine particles. However, for such fine particles, a sieve with a fine pore size is used. Therefore, even with this method, clogging occurs and the classification efficiency decreases over time. Therefore, a method has been proposed for classifying the dispersion by applying vibrations to the dispersion and causing the dispersion to pulsate (see Japanese Patent Laid-Open No. 131173/1983). This method is less likely to cause clogging and can be classified in a continuous manner, but it has the disadvantage that the classification efficiency is low because pulsation causes particles that have passed through the sieve to return to their original state.

本発明者はこれらの欠点を改良し新たな分級方
法を提供すべく種々検討した結果、従来の方法は
分級すべき微粒子が篩のアミ目の上方から下方に
通り抜けるために粒子がアミ目に詰まり易いこと
に気付き、この点を改良するために湿式法で超音
波振動を利用して微粒子を篩のアミ目の下方から
上方に通り抜けるようにすることによつて精度よ
く、かつ、効率よく分級することを見出し、本発
明を完成したもので、本発明の目的は湿式法で超
音波振動を利用して数μm〜数10μmの微小粒子を
精度よく高効率で分級する分級方法を提供するに
ある。
The present inventor conducted various studies to improve these shortcomings and provide a new classification method. As a result, in the conventional method, the fine particles to be classified pass from above to below the mesh of the sieve, resulting in particles clogging the mesh. In order to improve this point, we used a wet method to classify particles accurately and efficiently by using ultrasonic vibration to pass the fine particles from below to above the mesh of the sieve. The purpose of the present invention is to provide a method for classifying microparticles of several micrometers to several tens of micrometers with high accuracy and high efficiency using a wet method using ultrasonic vibration.

(問題点を解決するための手段) すなわち、本発明は微小粒子を液体中に分散さ
せた分散液を、一端に多孔板を取り着けた管体が
設置してある分散槽に供給し、分散槽の周囲より
該分散液に超音波による振動を与え多孔板の孔径
より細かい粒径を有する微小粒子を多孔板の下方
より孔を通じて管体内に移行させることを特徴と
する超音波を利用した微小粒子の分級方法であ
る。
(Means for Solving the Problems) That is, the present invention supplies a dispersion liquid in which microparticles are dispersed in a liquid to a dispersion tank equipped with a tube with a perforated plate attached to one end, and disperses the dispersion liquid. Ultrasonic vibration is applied to the dispersion liquid from the periphery of the tank, and microparticles having a particle diameter smaller than the pore diameter of the perforated plate are transferred from below the perforated plate through the holes into the tubular body. This is a method for classifying particles.

しかして、本発明における多孔板とは、微細な
孔を多数有するものであつて、通常は細かいアミ
目を有する篩が用いられる。孔径は分級する粒子
の大きさにより、例えば数μ〜数10μの範囲で適
宜選定される。また、この発明で使用する振動子
の振動数としては通常約15〜50kHzであるが、分
級すべき粒子の大きさによつて適宜変えることが
できる。
Therefore, the perforated plate in the present invention has a large number of fine holes, and a sieve having fine mesh is usually used. The pore diameter is appropriately selected, for example, in the range of several microns to several tens of microns, depending on the size of the particles to be classified. Further, the frequency of the vibrator used in this invention is usually about 15 to 50 kHz, but it can be changed as appropriate depending on the size of the particles to be classified.

しかして、本発明は染料、化粧品、薬剤、ガラ
ス粒、セラミツク粒子、セメント等各種の粒子に
適用することができ、また、使用する分散媒とし
ては水を始めとして各種の液体が使用できる。そ
して、粒子を分散する分散液の濃度としては特に
制限されないが通常は20重量%までであり、余り
高濃度になると粒子は凝集しやすくなる。高濃度
の場合には分散剤を使用することが好ましく、分
散剤としては粒子の表面電荷を中和する界面活性
剤等である。
Therefore, the present invention can be applied to various particles such as dyes, cosmetics, drugs, glass particles, ceramic particles, cement, etc., and various liquids including water can be used as the dispersion medium. The concentration of the dispersion liquid in which the particles are dispersed is not particularly limited, but is usually up to 20% by weight; if the concentration is too high, the particles tend to aggregate. When the concentration is high, it is preferable to use a dispersant, and the dispersant is a surfactant or the like that neutralizes the surface charge of the particles.

次に、本発明について具体的に説明する。第1
図は本発明の方法で使用する装置であつて、撹拌
槽1、分級槽2および採取槽3の三つの槽よりな
つている。分級槽内には一端に多孔板4を取り付
け、他端は採取槽に連結してある導管8が挿入し
てある管体5が設置してあり、この分級槽は音波
を伝達する媒体11が充填されている超音波洗浄
機10内に載置してある。そして、撹拌槽と分級
槽とは給液ポンプ6を介して導管7によつて連結
されている。撹拌槽内には撹拌機が設けてある。
操作に際しては、先ず撹拌槽に分散媒を入れ、こ
れに分級すべき原料微粒子を添加、撹拌して分散
液を作る。分散液は給液ポンプにより超音波洗浄
機内にある分級槽に送られる。分散液は多孔板の
アミ目を通じて管の内部に入る。同時に超音波洗
浄器で超音波を発振させると、超音波を伝える媒
体の水を介して分散槽中の分散液に伝達し、分散
液に分散している微粒子のうち多孔板のアミ目よ
り小さい粒径を有する微粒子は多孔板のアミ目を
通じて管体の内部に移行する。管の内部に移行し
た微粒子は分散液と共に吸上ポンプで採取槽に送
られ、目的とする粒径の粒子が集められ、分級す
ることができる。
Next, the present invention will be specifically explained. 1st
The figure shows an apparatus used in the method of the present invention, which consists of three tanks: a stirring tank 1, a classification tank 2, and a sampling tank 3. Inside the classification tank, there is installed a tube body 5 in which a perforated plate 4 is attached to one end and a conduit 8 connected to a collection tank is inserted in the other end, and this classification tank is equipped with a medium 11 for transmitting sound waves. It is placed inside a filled ultrasonic cleaner 10. The stirring tank and the classification tank are connected by a conduit 7 via a liquid supply pump 6. A stirrer is provided in the stirring tank.
In operation, first, a dispersion medium is placed in a stirring tank, and raw material particles to be classified are added thereto and stirred to form a dispersion liquid. The dispersion liquid is sent to a classification tank in the ultrasonic cleaner by a liquid supply pump. The dispersion enters the interior of the tube through the holes in the perforated plate. At the same time, when an ultrasonic cleaner generates ultrasonic waves, the ultrasonic waves are transmitted to the dispersion liquid in the dispersion tank through the water that transmits the ultrasonic waves. Fine particles having a certain particle size migrate into the inside of the tube through the holes of the perforated plate. The fine particles that have migrated to the inside of the tube are sent together with the dispersion liquid to a collection tank by a suction pump, and particles of the desired particle size are collected and can be classified.

次に、本発明では篩の下方から分散液が、上方
へ向つて移動することが、特徴の一つとなつてい
るが、この点を実験例をもつて説明する。
Next, one of the characteristics of the present invention is that the dispersion liquid moves upward from the bottom of the sieve, and this point will be explained using an experimental example.

実験例 1 図2に示したものは、分級実験前のガラス微小
球の粒度分布である。分級実験には、このガラス
微小球群(以下元試料と略す)を水に分散させて
使用する。使用した多孔板のアミ目は20μmのメ
ツシユのものである。
Experimental Example 1 What is shown in FIG. 2 is the particle size distribution of glass microspheres before the classification experiment. In the classification experiment, this group of glass microspheres (hereinafter referred to as the original sample) is used after being dispersed in water. The perforated plate used had a mesh of 20 μm.

実験操作 元試料をビーカーに5g入れ、水と混合し全体
を2とする。これに超音波をかけ分散させた
後、撹拌機で均一分散させて分散液とし、これを
1ずつ2つに分けた。その一方を撹拌槽に入れ
撹拌し続ける。次に超音波洗浄器のスイツチを入
れて、水及び分級槽に超音波振動を与える。給液
ポンプおよび吸上ポンプを作動させる。分散液1
を処理した後、水1を撹拌槽に入れて、その
1の水が、すべて無くなるまでそのまま、ポン
プおよび超音波洗浄器を作動させ続けた。
Experimental procedure Put 5g of the original sample into a beaker and mix with water to make a total of 2. This was dispersed by applying ultrasonic waves, and then uniformly dispersed using a stirrer to form a dispersion liquid, which was divided into two parts each. Place one side in a stirring tank and continue stirring. Next, turn on the ultrasonic cleaner to apply ultrasonic vibration to the water and classification tank. Activate the feed pump and suction pump. Dispersion liquid 1
After treating the water, water 1 was placed in the stirring tank, and the pump and ultrasonic cleaner were continued to operate until all of the water in water 1 disappeared.

採取物の測定は、採取槽に採取されたもの及
び、分級槽に残つた物を、光透過式粒度分布測定
装置(SA−CP3 島津製作所製)で測定を行つ
た。
The samples collected in the collection tank and those remaining in the classification tank were measured using a light transmission particle size distribution analyzer (SA-CP3 manufactured by Shimadzu Corporation).

実験例 2(比較) 同じ装置を使用したが篩の上方に分散液を注入
するため撹拌槽と採取槽を取り替え、また、ポン
プ6と9の流れの方向をそれぞれ前実験と逆にな
るように装置を改めた。したがつて、分散液は撹
拌槽からポンプ9により導管8を通じて管体の上
方から注入し、多孔板のアミ目を通つた微粒子は
ポンプ6により導管7を通じて採取槽に導かれ
る。そして、前実験で使用した分散液の残り1
を撹拌槽に入れ、超音波洗浄器を作動させ、その
後、撹拌槽に水1を入れて、水がすべてなくな
るまで上記操作を続けた。測定は、光透過式粒度
測定装置(SA−CP3)で行つた。実験例1によ
り採取された採取槽中の粒度分布を第3図に、ま
た、採取されずに分級槽に残つたものの粒度分布
を第4図に示す。同様に、実験例2により採取さ
れた採取槽中の粒度分布を第5図に、また、採取
されずに分級槽に残つたものの粒度分布を第6図
に示す。そして、これらの実験の採取量を比較す
ると次のようになる。
Experimental example 2 (comparison) The same equipment was used, but the stirring tank and collection tank were replaced in order to inject the dispersion above the sieve, and the flow directions of pumps 6 and 9 were reversed from the previous experiment. The device was changed. Therefore, the dispersion liquid is injected from the stirring tank through the conduit 8 by the pump 9 from above the tube body, and the fine particles that have passed through the perforations of the perforated plate are guided by the pump 6 through the conduit 7 to the collection tank. Then, the remaining 1 of the dispersion used in the previous experiment
was placed in a stirring tank, the ultrasonic cleaner was activated, water 1 was added to the stirring tank, and the above operation was continued until all the water disappeared. The measurement was performed using a light transmission particle size analyzer (SA-CP3). FIG. 3 shows the particle size distribution in the sampling tank collected in Experimental Example 1, and FIG. 4 shows the particle size distribution of the particles that remained in the classification tank without being collected. Similarly, the particle size distribution in the sampling tank collected in Experimental Example 2 is shown in FIG. 5, and the particle size distribution of the particles remaining in the classification tank without being collected is shown in FIG. Comparing the amounts collected in these experiments is as follows.

実験例1と2の採取量の比較 実験例1…採取物(採取タンク内)1.058g 実験例2… 〃 0.834g これ等の結果を検討すると、実験例1と2の採
取物の粒度分布では19〜20μmのピークが、実験
例1の方が大きく観察され、また、SEM観察で
も実験例1は20μm付近の粒子の割合が多い。こ
れは、20μmのメツシユのものを使用したことに
よる。すなわち、多孔板のアミ目の上方からより
も下方からの通過が目詰りを起こしにくく効率よ
く分級できることを示すものである。そして脈動
よりも効率がよい。
Comparison of the amount collected in Experimental Examples 1 and 2 Experimental Example 1...Collected material (in the collection tank) 1.058g Experimental Example 2...〃 0.834g Considering these results, the particle size distribution of the collected materials in Experimental Examples 1 and 2 is The peak of 19 to 20 μm was observed to be larger in Experimental Example 1, and in SEM observation, Experimental Example 1 had a large proportion of particles around 20 μm. This is due to the use of a 20 μm mesh. In other words, this shows that passing the perforated plate from below rather than from above causes less clogging and allows more efficient classification. And it's more efficient than pulsation.

(効果) 以上述べたように、本発明は分級すべき試料含
有分散液に超音波振動を与えて分散液を多孔板の
下方より上方に通過させることにより従来の上方
より分散液を落下させる場合に比してアミ目の目
つまりを少なくすると共に長時間にわたり精度高
く目的の粒径の微粒子を採取できる等の効果を奏
するのである。
(Effects) As described above, the present invention applies ultrasonic vibrations to the sample-containing dispersion liquid to be classified and causes the dispersion liquid to pass from below to above the perforated plate, thereby allowing the dispersion liquid to fall from above. This has the effect of reducing the clogging of the eyelets and allowing the collection of fine particles of the desired particle size with high accuracy over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用する分級装置の説明図、
第2図は本発明で使用した分級前の試料粒子の粒
度分布図、第3図および第4図は本発明の分級方
法である実験例1によつて分級した粒度分布図で
あり、第5図および第6図は比較例である実験例
2によつて分級した粒度分布図である。 1…撹拌槽、2…分級槽、3…採取槽、4…多
孔板、5…管体、6…給液ポンプ、7,8…導
管、9…吸上ポンプ、10…超音波洗浄器、11
…媒体。
FIG. 1 is an explanatory diagram of the classification device used in the present invention,
Figure 2 is a particle size distribution diagram of sample particles used in the present invention before classification, Figures 3 and 4 are particle size distribution diagrams classified by Experimental Example 1, which is the classification method of the present invention, and Figure 5 The figure and FIG. 6 are particle size distribution diagrams classified according to Experimental Example 2, which is a comparative example. 1... Stirring tank, 2... Classification tank, 3... Collection tank, 4... Perforated plate, 5... Pipe body, 6... Liquid supply pump, 7, 8... Conduit, 9... Suction pump, 10... Ultrasonic cleaner, 11
...medium.

Claims (1)

【特許請求の範囲】[Claims] 1 微小粒子を液体中に分散させた分散液を、一
端に多孔板を取り付けた管体が設置してある分級
槽に供給し、分級槽の周囲より該分散液に超音波
による振動を与え多孔板の孔径より細かい粒径を
有する微小粒子を多孔板の下方より孔を通じて管
体内に移動させることを特徴とする超音波を利用
した微小粒子の分級方法。
1. A dispersion liquid in which microparticles are dispersed in a liquid is supplied to a classification tank equipped with a tube with a perforated plate attached to one end, and ultrasonic vibrations are applied to the dispersion liquid from around the classification tank to create a porous A method for classifying microparticles using ultrasonic waves, characterized in that microparticles having a particle size smaller than the pore diameter of the plate are moved from below the perforated plate through the holes into the tube body.
JP61249591A 1986-10-22 1986-10-22 Method for classifying fine particles utilizing ultrasonic wave Granted JPS63104664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61249591A JPS63104664A (en) 1986-10-22 1986-10-22 Method for classifying fine particles utilizing ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61249591A JPS63104664A (en) 1986-10-22 1986-10-22 Method for classifying fine particles utilizing ultrasonic wave

Publications (2)

Publication Number Publication Date
JPS63104664A JPS63104664A (en) 1988-05-10
JPH0329461B2 true JPH0329461B2 (en) 1991-04-24

Family

ID=17195291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61249591A Granted JPS63104664A (en) 1986-10-22 1986-10-22 Method for classifying fine particles utilizing ultrasonic wave

Country Status (1)

Country Link
JP (1) JPS63104664A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308942A (en) * 1988-06-08 1989-12-13 Mitsubishi Electric Corp Apparatus for counting fine particles adhering to surface of solid
US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7740666B2 (en) 2006-12-28 2010-06-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
JP5683975B2 (en) * 2011-01-21 2015-03-11 株式会社セムテックエンジニアリング Wet classifier
JP5683999B2 (en) * 2011-02-28 2015-03-11 株式会社セムテックエンジニアリング Wet classifier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350882B2 (en) * 1981-12-07 1988-10-12 Toshio Makimoto

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350882U (en) * 1986-09-17 1988-04-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350882B2 (en) * 1981-12-07 1988-10-12 Toshio Makimoto

Also Published As

Publication number Publication date
JPS63104664A (en) 1988-05-10

Similar Documents

Publication Publication Date Title
US9421553B2 (en) High-volume fast separation of multi-phase components in fluid suspensions
CN102834181B (en) Cleaning and dewatering fine coal
JP3634374B2 (en) Apparatus for separating inorganic material particles from a suspension containing inorganic material particles contaminated with organic material
KR101208302B1 (en) - magnetic field and field gradient enhanced centrifugation solid-liquid separations
RU2644181C2 (en) Method of separating and dewatering fine-disperse particles
JPH0329461B2 (en)
CN107398093A (en) Scattered and regulation technology for thick fine tailings dehydrating operations
CN109174619A (en) A kind of wet type ultrasonic vibrating screen
AU2023204213A1 (en) Apparatus for dewatering and demineralization of fine particles
JPS6128436A (en) Manufacture of polymer particle
Higashitani et al. Dispersion of coagulated colloids by ultrasonication
CN104211851B (en) A kind of preparation method of mono-disperse polymer composite magnetic microballoon
DE60113684T2 (en) METHOD FOR DISPERSING POLYACRYLAMIDES
CN110681330B (en) Device and method for regulating and controlling morphology and pore structure of microparticles
CA1050179A (en) Method of reclaiming water and coal from coal treatment underflow by two-stage separation of solids
CN106216085A (en) A kind of ultra-fine grade mine tailing method for separating
RU2625980C1 (en) Method of producing suspension of high-dispersed particles of inorganic and organic materials and apparatus for its implementation
CN106345367B (en) Droplet distribution device
Chuang et al. Effect of coagluant dosage and grain size on the performance of direct filtration
JP3076839B2 (en) Method for separating fine particles in dispersion liquid, method for classifying fine particles, method for measuring adsorption power of fine particles, and apparatus for implementing those methods
JPH0386258A (en) Method and device for classifying particle
CN110280145A (en) Super hydrophilic-underwater superoleophobic modification seperation film, preparation method and application
CN205200061U (en) Solid separator of oil of cleaning machine
JPH01503525A (en) Granular material centrifugation and classification system
JPH0341220B2 (en)