JPH02150528A - Cord for reinforcing power transmission belt and power transmission belt - Google Patents

Cord for reinforcing power transmission belt and power transmission belt

Info

Publication number
JPH02150528A
JPH02150528A JP30263888A JP30263888A JPH02150528A JP H02150528 A JPH02150528 A JP H02150528A JP 30263888 A JP30263888 A JP 30263888A JP 30263888 A JP30263888 A JP 30263888A JP H02150528 A JPH02150528 A JP H02150528A
Authority
JP
Japan
Prior art keywords
power transmission
transmission belt
cord
component
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30263888A
Other languages
Japanese (ja)
Inventor
Akira Ogura
小椋 彬
Takuji Sato
卓治 佐藤
Masayuki Sato
正幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP30263888A priority Critical patent/JPH02150528A/en
Publication of JPH02150528A publication Critical patent/JPH02150528A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve characteristics of a reinforcing cord and a power transmission belt where the cord is buried by using a special core-sheath compound fiber as a fiber forming a power transmission belt reinforcing cord. CONSTITUTION:A power transmission belt reinforcing cord is formed by a core-sheath compound fiber composed of core component, the principal component of which is polyester composed of ethylene terephthalate and a sheath component, the principal component of which is polyamide wrapping the periphery of the above core component. The core-sheath compound fiber is such that the percentage of polyester component is 30 - 90wt%, the strength is 7.5g/d or more, the elongation is 20% or less, the initial tensile resistance is 60g/d or more, and the hot air shrinkage percentage is 70% or less. Accordingly, the reinforcing cord has high modulus and dimensional stability, and a power transmission belt where the reinforcing cord is buried is remarkably improved in heat-resistance adhesive property and fatigue-resistance after it is subjected to treatment of rubber heat resistance and high temperature hysteresis of a cord buried in the belt, so that the durability of the belt can be remarkably improved.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は動力伝達ベルト補強用コードに関するものであ
り、詳しくは芯成分にポリエステル、鞘成分にポリアミ
ドを主成分となした複合繊維からなる動力伝達ベルト補
強用コードに関するもので、特に前記複合繊維の特性に
特徴を有するものである。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a cord for reinforcing power transmission belts, and more specifically, a cord for reinforcing power transmission belts. The present invention relates to a cord for reinforcing a transmission belt, and is particularly characterized by the characteristics of the composite fiber.

また、本発明は前記の動力伝達ベルト補強用コードを抗
張体としてゴム中に埋設したタイミングベルト、■ベル
トなどの動力伝達ベルトに関するものである。
The present invention also relates to a power transmission belt, such as a timing belt or a belt, in which the power transmission belt reinforcing cord described above is embedded in rubber as a tensile member.

[従来の技術] ポリエチレンテレフタレート繊維を代表とするポリエス
テル繊維は高強力、高弾性率の特徴を有し、動力伝達用
ベルトの補強用コードとして用いられている。しかし、
該動力伝達ベルトの場合、駆動時の蓄積された熱によっ
て、前記ポリエステル繊維からなるコードは熱劣化して
強力低下し、ゴムとの接着性を失い剥離するという欠点
を有していた。このポリエステル繊維とゴムとの接着性
を改良する手段として、ポリエステルを芯成分としポリ
アミドを鞘成分となした複合繊維について、例えば特開
昭49−85315号公報及び特公昭62−42061
号公報に記載されている。
[Prior Art] Polyester fibers, typically polyethylene terephthalate fibers, have the characteristics of high strength and high elastic modulus, and are used as reinforcing cords for power transmission belts. but,
In the case of the power transmission belt, the cord made of polyester fibers deteriorates due to the heat accumulated during driving, resulting in a decrease in strength, loss of adhesion to the rubber, and peeling. As a means to improve the adhesion between polyester fibers and rubber, composite fibers containing polyester as a core component and polyamide as a sheath component are disclosed, for example, in JP-A-49-85315 and JP-B-Sho 62-42061.
It is stated in the No.

[発明が解決しようとする課題] 前記特開昭49−85315号公報及び特公昭62−4
2061号公報の方法で提案されている芯鞘複合構造の
繊維は鞘のポリアミド成分により改良されたゴムとの接
着性をもたせ、芯のポリエステル成分によってモジュラ
スや寸法安定性を保持しようとしたものであった。該方
法によって確かに接着性は十分に改良されるものの、モ
ジュラス、寸法安定性は鞘のナイロン成分を多くするに
従い、低下してしまい、ポリエステル繊維の有するモジ
ュラスと寸法安定性を十分保持することはできなかった
し、一方ナイロンの有するゴム中耐熱性や耐疲労性等を
十分生かすことができなかった。
[Problem to be solved by the invention] The above-mentioned Japanese Patent Application Laid-Open No. 49-85315 and Japanese Patent Publication No. 62-4
The fiber with a core-sheath composite structure proposed by the method of Publication No. 2061 is intended to have improved adhesion to rubber by the polyamide component of the sheath, and to maintain modulus and dimensional stability by the polyester component of the core. there were. Although adhesion is certainly improved sufficiently by this method, the modulus and dimensional stability decrease as the nylon component of the sheath increases, and it is difficult to sufficiently maintain the modulus and dimensional stability of polyester fibers. On the other hand, it was not possible to fully utilize the heat resistance and fatigue resistance of nylon in rubber.

またポリエチレンテレフタレートのような通常のポリエ
ステルとナイロン6やナイロン66のような通常のポリ
アミドとはポリマ同志の相溶性が悪いため、通常の製造
方法で製造した場合は芯鞘複合構造の両ポリマ界面で剥
離破壊しやすく実用しうる十分な耐久性を有するものを
得ることはできなかった。
In addition, ordinary polyesters such as polyethylene terephthalate and ordinary polyamides such as nylon 6 and nylon 66 have poor compatibility with each other, so when manufactured using normal manufacturing methods, the interface between the two polymers in the core-sheath composite structure It was not possible to obtain a material that was easily peeled off and had sufficient durability for practical use.

また、ポリエステル繊維は一般にゴム中での耐熱性が劣
る。即ち、高温下ではゴム中の水分やアミン化合物の作
用によって、ポリエステル繊維のエステル結合部が切断
し、強力低下を引き起こす。またゴムとの接着性も劣り
、特に高温雰囲気下に長時間繰り返し曝されるとゴムと
の接着力が著しく低下し、このようなポリエステル繊維
からなる動力伝達ベルト補強用コードを動力伝達ベルト
に用いた場合、ポリエステル繊維の特徴である高強度、
ハイモジュラス性能は効力を発揮するものの、動力伝達
ベルトを駆動じた場合には、該動力伝達ベルトが高熱と
なす、ポリエステル繊維は熱劣化して強力低下し、ゴム
との接着力が低下するという欠点を有していた。通常の
製糸方法で製造した場合は芯鞘複合構造の両ポリマ界面
で剥離破壊しやすく実用できる十分な耐久性をもたなか
った。特に延伸工程、撚糸、ディッピング等の動力伝達
ベルト加工工程、ベルト加硫工程、及びベルト駆動時に
受ける繰り返し伸長圧縮疲労によってポリマ界面が破壊
され、本来の芯鞘複合繊維に期待する性能が得られなか
った。
Additionally, polyester fibers generally have poor heat resistance in rubber. That is, at high temperatures, the ester bonds of polyester fibers are broken due to the action of moisture and amine compounds in the rubber, causing a decrease in strength. It also has poor adhesion to rubber, especially when repeatedly exposed to high-temperature atmospheres for long periods of time, and the adhesion to rubber decreases significantly, making it difficult to use power transmission belt reinforcing cords made of such polyester fibers in power transmission belts. High strength, which is a characteristic of polyester fibers,
Although the high modulus performance is effective, when the power transmission belt is driven, the power transmission belt becomes heated, the polyester fiber deteriorates due to heat, and its strength decreases, and the adhesive force with rubber decreases. It had drawbacks. When produced using a normal yarn spinning method, the core-sheath composite structure was prone to peeling and fracture at the interface between both polymers, and did not have sufficient durability for practical use. In particular, the polymer interface is destroyed by the repeated stretching and compression fatigue experienced during the drawing process, power transmission belt processing process such as twisting, dipping, belt vulcanization process, and belt driving, making it impossible to obtain the performance expected of the original core-sheath composite fiber. Ta.

本発明は上記問題点を克服することにより、ゴムとの接
着性に優れ、ポリエステルに近いハイモジュラスと寸法
安定性を有し、ゴム中耐熱性及び耐疲労性の改良された
動力伝達ベルトの補強用に好適な動力伝達ベルト補強用
コード及び該コードで補強された動力伝達ベルトを提供
することにある。特に従来技術では達せられなかったハ
イモジュラス、改良された寸法安定性、改良されたゴム
中における耐熱性(以下ゴム中耐熱性という)を有し、
かつ芯鞘複合界面のボリマの剥離に対して十分な耐久性
を有する動力伝達ベルト補強用コード及び該コードで補
強された動力伝達ベルトを提供することにある。
By overcoming the above problems, the present invention provides reinforcement for power transmission belts that have excellent adhesion to rubber, high modulus and dimensional stability close to those of polyester, and improved heat resistance and fatigue resistance in rubber. It is an object of the present invention to provide a cord for reinforcing a power transmission belt suitable for use in applications, and a power transmission belt reinforced with the cord. In particular, it has high modulus, improved dimensional stability, and improved heat resistance in rubber (hereinafter referred to as heat resistance in rubber) that could not be achieved with conventional technology.
It is also an object of the present invention to provide a power transmission belt reinforcing cord that has sufficient durability against peeling of the bolimar at the core-sheath composite interface, and a power transmission belt reinforced with the cord.

し課題を解決するための手段および作用]本発明の構成
は、 (1)動力伝達ベルト補強用コードにおいて、該コード
を形成する繊維がエヂレンテレフタレートを主成分とす
るポリエステルを芯成分と、該芯成分の周囲にポリアミ
ドを主成分とする鞘成分とからなる芯鞘型複合繊維であ
り、該複合繊維における前記ポリエステルからなる芯成
分の割合が30〜90重量%であり、前記複合繊維の強
度が7゜50/d以上、伸度が20%以下、初期引張り
抵抗度が600/d以上、乾熱収縮率が7%以下である
ことを特徴とする動力伝達ベルト補強用コード。
[Means and effects for solving the problems] The present invention has the following features: (1) A cord for reinforcing a power transmission belt, in which the fibers forming the cord have a core component of polyester containing ethylene terephthalate as a main component; It is a core-sheath type composite fiber consisting of a core component and a sheath component mainly composed of polyamide, and the proportion of the core component made of polyester in the composite fiber is 30 to 90% by weight, and the strength of the composite fiber is 1. A cord for reinforcing a power transmission belt, characterized in that: is 7°50/d or more, elongation is 20% or less, initial tensile resistance is 600/d or more, and dry heat shrinkage is 7% or less.

(2)前記(1)の動力伝達ベルト補強用コードにおい
て、複合繊維のターミナルモジュラスが20 g/d以
下、初期引張り抵抗度が9C1/d以上であることを特
徴とする動力伝達ベルト補強用コード。
(2) In the power transmission belt reinforcing cord of (1) above, the power transmission belt reinforcing cord is characterized in that the terminal modulus of the composite fiber is 20 g/d or less and the initial tensile resistance is 9C1/d or more. .

(3)前記(1)の動力伝達ベルト補強用コードにおい
て、複合繊維の芯成分を形成するポリエステルの極限粘
度(η)が0.8以上、複屈折が160X10’〜19
0X10−3、密度が1.395g/ca+”以上、D
SCで測定した融解曲線のピーク温度が247℃以上で
あり、鞘成分を形成するポリアミドの硫酸相対粘度(η
r)が2.8以上、複屈折が50X10−3以上、密度
が1゜140q/cI113以上であり、前記芯成分お
よび鞘成分ともに高配向、高結晶繊維構造を有すること
を特徴とする動力伝達ベルト補強用コード。
(3) In the power transmission belt reinforcing cord of (1) above, the polyester forming the core component of the composite fiber has an intrinsic viscosity (η) of 0.8 or more and a birefringence of 160X10' to 19
0X10-3, density 1.395g/ca+” or more, D
The peak temperature of the melting curve measured by SC is 247°C or higher, and the relative sulfuric acid viscosity (η
r) is 2.8 or more, birefringence is 50X10-3 or more, density is 1°140q/cI113 or more, and both the core component and sheath component have a highly oriented and highly crystalline fiber structure. Cord for belt reinforcement.

(4)動力伝達ベルトにおいて、前記(1)に記載の動
力伝達ベルト補強用コードをデイツプ処理して得られた
表面にレゾルシン、ホルマリン、ラテックス層が形成さ
れた処理コードを抗張体としてゴム中に埋設されてなる
ことを特徴とする動力伝達ベル1〜にある。
(4) In the power transmission belt, the treated cord obtained by deep-treating the power transmission belt reinforcing cord described in (1) above and having a layer of resorcinol, formalin, or latex formed on the surface is used as a tensile material in rubber. The power transmission bell 1 is characterized by being embedded in the bell.

本発明に係る動力伝達ベルト補強用のコードとして適用
される複合繊維は、従来技術では達せられなかった、ポ
リエステルに近いハイモジュラスとゴム中耐熱性、およ
び芯鞘複合界面のポリマの剥離耐久性は芯及び鞘をそれ
ぞれ形成するポリエステル及びポリアミド繊維部分の特
定された複屈折、密度、及びDSC融解ピーク温度、及
びポリエステル芯成分繊維の高い初期引張り抵抗度と低
いターミナルモジュラスの組合せからなるパラメーター
によって示ずことができる。
The composite fiber used as the cord for reinforcing the power transmission belt according to the present invention has a high modulus close to that of polyester, heat resistance in rubber, and peeling durability of the polymer at the core-sheath composite interface, which were not achieved with conventional technology. determined by the specified birefringence, density, and DSC melting peak temperature of the polyester and polyamide fiber portions forming the core and sheath, respectively, and by parameters consisting of a combination of high initial tensile resistance and low terminal modulus of the polyester core component fibers. be able to.

複合繊維の強度7.5cx/d以上を得るために芯成分
のポリエチレンテレフタレート繊維は極限粘度(η)は
0.7以上、好ましくは0゜8以上と高粘痕である。
In order to obtain a composite fiber strength of 7.5 cx/d or more, the core component polyethylene terephthalate fiber has a high intrinsic viscosity (η) of 0.7 or more, preferably 0°8 or more.

ポリエステル芯成分と同様ポリアミド鞘成分ポリマも高
強度複合繊維をえるために高重合度が必要であり、硫酸
相対粘度で2.8以上、好ましくは3.0以上である。
Similar to the polyester core component, the polyamide sheath component polymer also requires a high degree of polymerization in order to obtain a high-strength conjugate fiber, and the relative viscosity of sulfuric acid is 2.8 or more, preferably 3.0 or more.

ポリアミド鞘成分には熱酸化劣化防止剤として銅塩、及
びその他の有機、無機化合物が添加されている。特に沃
化鋼、酢酸銅、塩化銅、ステアリン酸銅等の銅塩を銅と
して30〜5ooppmと沃化カリウム、沃化ナトリウ
ム、臭化カリウム等のハロゲン化アルカリ金属を0.0
1〜0.5重量%、及び/或は有機、無機の燐化合物を
0.01〜0.1重量%含有させることが好ましい。
Copper salts and other organic and inorganic compounds are added to the polyamide sheath component as thermal oxidative deterioration inhibitors. In particular, copper salts such as iodized steel, copper acetate, copper chloride, and copper stearate are used as copper at 30 to 5 ooppm, and alkali metal halides such as potassium iodide, sodium iodide, and potassium bromide are added at 0.0 ooppm.
It is preferable to contain 1 to 0.5% by weight and/or 0.01 to 0.1% by weight of an organic or inorganic phosphorus compound.

前記複合Il雑のポリエステル芯成分の割合は30〜9
0重量%である。ポリエステル成分が30重壷%未満で
はポリエステル成分が有するモジュラス及び寸法安定性
を有効に利用しつる複合繊維とすることができなく、好
ましい動力伝達ベルト補強用コードを得ることができな
い。
The ratio of the polyester core component of the composite Il miscellaneous is 30 to 9
It is 0% by weight. If the polyester component is less than 30% by weight, it is not possible to effectively utilize the modulus and dimensional stability of the polyester component to form a vine composite fiber, and it is not possible to obtain a preferred cord for reinforcing a power transmission belt.

一方、90重量%以上をポリエステル芯成分が占めると
、複合m*を動力伝達ベルト補強用コードとなし、該コ
ードを動力伝達ベルトの抗張体として用いた際に、ゴム
との接着性が悪く、ゴム中における動力伝達ベルト補強
用コードの耐熱性等の改良が達せられない。
On the other hand, if the polyester core component accounts for 90% by weight or more, when the composite m* is used as a cord for reinforcing a power transmission belt and the cord is used as a tensile member of a power transmission belt, the adhesion to rubber is poor. However, it has not been possible to improve the heat resistance of power transmission belt reinforcing cords in rubber.

前記複合繊維はポリエステル芯成分、及びポリアミド鞘
成分いずれも高度に配向、結晶化しており、ポリエステ
ル芯成分の複屈折は160X 10−3〜190X10
−”の範囲内に保つようにするのが望ましく、160X
10’未満では複合繊維の強度を7.5CI/d以上、
初期引張り抵抗度を60g/d以上にならないことがあ
る。また、190X10’を越えていると寸法安定性及
び耐疲労性の改良がなされないことがある。
In the composite fiber, both the polyester core component and the polyamide sheath component are highly oriented and crystallized, and the polyester core component has a birefringence of 160X 10-3 to 190X10.
It is desirable to keep it within the range of 160X
If it is less than 10', the strength of the composite fiber is 7.5 CI/d or more,
The initial tensile resistance may not exceed 60 g/d. Moreover, if it exceeds 190 x 10', dimensional stability and fatigue resistance may not be improved.

一方、ポリアミド鞘成分の複屈折は50×1()−3以
上、通常は55x10−3以上と高配向である。複屈折
が50X10’未満では高強度で高い初期引張り抵抗度
を有する複合繊維を得るのが困難である。
On the other hand, the birefringence of the polyamide sheath component is 50x1()-3 or more, usually 55x10-3 or more, which is highly oriented. If the birefringence is less than 50×10′, it is difficult to obtain a composite fiber having high strength and high initial tensile resistance.

芯鞘複合繊維の複屈折の測定は次のJ:うにして行うこ
とができる。即ち、鞘部はそのまま透過干渉顕微鏡で測
定し、芯部はポリアミド鞘成分を蟻酸、硫酸、弗素化ア
ルコール等で溶解し1ま た後透過干渉顕微鏡で測定する。
The birefringence of the core-sheath composite fiber can be measured in the following manner. That is, the sheath portion is directly measured using a transmission interference microscope, and the core portion is measured using a transmission interference microscope after dissolving the polyamide sheath component in formic acid, sulfuric acid, fluorinated alcohol, etc.

密度はポリエステル芯成分が1.3950/cm3以上
、ポリアミド鞘成分が1.140q/cm3以上であり
、高度に結晶化していることが望ましく、密度がそれぞ
れ上記特定の値以上布することによって複合II雑の寸
法安定性、耐疲労性に優れるとともに、動力伝達ベルト
補強用コードとなし、該コードを動力伝達ベルトの抗張
体として用いた場合、該抗張体のゴム中の耐熱性が著し
く改良される。
The density of the polyester core component is 1.3950/cm3 or more, and the polyamide sheath component is 1.140q/cm3 or more, and it is desirable that they are highly crystallized.By fabricating the cloth with a density of each of the above specific values or more, composite II In addition to having excellent dimensional stability and fatigue resistance, when this cord is used as a power transmission belt reinforcement cord and is used as a tensile member of a power transmission belt, the heat resistance in the rubber of the tensile member is significantly improved. be done.

ポリエステル芯成分の密度の測定は、ポリアミド鞘成分
を劃り硫酸、弗素化アルコール等で溶解除去して求め、
ポリアミド鞘成分の密度は複合繊維の密度とポリエステ
ル芯部の密度から計算で求めることができる。
The density of the polyester core component is determined by cutting the polyamide sheath component and removing it by dissolving it with sulfuric acid, fluorinated alcohol, etc.
The density of the polyamide sheath component can be calculated from the density of the composite fiber and the density of the polyester core.

前記複合繊維におけるポリエステル芯成分の結晶構造の
特徴を示すDSCの融解曲線のピーク温度は247℃、
好ましくは248℃以上と高温である。該ピーク温度が
高温であるほど結晶が大きく、および/あるいは結晶の
完全性が良く、繊維構造が安定であることと対応してい
る。ポリエステル芯成分繊維の融解ピーク温度が247
℃未満の場合は目的とするモジュラス、寸法安定性、及
び耐疲労性が得られないことがある。
The peak temperature of the DSC melting curve showing the characteristics of the crystal structure of the polyester core component in the composite fiber is 247 ° C.
The temperature is preferably 248° C. or higher. The higher the peak temperature, the larger the crystals and/or the more complete the crystals, which corresponds to the more stable the fiber structure. The melting peak temperature of the polyester core component fiber is 247
If the temperature is less than 0.degree. C., the desired modulus, dimensional stability, and fatigue resistance may not be obtained.

前記複合繊維の繊維構造を反映する別の特徴はポリエス
テル芯成分繊維が90C]/d以上の高い初期引張り抵
抗度と20g/d以下の低いターミナルモジュラスを有
することである。高い初期引張り抵抗面を有し、かつ低
いターミナルモジュラスを有するポリエステル繊維の特
徴は、動力伝達ベルト加工工程での強力低下が少なく、
耐疲労性が改良される。ターミナルモジュラスは繊維の
引張り試験に於いて、SS曲線上で切断伸度より2.4
%引いた曲線上の点と切断点までの応力増分を2.4X
10’で除した値(g/d)であり、引張り試験の条件
は、JIS−L1017による。
Another characteristic reflecting the fiber structure of the composite fiber is that the polyester core component fiber has a high initial tensile resistance of 90 C]/d or more and a low terminal modulus of 20 g/d or less. The characteristics of polyester fibers, which have a high initial tensile resistance surface and a low terminal modulus, are that there is little loss in strength during the power transmission belt processing process.
Fatigue resistance is improved. The terminal modulus is 2.4 from the cutting elongation on the SS curve in the fiber tensile test.
%The stress increment between the point on the curve and the cutting point is 2.4X
It is the value divided by 10' (g/d), and the conditions of the tensile test are in accordance with JIS-L1017.

上記によって特徴づけられる複合繊維は7゜5 g/d
以上の高強度、60o/d以上の初期引張り抵抗度を有
し、伸度は20%以下である。
Composite fibers characterized by the above are 7゜5 g/d
It has a high strength of 60 o/d or more, an initial tensile resistance of 60 o/d or more, and an elongation of 20% or less.

より好ましい複合繊維特性は強度8 g/d以上、初期
引張り抵抗型70a/d以上、伸度は8〜16%であり
、これは前記条件を適正に組合わせることによって達せ
られる。
More preferable composite fiber properties are a strength of 8 g/d or more, an initial tensile resistance of 70 a/d or more, and an elongation of 8 to 16%, which can be achieved by appropriately combining the above conditions.

前記複合繊維は以下に示す新規な方法によって製造され
る。
The composite fiber is manufactured by the novel method shown below.

前記したポリエステル芯成分のポリマ物性を得るために
は、極限粘度(η)が0.75以上、通常は0.85以
上の実質的にポリエチレンテレフタレートからなるポリ
マを用いる。また耐熱性の優れた繊維を得るためには、
低カルボキシル末端基濃度のポリマを紡糸することが重
要である。例えば低温重合法を採用したり、重合工程、
または紡糸工程で封鎖剤を添加するなどの技術が適用さ
れ、封鎖剤としては例えばオキサゾリン類、エポキシ類
、カルボジイミド類、エチレンカーボネート、シュウ酸
エステル、マロン酸エステル類等である。
In order to obtain the polymer physical properties of the polyester core component described above, a polymer consisting essentially of polyethylene terephthalate and having an intrinsic viscosity (η) of 0.75 or more, usually 0.85 or more is used. In addition, in order to obtain fibers with excellent heat resistance,
It is important to spin polymers with low carboxyl end group concentrations. For example, by adopting low temperature polymerization method, polymerization process,
Alternatively, techniques such as adding a capping agent during the spinning process are applied, and examples of the capping agent include oxazolines, epoxies, carbodiimides, ethylene carbonate, oxalic acid esters, malonic acid esters, and the like.

ポリアミド鞘成分ポリマは硫酸相対粘度で2゜8以上、
通常は3.0以上の高重合疫ポリマを用いる。
The polyamide sheath component polymer has a sulfuric acid relative viscosity of 2°8 or more,
Usually, a highly polymerized polymer having a polymerization ratio of 3.0 or more is used.

該ポリマの溶融紡糸には2基のエクストルーダー型紡糸
機を用いることが好ましい。それぞれのエクストルーダ
ーで溶融されたポリエステル及びポリアミドポリマを複
合紡糸パックに導き、複合紡糸用口金を通して芯部にポ
リエステル、鞘部にポリアミドを配した複合繊維として
紡糸する。
It is preferable to use two extruder type spinning machines for melt spinning the polymer. The polyester and polyamide polymers melted by each extruder are introduced into a composite spinning pack, and spun into a composite fiber with polyester in the core and polyamide in the sheath through a composite spinning nozzle.

紡糸速度は1500m/分以上、好ましくは2000m
/分以上の高速とする。紡糸口金直下には10cm以上
、1m以内にわたって200℃以上、好ましくは260
℃以上の加熱雰囲気を保温筒、加熱筒等を設けることに
よってつくる。紡出糸条は上記加熱雰囲気中を通過した
のち冷風で急冷固化され、次いで油剤を付与された後紡
糸速度を制御する引取りロールで引取られる。前記口金
直下の加熱雰囲気の制御は高速紡糸時の曳糸性を保持す
るため重要である。弓取られた未延伸糸は通常−旦巻取
ることなく連続して延伸する。延伸前の未延伸糸の物性
を把握する目的で引取りロール上でサンプリングした未
延伸糸の複屈折はポリアミド鞘部が20X10−3以上
、好ましくは30×10−3以上、ポリエステル芯部も
20X10−3以上、好ましくは30X10−3以上と
高度に配向している。
The spinning speed is 1500 m/min or more, preferably 2000 m/min.
The speed should be at least 1/min. Immediately below the spinneret, a temperature of 200°C or higher, preferably 260°C, is applied for a distance of 10cm or more and within 1m.
A heated atmosphere above ℃ is created by providing a heat insulating cylinder, a heating cylinder, etc. After passing through the above heating atmosphere, the spun yarn is quenched and solidified with cold air, and then, after being applied with an oil agent, it is taken off by a take-off roll that controls the spinning speed. Control of the heating atmosphere directly below the spinneret is important in order to maintain spinnability during high-speed spinning. The bowed undrawn yarn is usually continuously drawn without being wound up. The birefringence of the undrawn yarn sampled on a take-up roll for the purpose of understanding the physical properties of the undrawn yarn before stretching is 20X10-3 or more for the polyamide sheath, preferably 30X10-3 or more, and 20X10 for the polyester core. -3 or more, preferably 30X10-3 or more, highly oriented.

高速紡糸の採用は複合繊維のモジュラス、寸法安定性、
及び耐疲労性の改良効果をもたらすが、驚くべきことに
芯鞘複合界面の耐久性が著しく向上することである。お
そら〈従来の低速紡糸法のように、吸湿結晶化の進んだ
ポリアミド成分と非晶状態のポリエステル成分が組合わ
される場合と異なり、高速紡糸法ではポリアミド成分、
ポリエステル成分ともに配向結晶化が進む状態にあるこ
と、紡糸後の延伸倍率が少なくて済むことなどが複合界
面耐久性に寄与しているものと考えられる。
The adoption of high-speed spinning improves the modulus, dimensional stability, and
This brings about the effect of improving fatigue resistance, but surprisingly, the durability of the core-sheath composite interface is significantly improved. Unlike the conventional low-speed spinning method, in which a highly hygroscopic and crystallized polyamide component is combined with an amorphous polyester component, in the high-speed spinning method, the polyamide component,
It is thought that the fact that both the polyester components are in a state where oriented crystallization progresses, and that the stretching ratio after spinning is small can contribute to the durability of the composite interface.

次に該未延伸糸は連続して180℃以上、好ましくは2
00℃以上の温度で熱延伸される。
Next, the undrawn yarn is continuously heated to 180°C or higher, preferably 2°C.
It is hot stretched at a temperature of 00°C or higher.

延伸は2段以上、通常は3段以上の多段で行い、延伸倍
率は1.4〜3.5倍の範囲である。本発明のかかる高
温熱延伸の採用も複合界面耐久性の改良に寄与している
。該延伸による3段めの延伸温度が低く、例えば160
℃未満ではしばしば延伸によって、また180℃未満で
延伸した場合は、動力伝達ベルト・加工時及び動力伝達
ベルトを高速で使用した場合にポリエステル芯成分とポ
リアミド鞘成分との界面剥離が生じることがある。
The stretching is carried out in two or more stages, usually three or more stages, and the stretching ratio is in the range of 1.4 to 3.5 times. The use of such high-temperature thermal stretching according to the present invention also contributes to improving the composite interface durability. The stretching temperature in the third stage of stretching is low, for example 160
When stretched below 180°C, interfacial delamination between the polyester core component and polyamide sheath component may occur during power transmission belt processing and when the power transmission belt is used at high speeds. .

[実施例] 実施例−1及び2)比較例1乃至4 極限粘度(η)1.05、カルボキシル末端基濃度10
.5eq/106oのボIJ エチレンテレフタレート
(PET)及び沃化鋼0.02重量%と沃化カリウム0
.1重量%を含む66/6T (80: 20重量比)
コポリアミド(硫酸相対粘度ηr3.2)、またはヘキ
サメチレンアジパミド(N66:硫酸相対粘度ηr3゜
3)をそれぞれ40φ工クストルーダー型紡糸機で溶融
し、複合紡糸パックに導き、芯鞘複合紡糸口金より芯部
にポリエチレンテレフタレート、鞘部にポリアミドの複
合糸として紡出した。
[Example] Example-1 and 2) Comparative Examples 1 to 4 Intrinsic viscosity (η) 1.05, carboxyl end group concentration 10
.. Bo IJ of 5eq/106o Ethylene terephthalate (PET) and iodide steel 0.02% by weight and potassium iodide 0
.. 66/6T containing 1% by weight (80:20 weight ratio)
Copolyamide (relative viscosity of sulfuric acid, ηr3.2) or hexamethylene adipamide (N66: relative viscosity of sulfuric acid, ηr3.3) is melted in a 40φ xtruder-type spinning machine, guided into a composite spinning pack, and core-sheath composite spinning is carried out. It was spun from a spinneret into a composite yarn with polyethylene terephthalate in the core and polyamide in the sheath.

芯成分及び鞘成分の割合は第1表のよう変化させた。口
金は孔径0.4#φ、孔数90ホールを用いた。ポリマ
ー温度はポリエチレンテレフタレートを295℃、ポリ
アミドを290℃でそれぞれ溶融し、紡糸パック湿度を
300℃として紡出した。口金直下には15cmの加熱
筒を取り付け、筒内雰囲気温度を290℃となるように
加熱した。雰囲気温度とは口金面より10cm下の位置
で、且つ最外周糸条より1 cm離れた位置で測定した
雰囲気温度である。加熱筒の下には長さ400Mの環状
型チムニ−を取り付け、糸条の周囲より25℃で40m
/分の冷風を糸条に直角に吹き付け、冷却した。ついで
油剤を付与した後、第1表に示した速度で回転する弓取
りロールで糸条速度を制御した後−旦巻取ることなく連
続して延伸した。延伸は5対のネルソン型ロールによっ
て3段延伸した後3%のリラックスを与えて弛緩熱処理
して巻き取った。
The proportions of the core component and sheath component were varied as shown in Table 1. The cap used had a hole diameter of 0.4#φ and 90 holes. Polymer temperatures were as follows: polyethylene terephthalate was melted at 295°C, polyamide was melted at 290°C, and spinning pack humidity was set at 300°C. A 15 cm heating cylinder was attached directly below the mouthpiece, and the atmosphere inside the cylinder was heated to 290°C. The ambient temperature is the ambient temperature measured at a position 10 cm below the mouth surface and 1 cm away from the outermost thread. An annular chimney with a length of 400 m is installed under the heating cylinder, and the temperature is 40 m from the circumference of the yarn at 25°C.
/ minute of cold air was blown perpendicularly to the yarn to cool it. Then, after applying an oil agent, the yarn speed was controlled with a bow-cutting roll rotating at the speed shown in Table 1, and then the yarn was drawn continuously without being wound up. The film was stretched in three stages using five pairs of Nelson type rolls, then subjected to a relaxation heat treatment with 3% relaxation, and then wound up.

延伸条件は、引取りロール温度を60℃、第1延伸ロー
ル温度を120℃、第2延伸ロール温度を190℃、第
3延伸ロール温度を225℃、延伸後の張力調整ロール
は非加熱とし、1段延伸倍率は全延伸倍率の70%、残
りを2段階に分けて配分し延伸した。紡糸速度、全延伸
倍率等を変化させて製糸したが、延伸糸の繊度が約50
0デニールとなるよう紡糸速度、延伸倍率に対応させて
吐出量を変化させた(実施例1゜2)比較例1.2)。
The stretching conditions were a take-up roll temperature of 60°C, a first stretching roll temperature of 120°C, a second stretching roll temperature of 190°C, a third stretching roll temperature of 225°C, and a tension adjustment roll after stretching that was not heated. The first stage stretching ratio was 70% of the total stretching ratio, and the remainder was divided into two stages for stretching. The yarn was produced by changing the spinning speed, total drawing ratio, etc., but the fineness of the drawn yarn was about 50.
The discharge amount was varied in accordance with the spinning speed and the stretching ratio so as to obtain 0 denier (Example 1.2) Comparative Example 1.2).

得られた延伸糸は2本合糸して1000デニールとした
Two of the obtained drawn yarns were combined into a 1000 denier yarn.

製糸条件、得られた延伸糸特性、及び繊維構造パラメー
ターをポリエチレンテレフタレート(PET)繊維(1
000−192−702G)(比較例3)及びナイロン
6611i維(840136−1781)(比較例4)
について比較試験を行った。各条件及び繊維特性第1表
に示すとおりである。
The spinning conditions, the obtained drawn yarn properties, and the fiber structure parameters were determined using polyethylene terephthalate (PET) fiber (1
000-192-702G) (Comparative Example 3) and Nylon 6611i fiber (840136-1781) (Comparative Example 4)
A comparative test was conducted on the following. Each condition and fiber properties are as shown in Table 1.

(以下余白) 前記第1表に示した各繊維を用いてこれらの繊維に上撚
及び下撚をそれぞれ反対方向に25T/10calづつ
かけて2000/2の生コードとした。この生コードを
リツラー社製ディッピング機を用いて常法によって接着
剤付与及び熱処理をしてディップコードとした。
(The following is a blank space) Using each of the fibers shown in Table 1 above, these fibers were twisted and twisted in opposite directions at a rate of 25T/10cal to obtain a 2000/2 raw cord. This raw cord was applied with an adhesive and heat-treated in a conventional manner using a dipping machine manufactured by Ritzler to obtain a dipped cord.

ディップ液は20%のレゾルシン、ホルマリン、ラテッ
クスからなる接着剤成分を含み、接着剤成分がコードに
約3%付着するよう調整した。熱処理は225℃で80
秒、ディップコードの中間伸度が約5%となるようスト
レッチをかけながら処理した。比較例4におけるナイロ
ン66は同様熱処理条件で、中間伸度が約9%となるよ
うストレッチして処理した。また比較例3におけるPE
Tは常法により2浴接着処理を行い、熱処理は240℃
、120秒行い、中間伸度が約5%となるようストレッ
チして処理した。
The dip liquid contained an adhesive component consisting of 20% resorcinol, formalin, and latex, and was adjusted so that about 3% of the adhesive component adhered to the cord. Heat treatment is 225℃ and 80℃
The process was performed while stretching the cord so that the intermediate elongation of the dip cord was about 5%. Nylon 66 in Comparative Example 4 was stretched under the same heat treatment conditions so that the intermediate elongation was approximately 9%. Also, PE in Comparative Example 3
For T, two-bath adhesion treatment is performed using a conventional method, and heat treatment is performed at 240°C.
, for 120 seconds, and was stretched so that the intermediate elongation was approximately 5%.

かくして得られたディップコードを動力伝達ベルトの抗
張体として用いる場合と同様にゴム中に埋設した試験片
を作り、ゴム中耐熱性、接着性、耐疲労性等を評価した
。結果は第2表に示すとおりであった。
A test piece was made by embedding the thus obtained dipped cord in rubber in the same manner as when it is used as a tensile member for a power transmission belt, and the heat resistance, adhesion, fatigue resistance, etc. in the rubber were evaluated. The results were as shown in Table 2.

本発明に係る動力伝達ベルト補強用コードは、従来のポ
リエステル繊維コードと同等あるいはそれ以上のモジュ
ラス、及び寸法安定性を有し、また従来のポリエステル
繊維コードに比して、ゴム中耐熱性、耐熱接着性、及び
耐疲労性が著しく改良された高強力コードであることを
示している。
The power transmission belt reinforcing cord according to the present invention has a modulus and dimensional stability equal to or higher than conventional polyester fiber cords, and has higher heat resistance in rubber and heat resistance than conventional polyester fiber cords. This shows that it is a high-strength cord with significantly improved adhesion and fatigue resistance.

さらに、本発明に係る動力伝達ベルト補強用コードは、
従来のナイロン繊維コードに比して、モジュラス、及び
寸法安定性が著しく改良された動力伝達ベルト補強用コ
ードである。
Furthermore, the power transmission belt reinforcing cord according to the present invention includes:
This is a power transmission belt reinforcing cord with significantly improved modulus and dimensional stability compared to conventional nylon fiber cords.

(以下余白) [発明の効果] 本発明に係る動力伝達ベルト補強用コードは、従来のポ
リエステルと同等あるいはそれ以上のモジュラス、改良
された寸法安定性を有し、かつ従来のポリエステルから
なる補強用コードを埋設した動力伝達ベルトに比べ、本
発明に係る動力伝達ベルトは、該ベルト中に埋設された
コードのゴム耐熱性、接着性、特に高温履歴を受けた後
の耐熱接着性、及び耐疲労性が著しく改良され、そのた
め動力伝達ベルトの繰返し疲労に対する耐久性が極めて
良好となる。
(The following is a blank space) [Effects of the invention] The power transmission belt reinforcing cord according to the present invention has a modulus equal to or higher than that of conventional polyester and improved dimensional stability, and has a reinforcing cord made of conventional polyester. Compared to a power transmission belt in which a cord is embedded, the power transmission belt according to the present invention has the rubber heat resistance and adhesive properties of the cord embedded in the belt, especially heat resistant adhesive property after high temperature history, and fatigue resistance. As a result, the power transmission belt has extremely good durability against repeated fatigue.

Claims (4)

【特許請求の範囲】[Claims] (1)動力伝達ベルト補強用コードにおいて、該コード
を形成する繊維がエチレンテレフタレートを主成分とす
るポリエステルを芯成分と、該芯成分の周囲にポリアミ
ドを主成分とする鞘成分とからなる芯鞘型複合繊維であ
り、該複合繊維における前記ポリエステルからなる芯成
分の割合が30〜90重量%であり、前記複合繊維の強
度が7.5g/d以上、伸度が20%以下、初期引張り
抵抗度が60g/d以上、乾熱収縮率が7%以下である
ことを特徴とする動力伝達ベルト補強用コード。
(1) In a cord for reinforcing a power transmission belt, the fibers forming the cord consist of a core component made of polyester whose main component is ethylene terephthalate, and a sheath component whose main component is polyamide surrounding the core component. type composite fiber, the ratio of the core component made of the polyester in the composite fiber is 30 to 90% by weight, the strength of the composite fiber is 7.5 g/d or more, the elongation is 20% or less, and the initial tensile resistance is A cord for reinforcing a power transmission belt, characterized by a strength of 60 g/d or more and a dry heat shrinkage rate of 7% or less.
(2)特許請求の範囲第(1)項の動力伝達ベルト補強
用コードにおいて、複合繊維のターミナルモジュラスが
20g/d以下、初期引張り抵抗度が90g/d以上で
あることを特徴とする動力伝達ベルト補強用コード。
(2) The power transmission belt reinforcing cord according to claim (1), wherein the composite fiber has a terminal modulus of 20 g/d or less and an initial tensile resistance of 90 g/d or more. Cord for belt reinforcement.
(3)特許請求の範囲第(1)項の動力伝達ベルト補強
用コードにおいて、複合繊維の芯成分を形成するポリエ
ステルの極限粘度(η)が0.8以上、複屈折が160
×10^−^3〜190×10^−^3、密度が1.3
95g/cm^3以上、DSCで測定した融解曲線のピ
ーク温度が247℃以上であり、鞘成分を形成するポリ
アミドの硫酸相対粘度(ηr)が2.8以上、複屈折が
50×10^−^3以上、密度が1.140g/cm^
3以上であり、前記芯成分および鞘成分ともに高配向、
高結晶繊維構造を有することを特徴とする動力伝達ベル
ト補強用コード。
(3) In the cord for reinforcing a power transmission belt according to claim (1), the polyester forming the core component of the composite fiber has an intrinsic viscosity (η) of 0.8 or more and a birefringence of 160.
×10^-^3 ~ 190 × 10^-^3, density is 1.3
95g/cm^3 or more, the peak temperature of the melting curve measured by DSC is 247℃ or more, the sulfuric acid relative viscosity (ηr) of the polyamide forming the sheath component is 2.8 or more, and the birefringence is 50 x 10^- ^3 or more, density 1.140g/cm^
3 or more, both the core component and the sheath component are highly oriented,
A power transmission belt reinforcing cord characterized by having a highly crystalline fiber structure.
(4)動力伝達ベルトにおいて、特許請求の範囲第(1
)項に記載の動力伝達ベルト補強用コードをディップ処
理して得られた表面にレゾルシン・ホルマリン・ラテッ
クス層が形成された処理コードを抗張体としてゴム中に
埋設されてなることを特徴とする動力伝達ベルト。
(4) In the power transmission belt, Claim No. 1
It is characterized by being embedded in rubber as a tensile material by using a treated cord obtained by dipping the power transmission belt reinforcing cord described in item 2 and forming a layer of resorcinol/formalin/latex on the surface thereof. Power transmission belt.
JP30263888A 1988-11-30 1988-11-30 Cord for reinforcing power transmission belt and power transmission belt Pending JPH02150528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30263888A JPH02150528A (en) 1988-11-30 1988-11-30 Cord for reinforcing power transmission belt and power transmission belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30263888A JPH02150528A (en) 1988-11-30 1988-11-30 Cord for reinforcing power transmission belt and power transmission belt

Publications (1)

Publication Number Publication Date
JPH02150528A true JPH02150528A (en) 1990-06-08

Family

ID=17911393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30263888A Pending JPH02150528A (en) 1988-11-30 1988-11-30 Cord for reinforcing power transmission belt and power transmission belt

Country Status (1)

Country Link
JP (1) JPH02150528A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623765A1 (en) * 1993-02-19 1994-11-09 Hoechst Celanese Corporation Heterofilaments for cord reinforcement in power transmission belts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623765A1 (en) * 1993-02-19 1994-11-09 Hoechst Celanese Corporation Heterofilaments for cord reinforcement in power transmission belts

Similar Documents

Publication Publication Date Title
US4987030A (en) High-tenacity conjugated fiber and process for preparation thereof
US5045257A (en) Process for producing aromatic polyester fiber
JPH02150528A (en) Cord for reinforcing power transmission belt and power transmission belt
JPH02147328A (en) Cord for reinforcing resin hose
JPH0440A (en) Power transmission belt reinforcing belt and power transmission belt
JP2659724B2 (en) Manufacturing method of high strength composite fiber
EP0295147B1 (en) High strength polyester yarn
JPH04272226A (en) High-tenacity high-modulus conjugate fiber
JP3047427B2 (en) Rubber hose reinforcement cord
JPH02154012A (en) Conveyor belt reinforcing material and conveyor belt
JPH0274610A (en) Conjugate fiber having high tenacity and excellent durability
JPH02147327A (en) Cord for reinforcing rubber hose
JPH02150529A (en) Toothed belt
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
JPH05195359A (en) Cord for reinforcing rubber
JP2858429B2 (en) Method for producing polyester filament system provided with pre-adhesive and tire cord produced from this polyester filament system
JPH03152215A (en) High-strength and highly durable conjugate fiber
JPH09268471A (en) Polyamide yarn for reinforcing material for rubber product and its production
JPH03297713A (en) Conveyer belt reinforcing material and conveyer belt
JPH0274611A (en) Conjugate fiber having excellent durability
JPH0274612A (en) Conjugate fiber having high tenacity
JP2971211B2 (en) High strength composite fiber
KR910004458B1 (en) High-tenacity conjugated fiber and process for preparation thereof
JPH01239112A (en) Composite fiber having high strength and high durability
JP2858981B2 (en) High strength and high modulus fiber with excellent fatigue resistance