JPH03294536A - Cord for reinforcing resin hose - Google Patents

Cord for reinforcing resin hose

Info

Publication number
JPH03294536A
JPH03294536A JP9556390A JP9556390A JPH03294536A JP H03294536 A JPH03294536 A JP H03294536A JP 9556390 A JP9556390 A JP 9556390A JP 9556390 A JP9556390 A JP 9556390A JP H03294536 A JPH03294536 A JP H03294536A
Authority
JP
Japan
Prior art keywords
component
cord
core
sheath
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9556390A
Other languages
Japanese (ja)
Inventor
Masayuki Sato
正幸 佐藤
Takuji Sato
卓治 佐藤
Akira Ogura
小椋 彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9556390A priority Critical patent/JPH03294536A/en
Publication of JPH03294536A publication Critical patent/JPH03294536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain the title cord for reinforcing resin hose consisting of a core-sheath type conjugate fiber mainly each containing specific naphthalate as the core component and a polyamide as the sheath component, having improved dimensional stability and having modulus higher than that of a conventional polyester. CONSTITUTION:The aimed cord being a core-sheath type conjugate fiber composed of a core component consisting of polyethylene-2,6-naphthalate containing ethylene naphthalene-2,6-dicarboxylate as a main component and sheath component containing a polyamide as a main component around the core component and being 30-90wt.% in ratio of the core component forming the conjugate fiber, being >=7.0g/d in strength of the conjugate fiber, <=20% in elongation, >=90g/d in initial tensile resistance and <=5% in dry heat shrinkage and obtained by twisting the conjugate fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は樹脂ホース補強用コードに関するものであり、
詳しくは芯成分にポリエチレン−2゜6−ナフタレート
(以下2.6−PENという)、鞘成分にポリアミドを
主成分となした芯鞘型の複合繊維からなる樹脂ホース補
強用コードに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cord for reinforcing a resin hose.
More specifically, the present invention relates to a resin hose reinforcing cord made of a core-sheath type composite fiber whose core component is polyethylene-2.6-naphthalate (hereinafter referred to as 2.6-PEN) and whose sheath component is polyamide.

[従来の技術] ポリエチレンテレフタレートを主たる繰返し単位とした
ポリエステル繊維からなる補強用コ−ドを補強材として
用いたホースとして、例えば特開昭62−165087
号公報に記載されている。
[Prior Art] A hose using a reinforcing cord made of polyester fiber containing polyethylene terephthalate as a main repeating unit as a reinforcing material is disclosed in, for example, Japanese Patent Application Laid-Open No. 165087/1987.
It is stated in the No.

前記特開昭62−16587号公報に記載された樹脂ホ
ースは、樹脂間中に補強体として、例えばアルミニウム
線材、またはポリ塩化ビニール、ポリプロピレンを螺旋
状に一定間隔で巻回した状態で埋設し、該埋設箇所が他
の外周面よりも外方に突出して補強体のピッチ間に凹部
が螺旋状に形成され、該凹部に添って緊締材が螺旋状に
巻回されるとともに、緊締材と外周面との間に外被部材
が設けられている。
The resin hose described in JP-A No. 62-16587 has aluminum wire, polyvinyl chloride, or polypropylene wrapped spirally at regular intervals and embedded as a reinforcing body between the resin, The buried portion protrudes outward from the other outer circumferential surface, and a recess is formed in a spiral shape between the pitches of the reinforcing body. A sheathing member is provided between the surface and the surface.

[発明が解決しようとする課題] 前記特開@62−165087号公報に記載された樹脂
ホースの場合、補強体を間隙を形成して螺旋状に巻回す
る場合に、補強体を一定間隙とし、一定間隙の凹部を形
成する必要があり、若し、一定間隙でない時には、緊締
材の巻回を一定にすることができなくなり、得られた樹
脂ホースの長さ方向の品質を均一にすることが困難であ
る。
[Problems to be Solved by the Invention] In the case of the resin hose described in the above-mentioned Japanese Patent Application Laid-Open No. 62-165087, when the reinforcing body is wound spirally with a gap formed therein, the reinforcing body is formed with a constant gap. , it is necessary to form recesses with a constant gap, and if the gap is not constant, the winding of the tightening material cannot be constant, and the quality of the resulting resin hose in the length direction cannot be made uniform. is difficult.

また、一定間隙に形成された凹部に緊締材を巻回するが
、この場合緊締材を前記凹部に密着して投入される太さ
とする必要があり、太すぎると凹部の側面と緊締材との
間に隙間が生じ、この隙間部分の耐圧性が低下し、樹脂
ホース全体の耐久性が低下するという課題を有して0た
In addition, the tightening material is wound around a recess formed at a certain gap, but in this case, the tightening material needs to be thick enough to be inserted into the recess in close contact with the recess. There is a problem that a gap is created between the resin hoses, the pressure resistance of the gap portion is reduced, and the durability of the resin hose as a whole is reduced.

本発明の目的は、前記の従来のホースにおける課題を解
消し、樹脂ホースの補強材としてより好ましい特性、す
なわちハイモジュラス、寸法安定性、耐疲労性、樹脂と
の界面剥離耐久性、樹脂中耐熱性を有する樹脂ホース補
強用コードを提供することにある。
The purpose of the present invention is to solve the above-mentioned problems with conventional hoses, and to provide more desirable properties as a reinforcing material for resin hoses, namely, high modulus, dimensional stability, fatigue resistance, interfacial peeling durability with resin, and heat resistance in resin. An object of the present invention is to provide a cord for reinforcing a resin hose that has properties.

[課題を解決するための手段および作用]本発明の構成
は、 (1)樹脂ホース補強用コードにおいて、該コードを形
成する繊維がエチレンナフタレン−2,6−ジカルボキ
シレートを主成分とするポリエチレン−2,6−ナフタ
レートを芯成分とし、該芯成分の周囲にポリアミドを主
成分とする鞘成分となした芯鞘型複合繊維であり、前記
ポリエチレン−2,6ナフタレートからなる芯成分の割
合が30〜90重量%であり、前記複合繊維の強度が7
.0g/d以上、伸度が20%以下、初期引張り抵抗度
が90 g/d以上、乾熱収縮率が5%以下の複合繊維
を撚糸してなることを特徴とする樹脂ホース補強用コー
ド。
[Means and effects for solving the problems] The present invention has the following features: (1) In a resin hose reinforcing cord, the fibers forming the cord are made of polyethylene whose main component is ethylenenaphthalene-2,6-dicarboxylate. - A core-sheath type composite fiber having a core component of 2,6-naphthalate and a sheath component mainly composed of polyamide surrounding the core component, wherein the proportion of the core component consisting of polyethylene-2,6-naphthalate is 30 to 90% by weight, and the strength of the composite fiber is 7.
.. A resin hose reinforcing cord characterized by being made by twisting composite fibers having an elongation of 0 g/d or more, an elongation of 20% or less, an initial tensile resistance of 90 g/d or more, and a dry heat shrinkage rate of 5% or less.

(2)前記(1)において、複合繊維の芯成分を形成す
るポリエチレン−2,6−ナフタレートの極限粘度〔η
〕が0.5以上、複屈折が230X10−3〜350X
10−”密度が1.340g/cm3以上であり、鞘成
分を形成するポリアミドの硫酸相対粘度(77r)が2
.8以上、複屈折が45×104以上、密度が1.13
5g/Cm″以上であり、前記芯成分および鞘成分とも
に高配向、高結晶繊維構造を有することを特徴とする樹
脂ホース補強用コード。
(2) In (1) above, the intrinsic viscosity [η
] is 0.5 or more, birefringence is 230X10-3 to 350X
10-" density is 1.340 g/cm3 or more, and the relative viscosity of sulfuric acid (77r) of the polyamide forming the sheath component is 2.
.. 8 or more, birefringence is 45 x 104 or more, density is 1.13
5 g/Cm'' or more, and wherein both the core component and the sheath component have a highly oriented and highly crystalline fiber structure.

にある。It is in.

本発明に係る樹脂ホース補強用コードは、芯成分か2.
6−PEN、鞘成分がポリアミドからなる複合繊維であ
り、該複合繊維は従来技術では得られなかったものであ
り、ポリエステル以上のハイモジュラスと樹脂中耐熱性
、耐熱接着性、及び芯鞘複合界面のポリマの剥離耐久性
を有し、これらの特性は、芯及び鞘をそれぞれ形成する
2)6−PEN及びポリアミド繊維部分の特定された複
屈折、密度の組合せからなるパラメーターによって示す
ことができる。
The resin hose reinforcing cord according to the present invention has a core component or 2.
6-PEN is a composite fiber whose sheath component is polyamide, which could not be obtained by conventional technology, and has a high modulus higher than that of polyester, heat resistance in resin, heat resistant adhesion, and a core-sheath composite interface. These properties can be indicated by parameters consisting of a combination of 2) the specified birefringence, density of the 6-PEN and polyamide fiber sections forming the core and sheath, respectively;

前記複合繊維の芯成分である2)6−PENは、極限粘
度〔η〕を0.5以上、好ましくは0.6以上とするこ
とによって、該複合繊維の強度を7.0g/d以上とし
得る。
2) 6-PEN, which is the core component of the composite fiber, has an intrinsic viscosity [η] of 0.5 or more, preferably 0.6 or more, so that the strength of the composite fiber is 7.0 g/d or more. obtain.

2.6−PEN芯成分と同様ポリアミド鞘成分ポリマも
高強度複合繊維を得るために高重合度が必要であり、硫
酸相対粘度で2.8以上、好ましくは3.0以上である
。ポリアミド鞘成分には熱酸化劣化防止剤として銅塩、
及びその他の有機、無機化合物が添加されている。特に
沃化鋼、酢酸銅、塩化銅、ステアリン酸銅等の銅塩を銅
として30〜500ppmと沃化カリウム、沃化ナトリ
ウム、臭化カリウム等のハロゲン化アルカリ金属を0.
01〜0.5重量%、及び/或は有機、無機の燐化合物
を0.01〜0.1重量%含有させることが好ましい。
2.6-Like the PEN core component, the polyamide sheath component polymer also requires a high degree of polymerization in order to obtain a high-strength conjugate fiber, and the relative viscosity of sulfuric acid is 2.8 or more, preferably 3.0 or more. The polyamide sheath component contains copper salt as a thermal oxidative deterioration inhibitor.
and other organic and inorganic compounds are added. In particular, copper salts such as iodized steel, copper acetate, copper chloride, and copper stearate are used in an amount of 30 to 500 ppm as copper, and alkali metal halides such as potassium iodide, sodium iodide, and potassium bromide are added in an amount of 0.
It is preferable to contain 0.01 to 0.5% by weight and/or 0.01 to 0.1% by weight of an organic or inorganic phosphorus compound.

前記複合繊維の2.6−PEN芯成分の割合は30〜9
0重量%である。2.6−PEN成分が30重量%未満
では、2.6−PEN成分が有するモジュラス及び寸法
安定性を有効に利用しうる複合繊維とすることができな
く、好ましい樹脂ホース補強用コードを得ることができ
ない。一方、90重量%以上を2.6−PEN芯成分が
占めると、複合繊維を樹脂ホース補強用コードとなし、
該コードを樹脂ホースの補強材として用いた際に、樹脂
との接着性が悪く、樹脂中における樹脂ホース補強用コ
ードの耐熱性等の改良が達せられない。
The ratio of the 2.6-PEN core component of the composite fiber is 30 to 9.
It is 0% by weight. If the 2.6-PEN component is less than 30% by weight, it is impossible to obtain a composite fiber that can effectively utilize the modulus and dimensional stability of the 2.6-PEN component, so that a preferable resin hose reinforcing cord can be obtained. I can't. On the other hand, when the 2.6-PEN core component accounts for 90% by weight or more, the composite fiber is used as a resin hose reinforcing cord,
When the cord is used as a reinforcing material for a resin hose, it has poor adhesion to the resin, making it impossible to improve the heat resistance of the resin hose reinforcing cord in the resin.

前記複合繊維は2.6−PEN芯成分、及びポリアミド
鞘成分いずれも高度に配向、結晶化しており、2.6−
PEN芯成分の複屈折は230×10−3〜350×1
0−sの範囲内に保つようにするのが望ましく、230
X10−”未満では複合繊維の強度を7.0g/d以上
、初期引張り抵抗度を90 g/d以上にならないこと
がある。また、350X10−”を越えていると耐疲労
性の改良がなされないことがある。
In the composite fiber, both the 2.6-PEN core component and the polyamide sheath component are highly oriented and crystallized, and the 2.6-PEN core component and polyamide sheath component are highly oriented and crystallized.
Birefringence of PEN core component is 230×10-3 to 350×1
It is desirable to keep it within the range of 0-s, and 230
If it is less than 350 x 10-", the strength of the composite fiber may not be 7.0 g/d or more and the initial tensile resistance may not be 90 g/d or more. If it exceeds 350 x 10-", the fatigue resistance may not be improved. It may not be done.

一方、ポリアミド鞘成分の複屈折は45×10−3以上
、通常は50X10−”以上と高配向である。複屈折が
45X10−”未満では高強度で高い初期引張り抵抗度
を有する複合繊維を得るのが困難である。
On the other hand, the birefringence of the polyamide sheath component is 45 x 10-3 or more, usually 50 x 10-'' or more, which is highly oriented.If the birefringence is less than 45 x 10-'', a composite fiber with high strength and high initial tensile resistance can be obtained. It is difficult to

芯鞘複合繊維の複屈折の測定は次のようにして行うこと
ができる。即ち、鞘部はそのまま透過干渉顕微鏡で測定
し、芯部はポリアミド鞘成分を蟻酸、硫酸、弗素化アル
コール等で溶解した後透過干渉顕微鏡で測定する。
The birefringence of the core-sheath composite fiber can be measured as follows. That is, the sheath portion is directly measured using a transmission interference microscope, and the core portion is measured using a transmission interference microscope after dissolving the polyamide sheath component in formic acid, sulfuric acid, fluorinated alcohol, or the like.

密度は2.6−PEN芯成分が1.340g/cTrI
3以上、ポリアミド鞘成分が1,135g/cms以上
であり、高度に結晶化していることが望ましく、密度が
それぞれ上記特定の値以上有することによって複合繊維
の寸法安定性、耐疲労性に優れるとともに、樹脂ホース
補強用コードとなし、該コードを樹脂ホースの補強材と
して用いた場合、該補強材の樹脂中の耐熱性が著しく改
良される。
The density is 2.6-PEN core component is 1.340g/cTrI
3 or more, the polyamide sheath component is 1,135 g/cms or more and is preferably highly crystallized, and by having a density of each of the above specific values or more, the composite fiber has excellent dimensional stability and fatigue resistance. When the cord is used as a reinforcing material for a resin hose, the heat resistance of the reinforcing material in the resin is significantly improved.

2.6−PEN芯成分の密度の測定は、ポリアミド鞘成
分を蟻酸、硫酸、弗素化アルコール等で溶解除去して求
め、ポリアミド鞘成分の密度は複合繊維の密度と2.6
−PEN芯部の密度から計算で求めることができる。
2.6-The density of the PEN core component is determined by dissolving and removing the polyamide sheath component with formic acid, sulfuric acid, fluorinated alcohol, etc., and the density of the polyamide sheath component is 2.6 times the density of the composite fiber.
- It can be calculated from the density of the PEN core.

上記によって特徴づけられる複合繊維は7゜0g/d以
上の高強度、90 g/d以上の初期引張り抵抗度を有
し、伸度は20%以下である。
The composite fiber characterized by the above has a high strength of 7°0 g/d or more, an initial tensile resistance of 90 g/d or more, and an elongation of 20% or less.

より好ましい複合繊維の特性は強度7.3g/d以上、
初期引張り抵抗度100g/d以上、伸度は8〜16%
であり、これは前記条件を適正に組合わせることによっ
て達せられる。
More preferable properties of composite fibers are strength of 7.3 g/d or more;
Initial tensile resistance 100g/d or more, elongation 8-16%
This can be achieved by appropriately combining the above conditions.

前記複合繊維は以下に示す新規な方法によって製造され
る。
The composite fiber is manufactured by the novel method shown below.

前記した2)6−PEN芯成分のポリマ物性を得るため
には、極限粘度〔η〕が0.5以上、通常は0.6以上
の実質的に2.6−PENからなるポリマを用いる。
In order to obtain the above-mentioned 2) polymer physical properties of the 6-PEN core component, a polymer consisting essentially of 2.6-PEN with an intrinsic viscosity [η] of 0.5 or more, usually 0.6 or more is used.

ポリアミド鞘成分ポリマは硫酸相対粘度で2゜8以上、
通常は3.0以上の高重合度ポリマを用いる。
The polyamide sheath component polymer has a sulfuric acid relative viscosity of 2°8 or more,
Usually, a polymer with a high polymerization degree of 3.0 or more is used.

該ポリマの溶融紡糸には2基のエクストルーダー型紡糸
機を用いることが好ましい。それぞれのエクストルーダ
ーで溶融された2)6−PEN及びポリアミドポリマを
複合紡糸パックに導き、複合紡糸用口金を通して芯部に
2.6−PEN、鞘部にポリアミドを配した複合繊維と
して紡糸し、紡出糸条となす。
It is preferable to use two extruder type spinning machines for melt spinning the polymer. 2) 6-PEN and polyamide polymer melted in each extruder are introduced into a composite spinning pack, passed through a composite spinning nozzle, and spun into a composite fiber with 2.6-PEN in the core and polyamide in the sheath, Spun yarn and eggplant.

紡糸速度は300m/分以上とする。紡糸口金直下には
10cm以上、1m以内にわたって200℃以上、好ま
しくは260’C以上の加熱雰囲気を保温筒、加熱筒等
を設けることによってつくる。前記紡出糸条は上記加熱
雰囲気中を通過したのち冷風で急冷固化され、次いで油
剤を付与された後紡糸速度を制御する引取りロールで引
取られる。前記口金直下の加熱雰囲気の制御は曳糸性を
保持するため重要である。引取られた未延伸糸は通常−
旦巻取ることなく連続して延伸する。
The spinning speed is 300 m/min or more. Immediately below the spinneret, a heated atmosphere of 200° C. or higher, preferably 260° C. or higher is created over a distance of 10 cm or more and within 1 m by providing a heat insulating cylinder, a heating cylinder, etc. After passing through the heating atmosphere, the spun yarn is quenched and solidified with cold air, and after being applied with an oil agent, it is taken off by a take-off roll that controls the spinning speed. Control of the heating atmosphere directly under the spinneret is important in order to maintain stringiness. The undrawn yarn taken off is usually -
Stretch continuously without winding up.

次に該未延伸糸は連続して180℃以上、好ましくは2
00℃以上の温度で熱延伸される。
Next, the undrawn yarn is continuously heated to 180°C or higher, preferably 2°C.
It is hot stretched at a temperature of 00°C or higher.

延伸は2段以上、通常は3段以上の多段で行い、延伸倍
率は2.0〜6.5倍の範囲である。本発明のかかる高
温熱延伸の採用は複合界面耐久性の改良に寄与している
。該延伸による3段目の延伸温度が低く、例えば160
℃未満ではしばしば延伸によって、また180℃未満で
延伸した場合は、樹脂ホース加工時及び樹脂ホースを高
圧で繰返し使用した場合に、2.6−PEN芯成分とポ
リアミド鞘成分との界面剥離が生じることがある。また
延伸倍率が6.5倍以上になると延伸時の変形が大きく
界面剥離が生じることがあり、また耐疲労性が低下する
ことがあり好ましくない。
The stretching is carried out in two or more stages, usually three or more stages, and the stretching ratio is in the range of 2.0 to 6.5 times. Adoption of such high-temperature hot stretching according to the present invention contributes to improving the durability of the composite interface. The stretching temperature in the third stage of the stretching is low, for example 160
At temperatures below 180°C, interfacial delamination between the 2.6-PEN core component and the polyamide sheath component often occurs during stretching, and when stretching at temperatures below 180°C, during resin hose processing and when the resin hose is repeatedly used at high pressure. Sometimes. Furthermore, if the stretching ratio is 6.5 times or more, deformation during stretching may be large and interfacial peeling may occur, and fatigue resistance may be lowered, which is not preferable.

前記本発明に係る樹脂ホース補強用コードを形成する前
記複合繊維を用いて樹脂ホースを得る方法としては、例
えば得られた延伸糸を加熱して未処理コードとする。
As a method for obtaining a resin hose using the composite fiber forming the resin hose reinforcing cord according to the present invention, for example, the obtained drawn yarn is heated to form an untreated cord.

また本発明で特定する複合繊維を用いてホースを形成す
る場合、前記複合繊維からなるコード、コードを製織し
た織物、またはブレードの段階でホースに用いられる樹
脂との界面剥離耐久性を有する、例えばエポキシ樹脂、
フェノール樹脂、レゾルシン、ホルマリン、ラテックス
などを主成分とする組成物を塗布してもよい。
In addition, when forming a hose using the composite fiber specified in the present invention, a cord made of the composite fiber, a fabric woven from the cord, or a cord having interfacial peeling durability with the resin used for the hose at the braid stage, for example, Epoxy resin,
A composition containing phenolic resin, resorcinol, formalin, latex, etc. as a main component may be applied.

本発明に係る樹脂補強用コードを用いてホースを得る場
合、例えばJ I 5−D2606 (1980) 、
J IS−に6335 (1984)、J I S−に
6339 (1982) 、およびJIS−に6342
 (1982)の構造、加工方法に準じて容易に製造す
ることができる。
When obtaining a hose using the resin reinforcing cord according to the present invention, for example, J I 5-D2606 (1980),
JIS-6335 (1984), JIS-6339 (1982), and JIS-6342
(1982), it can be easily manufactured according to the structure and processing method.

[実施例コ 実施例1及び2)比較例1乃至3 極限粘度〔η)0.80のポリエチレン−2゜6−ナフ
タレート(2,6−PEN)及び沃化鋼0.02重量%
と沃化カリウム0.1重量%を含むヘキサメチレンアジ
パミド(N66:硫酸相対粘度ηr3.3)をそれぞれ
40φ工クストルーダー型紡糸機で溶融し、複合紡糸バ
ックに導き、芯鞘複合紡糸口金より芯部に2,6PEN
、鞘部にポリアミドの複合糸として紡出し紡出糸条とし
た。該紡出糸の芯成分及び鞘成分の割合は第1表のよう
に変化させた。口金は孔径0,4mmφ、孔数120ホ
ールを用いた。
[Example 1 and 2] Comparative Examples 1 to 3 Polyethylene-2°6-naphthalate (2,6-PEN) with intrinsic viscosity [η) of 0.80 and iodized steel 0.02% by weight
and hexamethylene adipamide (N66: sulfuric acid relative viscosity ηr 3.3) containing 0.1% by weight of potassium iodide were each melted in a 40φ engineering spinner, guided into a composite spinning bag, and then passed through a core-sheath composite spinneret. 2.6PEN in the core
The sheath part was spun as a composite yarn of polyamide to obtain a spun yarn. The proportions of the core component and sheath component of the spun yarn were varied as shown in Table 1. The cap used had a hole diameter of 0.4 mmφ and 120 holes.

ポリマー温度は2.6−PENを300℃、ポリアミド
を290℃でそれぞれ溶融し、紡糸パック温度を300
℃として紡出した。口金直下には30cmの加熱筒を取
り付け、筒内雰囲気温度を290℃となるように加熱し
た。
The polymer temperature was 2.6-PEN was melted at 300°C and polyamide was melted at 290°C, and the spinning pack temperature was set at 300°C.
Spun as ℃. A 30 cm heating cylinder was attached directly below the mouthpiece, and the atmosphere inside the cylinder was heated to 290°C.

雰囲気温度とは口金面より10cm下の位置で前記紡出
糸における最外周を走行する単糸から1co+離れた位
置で測定した雰囲気温度である。
The atmospheric temperature is the atmospheric temperature measured at a position 10 cm below the spinneret surface and 1 co+ away from the single yarn running on the outermost circumference of the spun yarn.

加熱筒の下には長さ400 mmの環状型チムニ−を取
り付け、糸条の周囲より25℃で40m/分の冷風を糸
条に直角に吹き付は冷却した。
An annular chimney with a length of 400 mm was installed under the heating cylinder, and cold air was blown at a rate of 40 m/min at 25° C. from around the yarn at a right angle to the yarn to cool the yarn.

ついで油剤を付与した後、第1表に示した速度で回転す
る引取りロールで糸条速度を制御した後−旦巻取ること
なく連続して延伸した。延伸は5対のネルソン型ロール
によって3段延伸した後3%のリラックスを与えて弛緩
熱処理し・て巻取った。延伸条件は、引取りロール温度
を60℃、第1延伸ロール温度を120℃、第2延伸ロ
ール温度を190℃、第3延伸ロール温度を225℃、
延伸後の張力調整ロールは非加熱とし、1段延伸倍率は
全延伸倍率の70%、残りを2段階に分けて配分し延伸
した。紡糸速度、全延伸倍率等を変化させて製糸したが
、延伸糸の繊度が約500デニールとなるよう紡糸速度
、延伸倍率に対応させて吐出量を変化させた(実施例1
,2)比較例1)。得られた延伸糸は3本合糸して15
00デニールどした。
After applying an oil agent, the yarn speed was controlled with a take-up roll rotating at the speed shown in Table 1, and then the yarn was drawn continuously without being wound up. The film was stretched in three stages using five pairs of Nelson type rolls, then subjected to a relaxation heat treatment with 3% relaxation, and then wound up. The stretching conditions were as follows: take-up roll temperature at 60°C, first stretching roll temperature at 120°C, second stretching roll temperature at 190°C, third stretching roll temperature at 225°C.
The tension adjustment roll after stretching was not heated, and the first stage stretching ratio was 70% of the total stretching ratio, and the remainder was divided into two stages for stretching. The yarn was produced by varying the spinning speed, total draw ratio, etc., and the discharge amount was changed in accordance with the spinning speed and draw ratio so that the fineness of the drawn yarn was approximately 500 denier (Example 1)
, 2) Comparative Example 1). Three of the obtained drawn yarns were combined into 15
What happened to 00 denier?

製糸条件、得られた延伸糸特性、及び繊維構造パラメー
ターをポリエチレンテレフタレート(PET)繊維(1
500−288−702G)(比較例2)及びナイロン
66繊維(1260−204−1781)(比較例3)
について比較試験を行った。各条件及び繊維特性第1表
に示すとおりである。
The spinning conditions, the obtained drawn yarn properties, and the fiber structure parameters were determined using polyethylene terephthalate (PET) fiber (1
500-288-702G) (Comparative Example 2) and Nylon 66 fiber (1260-204-1781) (Comparative Example 3)
A comparative test was conducted on the following. Each condition and fiber properties are as shown in Table 1.

(以下余白) 前記第1表に示した各繊維を用いてこれらの繊維に上撚
及び下撚をそれぞれ反対方向に40T/10cmづつか
けて1500/2の生コードとした。但し、比較例3の
N66は撚数を39T/10cmとし、1260/2の
生コードとした。この生コードをリツラー社製ディッピ
ング機を用いて、常法によって接着剤付与及び熱処理を
してデイツプコードとした。
(The following is a blank space) Using each of the fibers shown in Table 1 above, these fibers were twisted and twisted in opposite directions at a rate of 40T/10cm to form a 1500/2 raw cord. However, N66 of Comparative Example 3 had a twist number of 39T/10cm and was made into a raw cord of 1260/2. This raw cord was applied with an adhesive and heat-treated in a conventional manner using a dipping machine manufactured by Ritzler to obtain a dip cord.

デイツプ液は20%のレゾルシン、ホルマリン、ラテッ
クスからなる接着剤成分を含み、接着剤成分がコードに
約4%付着するよう調整した。熱処理は225℃で80
秒、デイツプコードの中間伸度が約5%となるようスト
レッチをかけながら処理した。ナイロン66は同様熱処
理条件で、中間伸度が約9%となるようストレッチして
処理した。また、PETは常法により2浴接着処理を行
い、熱処理は240℃、120秒行い、中間伸度が約5
%となるようストレッチして処理した。
The dip liquid contained an adhesive component consisting of 20% resorcinol, formalin, and latex, and was adjusted so that about 4% of the adhesive component adhered to the cord. Heat treatment is 225℃ and 80℃
The process was performed while stretching the dip cord so that its intermediate elongation was approximately 5%. Nylon 66 was stretched under the same heat treatment conditions so that the intermediate elongation was approximately 9%. In addition, PET was subjected to two-bath adhesion treatment using a conventional method, and heat treatment was performed at 240°C for 120 seconds, resulting in an intermediate elongation of approximately 5.
%.

かくして得られたデイツプコードについて、樹脂ホース
の補強材として用いる場合と同様に樹脂中に埋設した試
験片を作り、樹脂中耐熱性、接着性、耐疲労性等を評価
した。結果は第2表に示すとおりであった。
Regarding the thus obtained dip cord, a test piece was made embedded in resin in the same manner as when used as a reinforcing material for a resin hose, and the heat resistance, adhesion, fatigue resistance, etc. in the resin were evaluated. The results were as shown in Table 2.

(以下余白) 本発明に係る樹脂ホース補強用コードは、従来のポリエ
ステル繊維コード以上のモジュラス、及び寸法安定性を
有し、さらに従来のポリエステル繊維コードに比して、
樹脂中の耐熱性、耐熱接着性、及び耐疲労性が著しく改
良された高強力コードであることを示している。
(The following is a blank space) The resin hose reinforcing cord according to the present invention has a modulus and dimensional stability higher than that of a conventional polyester fiber cord, and also has a higher modulus and dimensional stability than a conventional polyester fiber cord.
This shows that it is a high-strength cord with significantly improved heat resistance, heat-resistant adhesion, and fatigue resistance in the resin.

さらに、本発明に係る樹脂ホース補強用コードは、従来
のナイロン繊維コードに比して、モジュラス、及び寸法
安定性が著しく改良されている。
Furthermore, the resin hose reinforcing cord according to the present invention has significantly improved modulus and dimensional stability compared to conventional nylon fiber cords.

[発明の効果] 本発明に係る樹脂ホース補強用コードは、従来のポリエ
ステル以上のモジュラス、改良された寸法安定性を有し
、かつ従来のポリエステルからなる補強用コードを埋設
した樹脂ホースに比べ、本発明に係る樹脂ホース中に埋
設されたコードの樹脂中耐熱性、接着性、特に高温履歴
を受けた後の耐熱接着性、及び耐疲労性が著しく改良さ
れ、そのため樹脂ホースの圧力変化等による繰返し疲労
に対する耐久性が極めて良好となる。
[Effects of the Invention] The resin hose reinforcing cord according to the present invention has a modulus higher than that of conventional polyester, improved dimensional stability, and has a higher modulus than that of conventional polyester, and has a reinforcing cord made of conventional polyester. The heat resistance and adhesion in the resin of the cord embedded in the resin hose according to the present invention, especially the heat resistance adhesion and fatigue resistance after being subjected to high temperature history, are significantly improved, and therefore The durability against repeated fatigue is extremely good.

Claims (2)

【特許請求の範囲】[Claims] (1)樹脂ホース補強用コードにおいて、該コードを形
成する繊維がエチレンナフタレン−2,6−ジカルボキ
シレートを主成分とするポリエチレン−2,6−ナフタ
レートを芯成分とし、該芯成分の周囲にポリアミドを主
成分とする鞘成分となした芯鞘型の複合繊維であり、前
記該複合繊維を形成する芯成分の割合が30〜90重量
%であり、前記複合繊維の強度が7.0g/d以上、伸
度が20%以下、初期引張り抵抗度が90g/d以上、
乾熱収縮率が5%以下であり、前記複合繊維を撚糸して
なることを特徴とする樹脂ホース補強用コード。
(1) In a resin hose reinforcing cord, the fibers forming the cord have a core component of polyethylene-2,6-naphthalate whose main component is ethylene-naphthalene-2,6-dicarboxylate; It is a core-sheath type composite fiber with a sheath component mainly composed of polyamide, the proportion of the core component forming the composite fiber is 30 to 90% by weight, and the strength of the composite fiber is 7.0 g / d or more, elongation is 20% or less, initial tensile resistance is 90 g/d or more,
A cord for reinforcing a resin hose, which has a dry heat shrinkage rate of 5% or less and is made by twisting the composite fibers described above.
(2)特許請求の範囲第(1)項において、複合繊維の
芯成分を形成するポリエチレン−2,6−ナフタレート
の極限粘度〔η〕が0.5以上、複屈折が230×10
^−^3〜350×10^−^3、密度が1.340g
/cm^3以上であり、鞘成分を形成するポリアミドの
硫酸相対粘度(ηr)が2.8以上、複屈折が45×1
0^−^3以上、密度が1.135g/cm^3以上で
あり、前記芯成分および鞘成分ともに高配向、高結晶繊
維構造を有することを特徴とする樹脂ホース補強用コー
ド。
(2) In claim (1), polyethylene-2,6-naphthalate forming the core component of the composite fiber has an intrinsic viscosity [η] of 0.5 or more and a birefringence of 230×10
^-^3~350x10^-^3, density 1.340g
/cm^3 or more, the sulfuric acid relative viscosity (ηr) of the polyamide forming the sheath component is 2.8 or more, and the birefringence is 45×1
0^-^3 or more, a density of 1.135 g/cm^3 or more, and both the core component and sheath component have a highly oriented and highly crystalline fiber structure.
JP9556390A 1990-04-10 1990-04-10 Cord for reinforcing resin hose Pending JPH03294536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9556390A JPH03294536A (en) 1990-04-10 1990-04-10 Cord for reinforcing resin hose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9556390A JPH03294536A (en) 1990-04-10 1990-04-10 Cord for reinforcing resin hose

Publications (1)

Publication Number Publication Date
JPH03294536A true JPH03294536A (en) 1991-12-25

Family

ID=14141059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9556390A Pending JPH03294536A (en) 1990-04-10 1990-04-10 Cord for reinforcing resin hose

Country Status (1)

Country Link
JP (1) JPH03294536A (en)

Similar Documents

Publication Publication Date Title
AU606462B2 (en) High-tenacity conjugated fiber and process for preparation thereof
KR102127495B1 (en) Poly(ethyleneterephthalate) Yarn, Method for Manufacturing The Same, and Tire Cord Manufactured Using The Same
JP3229084B2 (en) Method for producing polyester fiber
JPH11222775A (en) Cord for reinforcing rubber
JP3238618B2 (en) Method of manufacturing polyester cord for reinforcing rubber hose
JPH03294537A (en) Cord for reinforcing rubber hose
JPH03294536A (en) Cord for reinforcing resin hose
JPH02147328A (en) Cord for reinforcing resin hose
JPH0440A (en) Power transmission belt reinforcing belt and power transmission belt
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
JP2659724B2 (en) Manufacturing method of high strength composite fiber
JPH0441A (en) Toothed belt
JPH02147327A (en) Cord for reinforcing rubber hose
KR102241107B1 (en) Cap ply cord and manufacturing method of the same
JPH03297713A (en) Conveyer belt reinforcing material and conveyer belt
JPH02150529A (en) Toothed belt
JP2858429B2 (en) Method for producing polyester filament system provided with pre-adhesive and tire cord produced from this polyester filament system
JPH0274610A (en) Conjugate fiber having high tenacity and excellent durability
JPH0274612A (en) Conjugate fiber having high tenacity
JPH02150528A (en) Cord for reinforcing power transmission belt and power transmission belt
JPH03146714A (en) Conjugated fiber
JPH03294519A (en) Sheath-core conjugate fiber
KR910004458B1 (en) High-tenacity conjugated fiber and process for preparation thereof
JPH02145813A (en) Conjugate fiber having high strength and production thereof
JPS61245307A (en) Production of specific filament of polyester