JPH032945B2 - - Google Patents

Info

Publication number
JPH032945B2
JPH032945B2 JP835787A JP835787A JPH032945B2 JP H032945 B2 JPH032945 B2 JP H032945B2 JP 835787 A JP835787 A JP 835787A JP 835787 A JP835787 A JP 835787A JP H032945 B2 JPH032945 B2 JP H032945B2
Authority
JP
Japan
Prior art keywords
titanium
wear
resistant coating
cutting tool
drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP835787A
Other languages
Japanese (ja)
Other versions
JPS63183167A (en
Inventor
Petorobichi Jedo Bikutoru
Georugiebichi Gafurirofu Arekusei
Iwanofuna Kurubatoba Erena
Karurobichi Shinerusuchikofu Andorei
Mihairobichi Boyarunasu Aruberuto
Mihairobichi Sumirunofu Bitari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUSESO NAUCHINO ISUSUREDO INSUTORUMENTARUNUI INST
Original Assignee
FUSESO NAUCHINO ISUSUREDO INSUTORUMENTARUNUI INST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/002,310 external-priority patent/US4729905A/en
Application filed by FUSESO NAUCHINO ISUSUREDO INSUTORUMENTARUNUI INST filed Critical FUSESO NAUCHINO ISUSUREDO INSUTORUMENTARUNUI INST
Priority to JP835787A priority Critical patent/JPS63183167A/en
Publication of JPS63183167A publication Critical patent/JPS63183167A/en
Publication of JPH032945B2 publication Critical patent/JPH032945B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一般的には耐摩耗性被膜を具備する
金属加工用の、特に切削用の工具に関し、特にこ
のような切削工具の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates generally to tools for metal working, particularly cutting, provided with a wear-resistant coating, and in particular to a method for manufacturing such cutting tools. Regarding.

本発明の切削工具の製造方法は、苛酷な用途の
ドリル、シングルポイント工具、ミリングカツタ
ーのような、鉄基合金製特に鋼製の種々の切削工
具に適用できる。
The cutting tool manufacturing method of the present invention is applicable to various cutting tools made of iron-based alloys, especially steel, such as heavy-duty drills, single point tools, and milling cutters.

〔従来の技術〕[Conventional technology]

今日の工具製造法の大きなすう勢の一つは、耐
摩耗性被膜の被覆によつて切削工具の耐久性を向
上させるものであり、且つこの被膜を周期律表の
第3族から第6族までの金属を基礎とする侵入型
元素相で作るものである。これらの金属、たとえ
ばZr,Hf,,La,A,Fe,Co,Mnは、1000
℃程度の温度から室温まで冷却されると、多形変
換を起こしやすく、あるいはやはり冷却時に多形
変換できる種々の変態の侵入型元素相を形成しや
すい。
One of the major trends in today's tool manufacturing methods is to improve the durability of cutting tools by coating them with wear-resistant coatings, and this coating is applied to groups 3 through 6 of the periodic table. It is made of interstitial elemental phases based on metals. These metals, such as Zr, Hf,, La, A, Fe, Co, Mn,
When cooled from a temperature on the order of °C to room temperature, polymorphic transformations tend to occur, or interstitial elemental phases of various transformations that can undergo polymorphic transformations also tend to form upon cooling.

一般に知られているように、金属および侵入型
元素相の多形変換には必ず格子構造の変化が伴
い、その結果、内部に応力が発生し、物理的性質
(たとえば比容、磁気ヒステリシス)が変わり、
機械的性質(特に塑性)が劣化したりする。
As is generally known, polymorphic transformations of metallic and interstitial elemental phases are always accompanied by changes in the lattice structure, resulting in internal stresses and changes in physical properties (e.g. specific volume, magnetic hysteresis). change,
Mechanical properties (especially plasticity) may deteriorate.

上記金属あるいは侵入型元素相が液体状態ある
いは蒸気状態から結晶化する場合に、これらの組
織中に多形変換していない不安定な変態がいく分
か残留する。その結果、そのような金属および侵
入型元素相は不均一な相構成によつて機械的特性
が不安定になる。
When the metal or interstitial element phase crystallizes from a liquid or vapor state, some unstable transformation that has not undergone polymorphic transformation remains in their structure. As a result, such metal and interstitial elemental phases have unstable mechanical properties due to non-uniform phase composition.

当業界における公知方法の一つは、冷却時に多
形変換しやすい侵入型元素相(酸化アルミニウ
ム)を基礎とする耐摩耗性被膜を具備した超硬合
金製品の製造方法である(参照:米国特許第
3967035号、国際分類C23C 11/08,発行1976年
6月29日)。この耐摩耗性被膜は高温加熱(900〜
1250℃)が特徴である気相法によつて超硬合金製
品上に堆積させられている。
One of the methods known in the art is the production of cemented carbide products with wear-resistant coatings based on an interstitial elemental phase (aluminum oxide) that is susceptible to polymorphic transformation upon cooling (see: U.S. Pat. No.
No. 3967035, International Classification C23C 11/08, published June 29, 1976). This wear-resistant coating is heated to high temperatures (900~
It is deposited on cemented carbide products by a vapor phase method characterized by temperatures (1250°C).

処理中の製品はアルミニウム・ガライド
(aluminium gallide)、蒸気、および水素の雰囲
気中に1〜3時間上記温度に保持される。アルフ
ア変態アルミナの耐摩耗性被膜を形成するために
は、水素に対する蒸気の比は0.025〜2.0の範囲内
とすべきである。上記アルフア変態アルミナは
2000℃までの加熱に対する安定性が最も高く、こ
れよりも安定性の低い他のアルミナの変態中に存
在するアルカリ金属の混合物を含有していない。
The product being processed is held at this temperature for 1 to 3 hours in an atmosphere of aluminum gallide, steam, and hydrogen. To form a wear-resistant coating of alpha-transformed alumina, the ratio of steam to hydrogen should be in the range of 0.025 to 2.0. The above alpha metamorphosed alumina is
It is most stable to heating up to 2000°C and does not contain the alkali metal mixtures present in other less stable alumina transformations.

上記の方法は超硬製物品上に遷移金属の侵入型
元素相で形成された耐摩耗性被膜を堆積させるた
めには役立つ。しかし、鋼製の切削工具について
は、鋼は軟化点が超硬より低いので、そのような
被膜の堆積にこの方法を適用することはできな
い。
The above method is useful for depositing wear-resistant coatings formed of interstitial phases of transition metals on cemented carbide articles. However, for cutting tools made of steel, this method cannot be applied to deposit such coatings since steel has a lower softening point than carbide.

侵入型元素相に基ずく耐摩耗性被膜を具備した
鉄基合金製切削工具を製造するもう一つの従来方
法(参照:「Physics and chemistry of
materials treatment」誌,Nauka出版,No.2,
1979,pp.169−170)においては、真空容器内に
配置された切削工具にバイアス電圧を印加し、ア
ーク放電によつて蒸発し得る陰極物質のイオンで
衝撃することによつて該工具を加熱し且つ清浄化
し、その後該バイアス電圧を耐摩耗性被膜が形成
される値にまで減少させ、そして蒸発している陰
極物質と該真空容器中に導入された反応ガスとの
相互作用によつて所定厚さの耐摩耗性被膜を形成
し、その後該切削工具を焼鈍する。
Another conventional method for manufacturing iron-based alloy cutting tools with wear-resistant coatings based on interstitial elemental phases (see: Physics and chemistry of
materials treatment” magazine, Nauka Publishing, No. 2,
1979, pp. 169-170) applied a bias voltage to a cutting tool placed in a vacuum vessel and heated the tool by bombarding it with ions of a cathode material that could be evaporated by arc discharge. and cleaning, after which the bias voltage is reduced to a value at which a wear-resistant coating is formed, and the predetermined voltage is reduced by the interaction of the evaporating cathode material with the reactant gas introduced into the vacuum vessel. A thick wear-resistant coating is formed and then the cutting tool is annealed.

上記の方法によると、陰極物質として冷却時に
多形変換しにくいモリブデン基合金を用い、耐摩
耗性被膜が炭化モリブデンで形成される。しか
し、炭化モリブデンは耐酸化性、熱安定性、およ
び熱伝導性が低く、熱力学的な安定性が不十分な
のが特徴であつて、その上、融点より低温で分解
し易い。その結果、炭化モリブデン被膜は不十分
な耐摩耗性を具備するに過ぎない。
According to the above method, a molybdenum-based alloy that is difficult to undergo polymorphic conversion during cooling is used as the cathode material, and a wear-resistant coating is formed of molybdenum carbide. However, molybdenum carbide is characterized by low oxidation resistance, thermal stability, and thermal conductivity, insufficient thermodynamic stability, and moreover, it easily decomposes at temperatures below its melting point. As a result, molybdenum carbide coatings have insufficient wear resistance.

炭化モリブデン系耐摩耗性被膜の残留応力を解
放するために、切削工具に真空階段焼鈍を施す。
ここで重要な点は、この真空焼鈍によつて耐摩耗
性被膜も切削工具自体も硬さが低下して工具の耐
久性に逆効果になるということである。
To release the residual stress in the molybdenum carbide wear-resistant coating, the cutting tool is subjected to vacuum step annealing.
The important point here is that this vacuum annealing reduces the hardness of both the wear-resistant coating and the cutting tool itself, which has an adverse effect on the durability of the tool.

〔発明が解決しようとする問題点〕 本発明の基本的且つ本質的な目的は、そのよう
な熱処理条件を含む切削工具の製造方法であつ
て、多形変換性を有する金属の侵入型元素相に基
ずく耐摩耗性被膜を被覆した場合に、切削工具の
表面層でおよび耐摩耗性被膜の微小体積中で該金
属の最も安定な変態を得ることおよびそれによつ
て切削工具の耐久力を高めることができる製造方
法を提供することである。
[Problems to be Solved by the Invention] The basic and essential object of the present invention is to provide a method for manufacturing a cutting tool that includes such heat treatment conditions, and to provide a method for manufacturing a cutting tool that includes the interstitial elemental phase of a metal having polymorphism. Obtaining the most stable transformation of the metal in the surface layer of the cutting tool and in the microvolume of the wear-resistant coating and thereby increasing the durability of the cutting tool when coated with a wear-resistant coating based on The object of the present invention is to provide a manufacturing method that enables

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、 切削工具を真空容器内に配置する工程、 該工具にバイアス電圧を印加する工程、 該工具を、アーク放電によつて蒸発し得る陰極
物質のイオンで衝撃を与えられることによつて、
予熱し且つ清浄化する工程、 その後該バイアス電圧を耐摩耗性被膜が形成さ
れる値にまで減少させる工程、 そして、蒸発している該陰極物質と該真空容器
中に導入された反応ガスとの相互作用によつて、
所定厚さを有する該耐摩耗性被膜を形成する工
程、および その後該切削工具を焼鈍する工程 から成る、侵入型元素相系耐摩耗性被膜を具備す
る鉄基合金製切削工具の製造方法において、 該陰極物質としてチタンまたはチタン基合金を
用い、 該所定厚さの該耐摩耗性被膜の形成に引き続き
該バイアス電圧を、該工具の該予熱および該清浄
化において有効なバイアス電圧の値と等しい値に
まで増加させ、 その後、該切削工具を「鉄・チタン」擬二元系
における共析晶分解温度にまで加熱するために、
酸素を含有する酸化還元ガス(レドツクスガス)
またはガス状混合物を該真空容器に供給し、 且つ、該切削工具の焼鈍を、酸素を含有する酸
化還元ガスまたはガス状混合物中で、10〜40分
間、「鉄・チタン」擬二元系におけるマルテンサ
イト変態の温度で行なう 本発明の、侵入型元素相系耐摩耗性被膜を具備
する鉄基合金製切削工具の製造方法、 によつて達成される。
The above objectives include the steps of placing a cutting tool in a vacuum vessel, applying a bias voltage to the tool, and bombarding the tool with ions of a cathode material that can be evaporated by arc discharge. Then,
preheating and cleaning, then reducing the bias voltage to a value at which a wear-resistant coating is formed, and combining the evaporated cathode material with the reactant gas introduced into the vacuum vessel. Through interaction,
A method for manufacturing an iron-based alloy cutting tool having an interstitial elemental phase wear-resistant coating, comprising the steps of forming the wear-resistant coating having a predetermined thickness, and then annealing the cutting tool, titanium or a titanium-based alloy is used as the cathode material, and following the formation of the wear-resistant coating of the predetermined thickness, the bias voltage is set to a value equal to the value of the bias voltage effective during the preheating and cleaning of the tool. Then, in order to heat the cutting tool to the eutectoid decomposition temperature in the "iron-titanium" pseudo-binary system,
Redox gas containing oxygen (redox gas)
or supplying a gaseous mixture to the vacuum vessel, and annealing the cutting tool in an "iron-titanium" pseudo-binary system for 10 to 40 minutes in an oxygen-containing redox gas or gaseous mixture. This is achieved by the method of manufacturing a cutting tool made of an iron-based alloy having an interstitial elemental phase wear-resistant coating according to the present invention, which is carried out at a martensitic transformation temperature.

切削工具の寿命が増加する理由は、チタンの侵
入型元素相に基ずく、特に、多形変換し得ない最
も耐火性の高いチタン化合物である窒化チタンに
基ずく、耐摩耗性被膜自体の耐久性が高いことで
あり、更に、切削工具の表面層でおよびその表面
層上に堆積した耐摩耗性被膜自体の中で冷却時に
多形変換するチタンが安定なアルフア変態の形で
あるということである。その結果、内部応力は耐
摩耗性被膜自体においても且つ上にこの被膜が堆
積している切削工具の表面層においても減少す
る。それによつて、耐摩耗性被膜は切削工具の表
面層により強力に結合し、切削工具の使用中の耐
摩耗性被膜の離脱が防止される。切削工具表面層
および耐摩耗性被膜自体の中におけるチタンの存
在は、耐摩耗性を堆積させるイオン衝撃の条件に
依存するのであり、特に、耐摩耗性被膜の形成前
に行なう切削工具の加熱中および清浄化中に該工
具の表面層中にチタンが侵入する能力に依存す
る。チタンはその耐火性化合物に基ずく耐摩耗性
被膜の微小体積中にも滴状相として存在する。
The reason for the increased service life of cutting tools is the durability of the wear-resistant coating itself, which is based on the interstitial elemental phase of titanium, especially titanium nitride, which is the most refractory titanium compound that cannot undergo polymorphic conversion. Furthermore, titanium, which undergoes a polymorphic transformation on cooling in the surface layer of the cutting tool and in the wear-resistant coating itself deposited on the surface layer, is in a stable alpha-transformed form. be. As a result, internal stresses are reduced both in the wear-resistant coating itself and in the surface layer of the cutting tool on which this coating is deposited. Thereby, the wear-resistant coating is bonded more strongly to the surface layer of the cutting tool, and detachment of the wear-resistant coating during use of the cutting tool is prevented. The presence of titanium in the cutting tool surface layer and in the wear-resistant coating itself depends on the conditions of the ion bombardment that deposits the wear resistance, especially during the heating of the cutting tool before the formation of the wear-resistant coating. and on the ability of titanium to penetrate into the surface layer of the tool during cleaning. Titanium is also present as a droplet phase in the microvolumes of wear-resistant coatings based on its refractory compounds.

安定な平衡アルフア変態チタンは、耐摩耗性被
膜の堆積後に行なう真空容器中での切削工具の加
熱の条件およびその後の切削工具の焼鈍条件を適
切に選択することによつて得られる。
Stable equilibrium alpha-transformed titanium is obtained by appropriate selection of the conditions for heating the cutting tool in a vacuum vessel after the deposition of the wear-resistant coating and the conditions for subsequent annealing of the cutting tool.

切削工具を真空容器中で「鉄・チタン」擬二元
系の共析晶分解温度に加熱することによつて、不
安定なベータ変態チタンは分解して安定なアルフ
ア変態および種々の中間不安定変態(α′,α″)に
なり、これら中間不安定変態は焼鈍時に「鉄・チ
タン」擬二元系のマルテンサイト変態温度に加熱
されるとやはり安定な平衡アルフア変態チタンに
変わりやすい。
By heating the cutting tool in a vacuum container to the eutectoid decomposition temperature of the "iron-titanium" pseudo-binary system, the unstable beta-transformation titanium decomposes into the stable alpha-transformation and various unstable intermediates. transformations (α′, α″), and these intermediate unstable transformations tend to change to stable equilibrium alpha-transformed titanium when heated to the martensitic transformation temperature of the “iron-titanium” pseudo-binary system during annealing.

酸素を含有する酸化還元ガスまたはガス状混合
物が、特にその構成成分である酸素のようなもの
の存在も、安定なアルフア変態チタンの形成を促
す。
The presence of an oxygen-containing redox gas or gaseous mixture, especially its constituent oxygen, also promotes the formation of stable alpha-transformed titanium.

以下の実施例によつて本発明を更に詳細に説明
する。
The present invention will be explained in further detail by the following examples.

〔実施例〕〔Example〕

本発明の、切削工具の製造方法は以下のように
行う。まず、切削工具は鉄基合金、特に、たとえ
ば用途によつて高速度鋼で作られ得る工具材料で
作られる。
The cutting tool manufacturing method of the present invention is carried out as follows. First, the cutting tools are made of iron-based alloys, particularly tool materials that may be made of high speed steel, depending on the application, for example.

次に切削工具を真空容器内に配置する。この真
空容器中には、耐摩耗性被膜の一部を成す多形金
属または合金で作られた陰極が設けられている。
陰極はある特定の場合にはチタンまたはチタン基
合金で作られている。
The cutting tool is then placed into the vacuum vessel. A cathode made of a polymorphic metal or alloy that forms part of a wear-resistant coating is provided within the vacuum vessel.
The cathode is made of titanium or titanium-based alloy in certain cases.

次に真空容器を排気し、その中で陰極物質を蒸
発させるためにアーク放電で打撃する。次に800
〜1000Vのバイアス電圧を切削工具に印加し、蒸
発している陰極物質のイオンで衝撃を加えること
によつて切削工具の表面を加熱し且つ清浄化す
る。その結果、切削工具は硬さが低下しない温度
に加熱される。その温度はパイロメータで確認さ
れる。
The vacuum vessel is then evacuated and struck with an arc discharge to vaporize the cathode material within it. then 800
A bias voltage of ˜1000 V is applied to the cutting tool to heat and clean the surface of the cutting tool by bombarding it with ions of the evaporating cathode material. As a result, the cutting tool is heated to a temperature that does not reduce its hardness. Its temperature is checked with a pyrometer.

その後、切削工具に印加されたバイアス電圧
を、蒸発している陰極物質が自由に切削工具表面
に凝縮する値にまで減少させる。この電圧値は25
〜750Vであることが公知である。同時に、真空
容器に、蒸発している陰極物質と相互作用して耐
摩耗性被膜を形成する反応ガスを供給する。反応
ガスとしては、窒素、メタン、ボランのようなガ
スを用いる。反応ガスを真空容器中に5×10-2
5×10-5mmHgの圧力で供給することが公知であ
る。
The bias voltage applied to the cutting tool is then reduced to a value such that the evaporated cathode material is free to condense on the cutting tool surface. This voltage value is 25
~750V is known. At the same time, the vacuum vessel is supplied with a reactive gas that interacts with the evaporating cathode material to form a wear-resistant coating. As the reaction gas, a gas such as nitrogen, methane, or borane is used. Reactant gas in a vacuum container at 5×10 -2 ~
It is known to supply at a pressure of 5×10 -5 mmHg.

反応ガス供給時間に応じ所定厚さの耐摩耗性被
膜が形成されたら、酸素を含有する酸化還元(レ
ドツクス)ガスまたはガス状混合物を、上記に反
応ガスについて規定した圧力範囲内で、真空容器
中に供給する。
Once a wear-resistant coating of a predetermined thickness has been formed depending on the reaction gas supply time, an oxygen-containing redox gas or gaseous mixture is introduced into a vacuum vessel within the pressure range specified above for the reaction gas. supply to.

酸素を含有する酸化還元ガスまたはガス状混合
物としては環境中の大気が最も一般的に用いられ
るが、その他の、たとえば二酸化炭素または一酸
化窒素のようなガスも使える。
Ambient air is most commonly used as the oxygen-containing redox gas or gaseous mixture, although other gases such as carbon dioxide or nitric oxide can also be used.

酸素を含有する酸化還元ガスまたはガス状混合
物を真空容器に供給しながら、切削工具に印加さ
れたバイアス電圧を清浄化および加熱に有効な
値、すなわち800〜1000Vに増加して切削工具を
鉄・チタン擬二元系の共析晶分解温度にまで加熱
する。切削工具の表層をチタンイオンの衝撃によ
つて清浄化および加熱する過程で、該表層中には
「鉄・チタン」擬二元系の合金が形成される。上
記擬二元系の「鉄」は切削工具が作られている特
定な組成の鋼を意味し、「チタン」は陰極が作ら
れている金属チタンまたはチタン合金の意味であ
る。
While supplying an oxygen-containing redox gas or gaseous mixture to the vacuum vessel, the bias voltage applied to the cutting tool is increased to a value effective for cleaning and heating, i.e. 800-1000V to remove the cutting tool from iron. Heat to the eutectoid decomposition temperature of the titanium pseudo-binary system. In the process of cleaning and heating the surface layer of a cutting tool by bombarding it with titanium ions, an "iron-titanium" pseudo-binary alloy is formed in the surface layer. In the above pseudo-binary system, "iron" refers to the specific composition of steel from which the cutting tool is made, and "titanium" refers to the metallic titanium or titanium alloy from which the cathode is made.

不安定なベータ変態チタンが種々の中間相、た
とえばα′,α″、および安定なアルフア変態チタン
に分解するのは上記の温度においてである。イオ
ン衝撃の条件下における共析晶分解温度の特定値
は、実験的に求められるものであり、「鉄・チタ
ン」擬二元系の組成に依存しており、350〜500℃
であることが公知である。切削工具の加熱は酸素
を含有する酸化還元ガスまたはガス状混合物の存
在下で行なわれ、これらガスの構成成分、特に酸
素がアルフア変態チタンの形成に貢献する。切削
工具を上記温度範囲外の温度に加熱するとベータ
変態の分解は起きない。
It is at these temperatures that the unstable beta-modified titanium decomposes into various mesophases, such as α′, α″, and the stable alpha-modified titanium. Determination of the eutectoid decomposition temperature under conditions of ion bombardment The value is obtained experimentally and depends on the composition of the "iron/titanium" pseudo-binary system, and the temperature is 350-500℃.
It is known that The heating of the cutting tool takes place in the presence of oxygen-containing redox gases or gaseous mixtures, the constituents of these gases, especially oxygen, contributing to the formation of alpha-transformed titanium. If the cutting tool is heated to a temperature outside the above temperature range, decomposition of the beta transformation will not occur.

温度をパイロメータで監視し、上記温度に達し
たら直ちに反応ガスの供給と酸素を含有する酸化
還元ガスまたはガス状混合物の供給とを停止し、
切削工具へのバイアス電圧印加を停止し、そして
アーク放電を消す。
monitoring the temperature with a pyrometer and stopping the supply of the reaction gas and the supply of the oxygen-containing redox gas or gaseous mixture as soon as said temperature is reached;
Stop applying bias voltage to the cutting tool and extinguish the arc discharge.

次に切削工具を焼鈍する。この焼鈍は、従来公
知の加熱設備、たとえば加熱炉で、酸素を含有す
る酸化還元ガスまたはガス状混合物の雰囲気中
で、「鉄・チタン」擬二元系のマルテンサイト変
態温度で行なう。上記のガスまたはガス状混合物
は被膜の堆積に引き続いて行なう加熱の場合と同
じでよい。
The cutting tool is then annealed. This annealing is performed in a conventionally known heating equipment, such as a heating furnace, in an atmosphere of an oxygen-containing redox gas or gaseous mixture at the martensitic transformation temperature of the "iron-titanium" pseudo-binary system. The gas or gaseous mixture described above may be the same as in the case of heating subsequent to coating deposition.

不安定中間相のα′,α″が平衡アルフア変態チタ
ンに変わるのはこのマルテンサイト変態温度にお
いてである。マルテンサイト変態温度も実験的に
求められる値であり、擬二元系の構成成分に依存
し、150〜380℃の範囲内である。
It is at this martensitic transformation temperature that the unstable intermediate phases α′ and α″ change to equilibrium alpha-transformed titanium. The martensitic transformation temperature is also an experimentally determined value, and it is depending on temperature, within the range of 150-380℃.

工具を焼鈍温度に保持する時間はこの温度値に
依存しており、すなわち、温度が高いほど焼鈍時
間は短い。しかし、10分未満の工具保持時間は擬
二元系の合金が完全にマルテンサイト変態するに
は不足しており、上記変態が40分以内で完全に起
こるので40分を超える保持時間は必要ない。
The time for which the tool is held at the annealing temperature depends on this temperature value, ie the higher the temperature, the shorter the annealing time. However, tool holding times of less than 10 minutes are insufficient for complete martensitic transformation of pseudo-binary alloys, and holding times exceeding 40 minutes are not necessary as the above transformation occurs completely within 40 minutes. .

工具を焼鈍後に室温まで冷却する。 After annealing, the tool is cooled to room temperature.

以下の実施例によつて本発明を更に詳しく説明
する。
The invention will be explained in more detail by the following examples.

実施例 1 1ロツト10本の直径5mmのツイストドリルを、
重量パーセントでC:0.85、Cr:3.6、W:6.0、
V:2.0、Mo:5.0、残部:Feの組成を持つ高速
度鋼で作つた。機械的不純物を除去し且つ脱脂し
た該ロツトのドリルを、イオン衝撃による金属の
凝縮法によつて耐摩耗性被膜を堆積させるための
公知設備の真空容器内に配置した。真空容器を5
×10-5mmHgの圧力まで減圧し、ドリルに1100V
のバイアス電圧を印加し、チタン陰極を蒸発させ
るために真空容器内にアーク放電を発生させ、ド
リルの表面を清浄化し且つ520℃に加熱した。そ
の結果、「鉄・チタン」擬二元系の合金がドリル
の表面層に形成された。ここで上記の系の「鉄」
という語は前記組成の高速度鋼を指す。
Example 1 One lot of 10 twist drills with a diameter of 5 mm,
Weight percentage: C: 0.85, Cr: 3.6, W: 6.0,
It was made from high-speed steel with a composition of V: 2.0, Mo: 5.0, and the balance: Fe. The drill of the lot, which had been cleaned of mechanical impurities and degreased, was placed in a vacuum vessel of a known facility for depositing wear-resistant coatings by the method of metal condensation by ion bombardment. 5 vacuum containers
Reduce pressure to ×10 -5 mmHg and apply 1100V to the drill.
A bias voltage of 100 mL was applied to generate an arc discharge in the vacuum chamber to evaporate the titanium cathode, and the surface of the drill was cleaned and heated to 520 °C. As a result, a pseudo-binary alloy of iron and titanium was formed on the surface layer of the drill. Here, "iron" of the above system
The term refers to high speed steel of the above composition.

次にバイアス電圧を200Vに減少させ、反応ガ
スすなわち窒素を真空容器内に供給し、真空容器
内の圧力を3×10-3mmHgとした。窒素の供給を
1時間行なつて、厚さ6μmの窒化チタン耐摩耗
性被膜をドリルの表面に形成した。
Next, the bias voltage was reduced to 200 V, and a reactant gas, ie, nitrogen, was supplied into the vacuum vessel, and the pressure within the vacuum vessel was set to 3×10 -3 mmHg. Nitrogen was supplied for one hour to form a titanium nitride wear-resistant coating with a thickness of 6 μm on the surface of the drill.

その後、ドリルに印加されたバイアス電圧を
1100Vすなわちドリルの加熱と清浄化に有効な値
にまで再び増加させ、酸素を含有する酸化還元ガ
ス状混合物として空気を真空容器中に供給し、真
空容器内の圧力はそれまでのレベルに維持した。
耐摩耗性被膜を被覆されたドリルを500℃すなわ
ち前記「鉄・チタン」擬二元系の共析晶分解温度
に加熱した。該温度に達した後直ちに、反応ガス
の供給を停止し、アーク放電を消し、バイアス電
圧を切り、ドリルを真空容器内で室温まで冷却し
た。次にドリルを焼鈍した。焼鈍は、ドリルを炉
内に配置し、酸素を含有する酸化還元ガス状混合
物として用いた空気雰囲気中で、300℃すなわち
該「鉄・チタン」擬二元系のマルテンサイト変態
温度に加熱し、その後その温度に30分間保持する
ことによつて行つた。次にドリルを室温まで冷却
した。この1ロツトの直径5mmのドリルの耐久性
を試験するために、重量パーセントでC:0.42〜
0.49%、残部:鉄の組成を持つ鋼の孔開けを行な
つた。直立ボール盤を用い、通常の公知の切削冷
却剤を用い、切削速度V=45m/分、送り速度S
=0.18mm/rev、孔開け深さ=3d=15mmの切削
条件で行なつた。
Then, the bias voltage applied to the drill
The voltage was increased again to 1100V, a value effective for heating and cleaning the drill, and air was supplied into the vacuum vessel as a redox gaseous mixture containing oxygen, and the pressure within the vacuum vessel was maintained at the previous level. .
The drill coated with the wear-resistant coating was heated to 500° C., that is, the eutectoid decomposition temperature of the “iron-titanium” pseudo-binary system. Immediately after reaching this temperature, the reactant gas supply was stopped, the arc discharge was extinguished, the bias voltage was turned off, and the drill was cooled to room temperature in a vacuum vessel. The drill was then annealed. For annealing, the drill is placed in a furnace and heated to 300°C, that is, the martensitic transformation temperature of the "iron-titanium" pseudo-binary system, in an air atmosphere using a redox gaseous mixture containing oxygen. This was then carried out by holding at that temperature for 30 minutes. The drill was then cooled to room temperature. In order to test the durability of this one lot of 5 mm diameter drill, C: 0.42~
0.49%, balance: Drilling was carried out in steel with a composition of iron. Using an upright drilling machine, using a normal known cutting coolant, cutting speed V = 45 m/min, feed rate S
The cutting conditions were: = 0.18 mm/rev, drilling depth = 3d = 15 mm.

ドリルの鈍化の徴候をきしみ音で判断した。 Signs of drill dullness were determined by the sound of a squeak.

ドリル1本当りの平均孔開け数は330であつた。 The average number of holes drilled per drill was 330.

実施例 2 1ロツトのツイストドリルを実施例1と同様に
作り、耐摩耗性被膜を次の1点を除き実施例1と
同様な方法でこのドリル上に堆積させた。すなわ
ち、陰極物質として重量パーセント組成がA:
1.4、Mn:1.3、残部:Tiのチタン基合金を用い
た。ドリルの表面には窒化チタン系侵入型元素相
の厚さ6μmの耐摩耗性被膜が堆積した。
Example 2 A one-lot twist drill was made as in Example 1 and a wear resistant coating was deposited on the drill in the same manner as in Example 1 with one exception. That is, the weight percent composition of the cathode material is A:
A titanium-based alloy of 1.4, Mn: 1.3, and the remainder Ti was used. A 6 μm thick wear-resistant coating of interstitial titanium nitride elemental phase was deposited on the drill surface.

次の点を除き実施例1と同様の方法を更に行な
つた。すなわち、ドリルを480℃すなわち「鉄・
チタン」擬二元系の共析晶分解温度に加熱した。
ここで用語「鉄」は前記組成の高速度鋼を意味
し、用語「チタン」は陰極材料として用いた前記
組成のチタン基合金を指す。焼鈍としてドリルを
200℃すなわち前記擬二元系のマルテンサイト変
態温度に加熱し、その温度に40分間保持した。
The same procedure as in Example 1 was further carried out with the following exceptions. In other words, heat the drill to 480℃, or
The titanium was heated to the eutectoid decomposition temperature of the pseudo-binary system.
The term "iron" herein refers to high speed steel of the above composition and the term "titanium" refers to the titanium-based alloy of the above composition used as the cathode material. Drill as annealing
It was heated to 200°C, ie, the martensitic transformation temperature of the pseudo-binary system, and held at that temperature for 40 minutes.

実施例1と同様な方法で上記ドリルの耐久性試
験を行なつた。ドリル1本当りの平均孔開け数は
315であつた。
A durability test of the above drill was conducted in the same manner as in Example 1. The average number of holes drilled per drill is
It was 315.

実施例 3 1ロツトのツイストドリルを実施例1と同様に
作り、次の点を除き実施例1と同様な方法でこれ
らのドリル上に耐摩耗性被膜を堆積させた。すな
わち、陰極物質として重量パーセント組成がA
:2.5、Mn:1.2、残部:Tiのチタン基合金を
用いた。ドリルの表面にはTiN系侵入型元素相
の厚さ6μmの耐摩耗性被膜が堆積した。
Example 3 One lot of twist drills were made as in Example 1 and a wear resistant coating was deposited on these drills in the same manner as in Example 1 with the following exceptions. That is, the weight percent composition of the cathode material is A.
A titanium-based alloy with: 2.5, Mn: 1.2, and the balance Ti was used. A 6 μm thick wear-resistant coating of TiN-based interstitial elemental phase was deposited on the drill surface.

次の1点を除き実施例1と同様の方法を更に行
なつた。すなわち、ドリルを490℃すなわち
「鉄・チタン」擬二元系の共析晶分解温度に加熱
した。ここで「鉄」は前記組成の高速度鋼を意味
し、用語「チタン」は陰極材料として用いた前記
組成のチタン基合金を指す。焼鈍としてドリルを
280℃すなわち前記擬二元系のマルテンサイト変
態温度に加熱し、その温度に20分間保持した。
The same method as in Example 1 was further carried out with the following exception. That is, the drill was heated to 490°C, the eutectoid decomposition temperature of the "iron-titanium" pseudo-binary system. Here, "iron" refers to high speed steel of the above composition, and the term "titanium" refers to the titanium-based alloy of the above composition used as the cathode material. Drill as annealing
It was heated to 280°C, ie, the martensitic transformation temperature of the pseudo-binary system, and held at that temperature for 20 minutes.

実施例1と同様な方法で上記ドリルの耐久性試
験を行なつた。ドリル1本当りの平均孔開け数は
310であつた。
A durability test of the above drill was conducted in the same manner as in Example 1. The average number of holes drilled per drill is
It was 310.

実施例 4 1ロツトのツイストドリルを実施例1と同様に
作り、次の点を除き実施例1と同様な方法でこの
ドリル上に耐摩耗性被膜を堆積させた。すなわ
ち、陰極物質として重量パーセント組成がA:
6.0、Sn:3.0、残部:Tiのチタン基合金を用い
た。ドリルの表面にはTiN系侵入型元素相の厚
さ6μmの耐摩耗性被膜が堆積した。
Example 4 One lot of twist drills was made as in Example 1, and a wear resistant coating was deposited on the drills in the same manner as in Example 1, with the following exceptions. That is, the weight percent composition of the cathode material is A:
A titanium-based alloy of 6.0, Sn: 3.0, and the remainder: Ti was used. A 6 μm thick wear-resistant coating of TiN-based interstitial elemental phase was deposited on the drill surface.

次の1点を除き実施例1と同様の方法を更に行
なつた。すなわち、ドリルを350℃すなわち、
「鉄・チタン」擬二元系の共析晶分解温度に加熱
した。ここで用語「鉄」は前記組成の高速度鋼を
意味し、用語「チタン」は陰極材料として用いた
前記組成のチタン基合金を指す。焼鈍としてドリ
ルを320℃すなわち前記擬二元系のマルテンサイ
ト変態温度に加熱し、その温度に20分間保持し
た。
The same method as in Example 1 was further carried out with the following exception. i.e. drill at 350℃ i.e.
It was heated to the eutectoid decomposition temperature of the "iron/titanium" pseudo-binary system. The term "iron" herein refers to high speed steel of the above composition and the term "titanium" refers to the titanium-based alloy of the above composition used as the cathode material. For annealing, the drill was heated to 320°C, ie, the martensitic transformation temperature of the pseudo-binary system, and held at that temperature for 20 minutes.

実施例1と同様な方法で上記ドリルの耐久性試
験を行なつた。ドリル1本当りの平均孔開け数は
350であつた。
A durability test of the above drill was conducted in the same manner as in Example 1. The average number of holes drilled per drill is
It was 350.

実施例 5 1ロツトのツイストドリルを実施例1と同様に
作り、次の点を除き実施例1と同様な方法でこれ
らのドリル上に耐摩耗性被膜を堆積させた。すな
わち、陰極物質として重量パーセント組成がA
:6.0、残部:Tiのチタン基合金を用いた。
TiN系侵入型元素相の厚さ6μmの耐摩耗性被膜
が堆積した。次に、バイアス電圧を1100Vに増加
させ、同時に、酸素を含有する酸化還元ガスとし
て二酸化炭素を真空容器中に供給した。ドリルを
400℃すなわち「鉄・チタン」擬二元系の共析晶
分解温度に加熱した。ここで用語「鉄」は前記組
成の高速度鋼を意味し、用語「チタン」は陰極材
料として用いた前記組成のチタン基合金を指す。
焼鈍としてドリルを二酸化炭素の雰囲気中で290
℃すなわち前記擬二元系のマルテンサイト変態温
度に加熱し、その温度に35分間炉内で保持した。
Example 5 One lot of twist drills were made as in Example 1, and a wear resistant coating was deposited on these drills in the same manner as in Example 1, with the following exceptions. That is, the weight percent composition of the cathode material is A.
A titanium-based alloy with: 6.0 and the balance: Ti was used.
A 6 μm thick wear-resistant coating of TiN-based interstitial elemental phase was deposited. Next, the bias voltage was increased to 1100 V, and at the same time, carbon dioxide was supplied into the vacuum vessel as an oxygen-containing redox gas. drill
It was heated to 400°C, the eutectoid decomposition temperature of the "iron/titanium" pseudo-binary system. The term "iron" herein refers to high speed steel of the above composition and the term "titanium" refers to the titanium-based alloy of the above composition used as the cathode material.
Anneal the drill as 290 in a carbon dioxide atmosphere
℃, that is, the martensitic transformation temperature of the pseudo-binary system, and maintained at that temperature in a furnace for 35 minutes.

実施例1と同様な方法で上記ドリルの耐久性試
験を行なつた。ドリル1本当りの平均孔開け数は
300であつた。
A durability test of the above drill was conducted in the same manner as in Example 1. The average number of holes drilled per drill is
It was 300.

実施例 6 1ロツトのツイストドリルを実施例1と同様に
作り、次の点を除き実施例1と同様な方法でこの
ドリル上に耐摩耗性被膜を堆積させた。すなわち
陰極物質として重量パーセント組成がA:30、
残部:Tiのチタン基合金を用いた。TiN系侵入
型元素相の厚さ6μmの耐摩耗性被膜が堆積した。
次に、ドリルに印加されたバイアス電圧を1100V
に増加させ、同時に、酸素を含有する酸化還元ガ
スとして一酸化窒素を真空容器中に供給した。ド
リルを480℃すなわち「鉄・チタン」擬二元系の
共析晶分解温度に加熱した。ここで用語「鉄」は
前記組成の高速度鋼を意味し、用語「チタン」は
陰極材料として用いた前記組成のチタン基合金を
指す。焼鈍として、ドリルを一酸化窒素雰囲気中
で380℃すなわち前記擬二元系のマルテンサイト
変態温度に加熱し、その温度に10分間炉内で保持
した。
Example 6 One lot of twist drills was made as in Example 1, and a wear resistant coating was deposited on the drills in the same manner as in Example 1, with the following exceptions. That is, the weight percent composition of the cathode material is A:30,
The remainder: A titanium-based alloy of Ti was used. A 6 μm thick wear-resistant coating of TiN-based interstitial elemental phase was deposited.
Next, change the bias voltage applied to the drill to 1100V
At the same time, nitrogen monoxide was supplied into the vacuum vessel as an oxygen-containing redox gas. The drill was heated to 480°C, the eutectoid decomposition temperature of the "iron-titanium" pseudo-binary system. The term "iron" herein refers to high speed steel of the above composition and the term "titanium" refers to the titanium-based alloy of the above composition used as the cathode material. For annealing, the drill was heated in a nitrogen monoxide atmosphere to 380° C., ie, the martensitic transformation temperature of the pseudo-binary system, and held at that temperature in a furnace for 10 minutes.

実施例1と同様な方法で上記ドリルの耐久性試
験を行なつた。ドリル1本当りの平均孔開け数は
300であつた。
A durability test of the above drill was conducted in the same manner as in Example 1. The average number of holes drilled per drill is
It was 300.

実施例 7 1ロツトのツイストドリルを実施例1と同様に
作り、次の点を除き実施例1と同様な方法で該ド
リル上に耐摩耗性被膜を堆積させた。すなわち、
陰極物質として重量パーセント組成がA:6.0、
V:4.0、残部:Tiのチタン基合金を用いた。ド
リルの表面にはTiN系侵入型元素相の厚さ6μm
の耐摩耗性被膜が堆積した。
Example 7 One lot of twist drills was made as in Example 1, and a wear resistant coating was deposited on the drills in the same manner as in Example 1, with the following exceptions. That is,
The weight percent composition of the cathode material is A:6.0,
A titanium-based alloy with V: 4.0 and balance: Ti was used. The drill surface has a TiN-based interstitial element phase with a thickness of 6 μm.
A wear-resistant coating was deposited.

次の1点を除き実施例1と同様の方法を更に行
なつた。すなわち、ドリルを450℃すなわち、
「鉄・チタン」擬二元系の共析晶分解温度に加熱
した。ここで用語「鉄」は前記組成の高速度鋼を
意味し、用語「チタン」は陰極材料として用いた
前記組成のチタン基合金を指す。焼鈍として、ド
リルを二酸化炭素雰囲気中で310℃すなわち前記
擬二元系のマルテンサイト変態温度に加熱し、そ
の温度に25分間炉内で保持した。
The same method as in Example 1 was further carried out with the following exception. i.e. drill at 450℃ i.e.
It was heated to the eutectoid decomposition temperature of the "iron/titanium" pseudo-binary system. The term "iron" herein refers to high speed steel of the above composition and the term "titanium" refers to the titanium-based alloy of the above composition used as the cathode material. For annealing, the drill was heated in a carbon dioxide atmosphere to 310° C., the martensitic transformation temperature of the pseudo-binary system, and held at that temperature in a furnace for 25 minutes.

実施例1と同様な方法で上記ドリルの耐久性試
験を行なつた。ドリル1本当りの平均孔開け数は
335であつた。
A durability test of the above drill was conducted in the same manner as in Example 1. The average number of holes drilled per drill is
It was 335.

実施例 8 1ロツトのツイストドリルを実施例1と同様に
作り、次の点を除き実施例1と同様な方法で該ド
リル上に耐摩耗性被膜を堆積させた。すなわち、
陰極物質として重量パーセント組成がA:8.0、
Nb:2.0、Ta:1.0、残部:Tiのチタン基合金を
用い、反応ガスとしてメタンを用いた。TiC系侵
入型元素相の厚さ6μmの耐摩耗性被膜が堆積し
た。
Example 8 One lot of twist drills was made as in Example 1, and a wear resistant coating was deposited on the drills in the same manner as in Example 1, with the following exceptions. That is,
The weight percent composition of the cathode material is A:8.0,
A titanium-based alloy with Nb: 2.0, Ta: 1.0, and the remainder Ti was used, and methane was used as the reaction gas. A 6 μm thick wear-resistant coating of TiC-based interstitial elemental phase was deposited.

次の1点を除き実施例1と同様の方法を更に行
なつた。すなわち、ドリルを500℃すなわち、
「鉄・チタン」擬二元系の共析晶分解温度に加熱
した。ここで用語「鉄」は前記組成の高速度鋼を
意味し、用語「チタン」は陰極材料として用いた
前記組成のチタン基合金を指す。焼鈍として、ド
リルを320℃すなわち前記擬二元系のマルテンサ
イト変態温度に加熱し、その温度に30分間炉内で
保持した。
The same method as in Example 1 was further carried out with the following exception. i.e. drill at 500℃ i.e.
It was heated to the eutectoid decomposition temperature of the "iron/titanium" pseudo-binary system. The term "iron" herein refers to high speed steel of the above composition and the term "titanium" refers to the titanium-based alloy of the above composition used as the cathode material. For annealing, the drill was heated to 320° C., the martensitic transformation temperature of the pseudo-binary system, and held at that temperature in a furnace for 30 minutes.

実施例1と同様な方法で上記ドリルの耐久性試
験を行なつた。ドリル1本当りの平均孔開け数は
309であつた。
A durability test of the above drill was conducted in the same manner as in Example 1. The average number of holes drilled per drill is
It was 309.

実施例 9 1ロツトのツイストドリルを実施例1と同様に
作り、次の点を除き実施例1と同様な方法で該ド
リル上に耐摩耗性被膜を堆積させた。すなわち、
陰極物質として重量パーセント組成がPd:0.3、
残部:Tiのチタン基合金を用い、反応ガスとし
てボランをを用いた。二ほう化チタン系侵入型元
素相の厚さ6μmの耐摩耗性被膜が堆積した。
Example 9 One lot of twist drills were made as in Example 1, and a wear resistant coating was deposited on the drills in the same manner as in Example 1, with the following exceptions. That is,
The weight percent composition as the cathode material is Pd: 0.3,
The remainder: A titanium-based alloy of Ti was used, and borane was used as the reaction gas. A 6 μm thick wear-resistant coating of interstitial elemental phase based on titanium diboride was deposited.

次の1点を除き実施例1と同様の方法を更に行
なつた。すなわち、ドリルを490℃すなわち、
「鉄・チタン」擬二元系の共析晶分解温度に加熱
した。ここで用語「鉄」は前記組成の高速度鋼を
意味し、用語「チタン」は陰極材料として用いた
前記組成のチタン基合金を指す。焼鈍として、ド
リルを300℃すなわち前記擬二元系のマルテンサ
イト変態温度に加熱し、その温度に35分間保持し
た。
The same method as in Example 1 was further carried out with the following exception. i.e. drill at 490℃ i.e.
It was heated to the eutectoid decomposition temperature of the "iron/titanium" pseudo-binary system. The term "iron" herein refers to high speed steel of the above composition and the term "titanium" refers to the titanium-based alloy of the above composition used as the cathode material. For annealing, the drill was heated to 300°C, ie, the martensitic transformation temperature of the pseudo-binary system, and held at that temperature for 35 minutes.

実施例1と同様な方法で上記ドリルの耐久性試
験を行なつた。ドリル1本当りの平均孔開け数は
319であつた。
A durability test of the above drill was conducted in the same manner as in Example 1. The average number of holes drilled per drill is
It was 319.

実施例 10 1ロツト10本の直径5mmのツイストドリルを、
重量パーセントでC:1.0、Cr:6.0、W:1.3、
V:0.5、残:Feの組成を持つ高速度鋼で作つた。
機械的不純物を除去し且つ脱脂した該ロツトのド
リルを、イオン衝撃による金属の凝縮によつて耐
摩耗性被膜を堆積させるための公知設備の真空容
器内に配置した。真空容器を5×10-5mmHgの圧
力まで減圧し、ドリルに900Vのバイアス電圧を
印加し、重量パーセント組成がA:6.5、Cr:
0.9、Si:0.4、Fe:0.6、B:0.1、残部:Tiのチ
タン基合金陰極を蒸発させるために真空容器内に
アーク放電を発生させた。次に、ドリルの表面を
清浄化し、200℃に加熱した。その結果、「鉄・チ
タン」擬二元系の合金がドリルの表面層に形成さ
れた。ここで上記の系の「鉄」という語は前記組
成の高速度鋼を指し、「チタン」という語は陰極
物質として用いた前記組成のチタン基合金を指
す。次にバイアス電圧を80Vに減少させ、反応ガ
スとして窒素を真空容器内に供給し、真空容器内
の圧力を2×10-3mmHgとした。窒素と蒸発し得
る陰極物質とを1時間相互作用させて、厚さ6μ
mの窒化チタン系耐摩耗性被膜をドリルの表面に
形成した。その後、酸素を含有する酸化還元ガス
状混合物として環境中の空気を真空容器中に供給
し、真空容器内の圧力はそれまでのレベルに維持
した。同時に、ドリルに印加されたバイアス電圧
を900Vすなわちドリルの加熱を清浄化に有効な
値にまで再び増加させた。ドリルを350℃すなわ
ち前記「鉄・チタン」擬二元系の共析晶分解温度
に加熱した。該温度に達した後直ちに、反応ガス
の供給を停止し、アーク放電を消し、バイアス電
圧を切り、ドリルを真空容器内で室温まで冷却し
た。次にドリルを焼鈍した。焼鈍は、ドリルを炉
内に配置し、空気雰囲気中で、150℃すなわち該
「鉄・チタン」擬二元系のマルテンサイト変態温
度に加熱し、その温度に30分間炉内で保持するこ
とによつて行つた。次にドリルを室温まで冷却し
た。
Example 10 One lot of 10 twist drills with a diameter of 5 mm,
Weight percentage: C: 1.0, Cr: 6.0, W: 1.3,
It was made from high-speed steel with a composition of V: 0.5 and balance: Fe.
The drill of the lot, which had been cleaned of mechanical impurities and degreased, was placed in a vacuum vessel of known equipment for depositing wear-resistant coatings by condensation of metals by ion bombardment. The vacuum container was depressurized to a pressure of 5 × 10 -5 mmHg, a bias voltage of 900 V was applied to the drill, and the weight percent composition was A: 6.5, Cr:
Arc discharge was generated in the vacuum container to evaporate the titanium-based alloy cathode of 0.9, Si: 0.4, Fe: 0.6, B: 0.1, and the balance: Ti. Next, the surface of the drill was cleaned and heated to 200 °C. As a result, a pseudo-binary alloy of iron and titanium was formed on the surface layer of the drill. Herein, the term "iron" in the above system refers to high speed steel of the above composition, and the term "titanium" refers to the titanium-based alloy of the above composition used as the cathode material. Next, the bias voltage was reduced to 80 V, nitrogen was supplied as a reaction gas into the vacuum container, and the pressure inside the vacuum container was set to 2×10 −3 mmHg. By interacting nitrogen and evaporable cathode material for 1 hour, a thickness of 6 μm was formed.
A titanium nitride-based wear-resistant coating of m was formed on the surface of the drill. Ambient air was then fed into the vacuum vessel as a redox gaseous mixture containing oxygen, and the pressure within the vacuum vessel was maintained at the previous level. At the same time, the bias voltage applied to the drill was increased again to 900V, a value effective for cleaning the drill heating. The drill was heated to 350° C., the eutectoid decomposition temperature of the “iron/titanium” pseudo-binary system. Immediately after reaching this temperature, the reactant gas supply was stopped, the arc discharge was extinguished, the bias voltage was turned off, and the drill was cooled to room temperature in a vacuum vessel. The drill was then annealed. For annealing, the drill is placed in a furnace, heated to 150℃ in an air atmosphere, that is, the martensitic transformation temperature of the "iron-titanium" pseudo-binary system, and held at that temperature in the furnace for 30 minutes. I waded over. The drill was then cooled to room temperature.

次の点を除き実施例1と同様な方法でこのロツ
トのドリルの耐久性試験を行なつた。すなわち、
切削速度を32m/分とし、孔開け深さを=d=
5mmとした。
The durability test for this lot drill was conducted in the same manner as in Example 1 except for the following points. That is,
The cutting speed is 32 m/min, and the drilling depth is = d =
It was set to 5mm.

ドリル1本当りの平均孔開け数は70であつた。 The average number of holes drilled per drill was 70.

〔発明の効果〕〔Effect of the invention〕

本発明の切削工具の製造方法によつて、切削工
具の性能特性を向上させ且つその耐久性を少なく
とも1.5倍に増加させることができる。
The method of manufacturing cutting tools of the present invention makes it possible to improve the performance characteristics of cutting tools and increase their durability by at least 1.5 times.

Claims (1)

【特許請求の範囲】 1 切削工具を真空容器内に配置する工程、 該工具にバイアス電圧を印加する工程、 該工具を、アーク放電によつて蒸発し得る陰極
物質のイオンで衝撃を与えられることによつて、
予熱し且つ清浄化する工程、 その後該バイアス電圧を耐摩耗性被膜が形成さ
れる値にまで減少させる工程、 そして、蒸発している該陰極物質と該真空容器
中に導入された反応ガスとの相互作用によつて、
所定厚さを有する該耐摩耗性被膜を形成する工
程、および その後該切削工具を焼鈍する工程 から成る、侵入型元素相系耐摩耗性被膜を具備す
る鉄基合金製切削工具の製造方法において、 該陰極物質としてチタンまたはチタン基合金を
用い、 該所定厚さの該耐摩耗性被膜の形成に引き続き
該バイアス電圧を、該工具の該予熱および該清浄
化において有効なバイアス電圧の値と等しい値に
まで増加させ、 その後、該切削工具を「鉄・チタン」擬二元系
における共析晶分解温度にまで加熱するために、
酸素を含有する酸化還元ガスまたはガス状混合物
を該真空容器に供給し、 且つ、該切削工具の焼鈍を、酸素を含有する酸
化還元ガスまたはガス状混合物中で、10〜40分
間、「鉄・チタン」擬二元系におけるマルテンサ
イト変態の温度で行なう ことを特徴とする侵入型元素相系耐摩耗性被膜を
具備する鉄基合金製切削工具の製造方法。
[Claims] 1. Placing a cutting tool in a vacuum container; Applying a bias voltage to the tool; Bombarding the tool with ions of a cathode material that can be evaporated by arc discharge. According to
preheating and cleaning, then reducing the bias voltage to a value at which a wear-resistant coating is formed, and combining the evaporated cathode material with the reactant gas introduced into the vacuum vessel. Through interaction,
A method for producing a cutting tool made of an iron-based alloy having an interstitial elemental phase wear-resistant coating, comprising the steps of forming the wear-resistant coating having a predetermined thickness, and then annealing the cutting tool, titanium or a titanium-based alloy is used as the cathode material, and following the formation of the wear-resistant coating of the predetermined thickness, the bias voltage is set to a value equal to the value of the bias voltage effective during the preheating and cleaning of the tool. Then, in order to heat the cutting tool to the eutectoid decomposition temperature in the "iron-titanium" pseudo-binary system,
Supplying an oxygen-containing redox gas or gaseous mixture to the vacuum vessel, and annealing the cutting tool in the oxygen-containing redox gas or gaseous mixture for 10 to 40 minutes. A method for manufacturing a cutting tool made of an iron-based alloy having an interstitial elemental phase wear-resistant coating, characterized in that the process is carried out at the temperature of martensitic transformation in a pseudo-binary titanium system.
JP835787A 1987-01-09 1987-01-19 Production of cutting tool Granted JPS63183167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP835787A JPS63183167A (en) 1987-01-09 1987-01-19 Production of cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/002,310 US4729905A (en) 1987-01-09 1987-01-09 Method for production of cutting tools
JP835787A JPS63183167A (en) 1987-01-09 1987-01-19 Production of cutting tool

Publications (2)

Publication Number Publication Date
JPS63183167A JPS63183167A (en) 1988-07-28
JPH032945B2 true JPH032945B2 (en) 1991-01-17

Family

ID=26342862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP835787A Granted JPS63183167A (en) 1987-01-09 1987-01-19 Production of cutting tool

Country Status (1)

Country Link
JP (1) JPS63183167A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004716A1 (en) * 1992-08-14 1994-03-03 Hughes Aircraft Company Surface preparation and deposition method for titanium nitride onto carbonaceous materials

Also Published As

Publication number Publication date
JPS63183167A (en) 1988-07-28

Similar Documents

Publication Publication Date Title
Dearnley et al. Engineering the surface with boron based materials
US6152977A (en) Surface functionalized diamond crystals and methods for producing same
JP2999346B2 (en) Substrate surface coating method and coating member
US20100028706A1 (en) Shaped body
US4741975A (en) Erosion-resistant coating system
JP4028891B2 (en) Multi-component hard layer manufacturing method and composite
AU602323B2 (en) Method for production of cutting tools
JP2012505308A (en) Non-gamma phase cubic AlCrO
US4799977A (en) Graded multiphase oxycarburized and oxycarbonitrided material systems
JPS61264171A (en) Coated superalloy block having abrasion resistance and its production
US5908671A (en) Method of forming a coating of glass-like carbon on titanium metal
US20220259717A1 (en) Method for forming a layer of alumina at the surface of a metallic substrate
US5262202A (en) Heat treated chemically vapor deposited products and treatment method
US6200649B1 (en) Method of making titanium boronitride coatings using ion beam assisted deposition
US4873152A (en) Heat treated chemically vapor deposited products
JPH032945B2 (en)
JP5360603B2 (en) Method for producing amorphous carbon-coated member
JP2001192206A (en) Method for manufacturing amorphous carbon-coated member
JP3260157B2 (en) Method for producing diamond-coated member
JP4133150B2 (en) Method for producing diamond film-coated member
JP2587807B2 (en) Method for forming carbide film and article having the film
FI81384B (en) Process for manufacturing a cutting tool
JP3167374B2 (en) High adhesion diamond coated sintered alloy
JP3190090B2 (en) Manufacturing method of diamond coated member
JP2002187008A (en) Cutting drill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting