JPH03294102A - Rotation dividing device and boring tool using it - Google Patents

Rotation dividing device and boring tool using it

Info

Publication number
JPH03294102A
JPH03294102A JP9351290A JP9351290A JPH03294102A JP H03294102 A JPH03294102 A JP H03294102A JP 9351290 A JP9351290 A JP 9351290A JP 9351290 A JP9351290 A JP 9351290A JP H03294102 A JPH03294102 A JP H03294102A
Authority
JP
Japan
Prior art keywords
input shaft
output shaft
relative rotation
rotation
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9351290A
Other languages
Japanese (ja)
Other versions
JPH0773803B2 (en
Inventor
Shinichi Yamada
慎一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIWA SEIMITSU KOKI KK
Original Assignee
SEIWA SEIMITSU KOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIWA SEIMITSU KOKI KK filed Critical SEIWA SEIMITSU KOKI KK
Priority to JP9351290A priority Critical patent/JPH0773803B2/en
Publication of JPH03294102A publication Critical patent/JPH03294102A/en
Publication of JPH0773803B2 publication Critical patent/JPH0773803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Machine Tool Positioning Apparatuses (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To secure relative rotation amount for position conversion so as to improve machining accuracy of a boring tool and so on by transmitting reverse rotation of an input shaft to an output shaft through a differential gear so as to set up constant relation between the reverse amount of the input and the relative rotation amount of the output shaft. CONSTITUTION:When an input shaft is reversely rotated from the state of step 1, the torque is transmitted to an output shaft through a differential gear 10 and the output shaft is rotated in the + direction at a decelerated speed so as to generate a relative rotation, and in step 2, passing of a drive pin 23 is accepted and the relative rotation advances up to the blade tool dividing angle of 120deg. a drive master 12 compresses a spring 14 and escapes in the axial direction, and engagement between gears 12a and 13a is released. In step 3, the drive pin 23 hits against a dog 18 and the relative rotation is stopped, and a return claw 24 is locked by a side cam 19c and the relative rotation is 180deg. When the input shaft is positively rotated after that, the return claw 24 rotates a change ring 19 in the + direction, and when the return angle reaches 60deg, the locking gears 12a and 13a are engaged with each other in a position where the mesh position is changed by one, and the relative rotation at the time of positive rotation of the input is stopped, that means conversion of the blade tool is completed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、入力軸に対して偏心した出力軸を有し、そ
の出力軸にφの分割角度で設けたn(≧2)個の転換対
象物の位置を入力軸の逆転、正転の2動作で順次正確に
転換していく回転割出し装置と、これを用いてn個の刃
具を自動的に転換するようにした中ぐり工具に間する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention has an output shaft eccentric to the input shaft, and n (≧2) converters provided on the output shaft at a dividing angle of φ. A rotary indexing device that accurately changes the position of an object sequentially through two operations, reverse and forward rotation of the input shaft, and a boring tool that uses this to automatically change the position of n cutting tools. Pause.

なお、この発明の割出し装置は、中ぐり工具用として特
に適しているので、以下の説明はこれを例に挙げて行う
Incidentally, since the indexing device of the present invention is particularly suitable for use in a boring tool, the following description will be made using this as an example.

〔従来の技術〕[Conventional technology]

周知の中ぐり工具の中に、入力軸と出力軸の相対回転を
利用して刃具の位置転換を行うものがあある。この工具
は、入力軸の中に出力軸を偏心して保持し、この出力軸
の先端に連ねたヘッドにn個の刃具を等分割角φ(−3
60″/ n )で取付けである。また、入力軸と出力
軸の間に、相対回転角がφと等しくなったら噛合い位置
が切換わる正転力伝達用の軸方向クラッチを設けである
Some well-known boring tools use relative rotation between an input shaft and an output shaft to change the position of the cutting tool. This tool holds the output shaft eccentrically within the input shaft, and the head connected to the tip of the output shaft has n cutting tools at an equal dividing angle φ (-3
60''/n). Also, an axial clutch for transmitting normal rotation force is provided between the input shaft and the output shaft, the meshing position of which changes when the relative rotation angle becomes equal to φ.

なお、この種の工具は、出力軸を手で回転させて刃具位
置を転換するものと、入力軸を逆転させて慣性で静止状
態を保とうとする出力軸との間に転換のための相対回転
を生じさせるもの52通りが主流をなしている。
Note that this type of tool requires relative rotation between the output shaft, which is rotated by hand to change the cutting tool position, and the output shaft, which attempts to maintain a stationary state by inertia by reversing the input shaft. There are 52 main ways that cause this.

第6図は、刃具転換での加工径の調整原理を示している
。図中0は入力軸の軸心、O′は出力軸の軸心、T1〜
T、ば出力軸のヘッド外周に角φでn個(図はφ−12
0’、n=3)設ける刃具、r、〜r、は、0′から各
刃具の刃先までの距離、eはOに対する0′の偏心量で
ある。
FIG. 6 shows the principle of adjusting the machining diameter when changing the cutting tool. In the figure, 0 is the axis center of the input shaft, O' is the axis center of the output shaft, T1 ~
T, there are n pieces on the outer periphery of the head of the output shaft with an angle φ (the figure shows φ-12
0', n=3) The provided cutting tools, r, ~r, are the distances from 0' to the cutting edge of each cutting tool, and e is the eccentricity of 0' with respect to O.

今、T、が図の位置にあるとして、このときに、”rt
 、T、の刃先が0を中心にしたT1の刃先の軌跡円よ
りも内側にあるようにしておけば、T。
Now, assuming that T is at the position shown in the figure, at this time, “rt
, T, if the cutting edge of T is located inside the locus circle of the cutting edge of T1 centered on 0.

が加工に供されて加工径はn=2 (rt +e)とな
る0次にT、をそれまでT、が位置していた回転座標O
−X上に移すと、T、 、’rsがOを中心としたTt
の回転軌跡の内側に保たれて加工径は2 (r、−r、
)だけ大きくなり、同様にT、を座標0−X上に移すと
加工径はD+2 (rs  rt)に変わる。この場合
の最小加工径と最大加工径の差はeを大きくすることに
よって増大させ得る。
is subjected to machining and the machining diameter is n = 2 (rt + e). The 0th order T, is the rotational coordinate O where T was previously located.
-X, T, ,'rs are Tt centered at O
The machining diameter is kept inside the rotation locus of 2 (r, -r,
) and similarly move T to the coordinates 0-X, the machining diameter changes to D+2 (rs rt). In this case, the difference between the minimum machining diameter and the maximum machining diameter can be increased by increasing e.

また、0′から各刃具の刃先までの距離rを一定にして
おけば、転換により傷んだ刃具が新しい刃具と交換され
る。
Furthermore, if the distance r from 0' to the cutting edge of each cutting tool is kept constant, the damaged cutting tool can be replaced with a new cutting tool.

このように、出力軸を偏心させ、この軸を入力軸に対し
て相対回転させると複雑高価な機構を用いずに刃具転換
を行うことができ、工具の準備数、交換回数が少なくて
済む転換型工具の有利性が更に高まる。
In this way, by making the output shaft eccentric and rotating this shaft relative to the input shaft, it is possible to change the cutting tool without using a complicated and expensive mechanism, and the number of tools to be prepared and replaced is reduced. The advantages of mold tools are further increased.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

手動操作で偏心出力軸を回転させて刃具転換を行うもの
は切削作業の自動化が望めない。
Automation of the cutting work cannot be expected with tools that manually rotate the eccentric output shaft to change the cutting tool.

一方、入力軸の逆転と出力軸の静止慣性を利用して転換
のための相対回転を生じさせるものは、相対回転時に出
力軸を軸方向に進退させてクラッチの噛合い点を切換え
ているので、出力軸の保持部に滑動用の不可避の隙間が
あり、そのため、転換後の加工径の再現精度が悪く、ま
た、出力軸の保持力に限界が生じて剛性不足を招き易い
On the other hand, those that use the reverse rotation of the input shaft and the static inertia of the output shaft to generate relative rotation for conversion change the engagement point of the clutch by moving the output shaft forward and backward in the axial direction during relative rotation. There is an unavoidable sliding gap in the holding portion of the output shaft, which results in poor reproducibility of the machining diameter after conversion, and also limits the holding force of the output shaft, which tends to lead to insufficient rigidity.

また、刃具転換が直接的駆動によるものではないので、
転換完了までの入力軸逆転量を定量的に規定し難く、転
換の確実性に欠ける。
In addition, since the cutting tool change is not directly driven,
It is difficult to quantitatively specify the amount of input shaft reversal until the conversion is completed, and the conversion lacks certainty.

このほか、出力軸の軸方向移動のために軸端に露出部を
伴い、この部分から異物、塵芥が内部に侵入する恐れも
ある。
In addition, due to the axial movement of the output shaft, there is an exposed portion at the end of the shaft, and there is a risk that foreign matter and dust may enter the interior through this portion.

この発明の主目的は、出力軸を定位置に強固に保持して
入力軸の一定量を越える逆転で位置転換のための相対回
転を確実に生じさせ得る回転割出し装置と、これを用い
て加工精度、作動の信転性を高めた中ぐり工具を提供す
ることにある。
The main object of the present invention is to provide a rotation indexing device that can firmly hold an output shaft in a fixed position and reliably generate relative rotation for changing the position when the input shaft is reversed beyond a certain amount. Our objective is to provide a boring tool with improved machining accuracy and reliability of operation.

〔11!題を解決するための手段〕 この発明の回転割出し装置は、上記の口約を達成するた
め、360 @/ n即ちφの角度で割出す出力軸を入
力軸の偏心孔内に定位置回転可能に保持する。また、出
力軸に取付ける太陽歯車と固定ハウジング内に同心的に
設ける内歯歯車と入力軸で支えて上記2つの歯車間に介
在する遊星歯車とから成る差動歯車機構を設けてこの歯
車機構経由で入力軸の回転を出力軸に伝達する。さらに
、入力軸逆転時に入力軸側の歯が逃げて噛合い位置が移
るn個の係止歯を360°/nの分割点に有し、その歯
の噛み合い位置で入力軸の正回転を出力軸に伝達する一
方向の噛合いクラッチを設けて出力軸を転換位置に位置
決めする。
[11! Means for Solving the Problem] In order to achieve the above-mentioned requirements, the rotary indexing device of the present invention rotates the output shaft, which is indexed at an angle of 360 @/n, that is, φ, at a fixed position within the eccentric hole of the input shaft. hold possible. In addition, a differential gear mechanism is provided, which consists of a sun gear attached to the output shaft, an internal gear concentrically provided in the fixed housing, and a planetary gear supported by the input shaft and interposed between the two gears. The rotation of the input shaft is transmitted to the output shaft. Furthermore, when the input shaft is reversed, the teeth on the input shaft side escape and the meshing position shifts. There are n locking teeth at the 360°/n dividing point, and the input shaft outputs forward rotation at the meshing position of the teeth. A one-way dog clutch is provided that transmits transmission to the shaft to position the output shaft in the switching position.

この回転割出し装置は、入力軸側に設ける1個のドライ
ブピンを出力軸側に等分ピッチでn個設けるドグに当接
させて入力軸と出力軸の逆転時相対回転角をφ以上、1
.5φ以下の一定角αに制限する手段と、出力軸上で回
転可能なドグ位置のチェンジリングを入力軸正転時に(
α−φ)の範囲で正転方向に回転させて改番のビン受け
ドグをドライブピンの移動路上に待機させ、今回の転換
でドライブピンを止めたドグをドライブピンの移動路か
ら退避させるドグ位置の切換え手段とから成る相対回転
量の規制手段を含む構成、或いは実施例で述べるスリー
ブ、制動子、スリーブと内歯歯車間の一方向クラッチを
更に付加した構成にすると転換の信顧性が更に増す。
This rotary indexing device makes one drive pin provided on the input shaft side come into contact with n dogs provided on the output shaft side at equal pitches, so that the relative rotation angle of the input shaft and output shaft during reversal can be adjusted by φ or more. 1
.. A means to limit the angle to a constant angle α of 5φ or less, and a change ring with a rotatable dog position on the output shaft, when the input shaft rotates forward (
A dog that rotates in the normal rotation direction within the range of α-φ) to make the renumbered bottle receiving dog wait on the drive pin movement path, and evacuates the dog that stopped the drive pin in this conversion from the drive pin movement path. The reliability of the conversion can be improved by using a configuration that includes a means for regulating the amount of relative rotation consisting of a position switching means, or a configuration that further includes a sleeve, a brake, and a one-way clutch between the sleeve and the internal gear described in the embodiment. It will increase further.

このように構成した回転割出し装置の出力軸先端に工具
ヘッドを設け、このヘッドの外周に転換対象のn(≧2
)個の刃具をφの分割角で複数個装着するとこの発明の
中ぐり工具となる。
A tool head is provided at the tip of the output shaft of the rotary indexing device configured in this way, and the conversion target n (≧2
) cutting tools are attached at a dividing angle of φ to form a boring tool of the present invention.

〔作用〕[Effect]

入力軸を逆転させると、この回転運動が差動歯車機構経
由で出力軸に伝わるので、転換のための相対回転が10
0%保証され、しかも、入力軸の逆転量と出力軸の相対
回転量の関係が常に一定する。
When the input shaft is reversed, this rotational motion is transmitted to the output shaft via the differential gear mechanism, so that the relative rotation for conversion is 10
0% is guaranteed, and the relationship between the amount of reverse rotation of the input shaft and the amount of relative rotation of the output shaft is always constant.

また、出力軸を定位置回転可能に支持して滑動用の陰間
を無くしているので、出力軸の支持剛性、転換後の径方
向位置精度が充分に高まる。
Further, since the output shaft is rotatably supported at a fixed position and there is no sliding space, the support rigidity of the output shaft and the radial position accuracy after conversion are sufficiently increased.

なお、その他の付加的構成についての作用は後に詳しく
述べる。
Note that the effects of other additional configurations will be described in detail later.

〔実施例〕〔Example〕

第1図乃至第4図にこの発明の一実施例を示す。 An embodiment of the present invention is shown in FIGS. 1 to 4.

この実施例は中ぐり工具への適用例である。This embodiment is an example of application to a boring tool.

図に示すように、入力軸1は、テーバシャンクの先端に
偏心孔2を有する筒体を回り止めして接続した構造にし
である。3は先端に大径の工具ヘッド3aを有する出力
軸で、この軸は偏心孔2内に同心的に挿入し、両端部を
円錐ころ軸受4で受けてラジアル、アキシャルの両方向
の支持剛性を高めている。なお、工具ヘッド3aにはn
個の刃具Tを等分割点に設けである。
As shown in the figure, the input shaft 1 has a structure in which a cylindrical body having an eccentric hole 2 at the tip of a Taber shank is connected to prevent rotation. Reference numeral 3 denotes an output shaft having a large diameter tool head 3a at the tip. This shaft is inserted concentrically into the eccentric hole 2, and both ends are supported by tapered roller bearings 4 to increase support rigidity in both radial and axial directions. ing. Note that the tool head 3a has n
The cutting tools T are provided at equal dividing points.

5は、入力軸の中間外周にベアリングを介して同心的に
回転可能に取付けた固定ハウジングであり、固定部に対
して係脱自在の係止軸6aを備えた周知構造の回り止め
手段6を有している。
Reference numeral 5 denotes a stationary housing rotatably attached concentrically to the intermediate outer periphery of the input shaft through a bearing, and includes a rotation preventing means 6 of a known structure that includes a locking shaft 6a that can be freely engaged with and detached from the fixed part. have.

7は出力軸に固定した太陽歯車、8は固定ハウジング内
に同心設置した内歯歯車、9は入力軸1で回転可能に支
持して入力軸に設けた窓孔部に組付け、内歯歯車8と太
陽歯車7間に介在する遊星歯車であり、この3者が差動
歯車機構10を構成している。なお、例示の工具は、遊
星歯車Sを2個組合せて入力軸1の回転を逆向きに出力
軸3に伝達するようにしである。
7 is a sun gear fixed to the output shaft, 8 is an internal gear installed concentrically in a fixed housing, and 9 is an internal gear rotatably supported by the input shaft 1 and assembled into a window hole provided in the input shaft. This is a planetary gear interposed between the sun gear 8 and the sun gear 7, and these three constitute a differential gear mechanism 10. The illustrated tool combines two planetary gears S to transmit the rotation of the input shaft 1 to the output shaft 3 in the opposite direction.

12は出力軸3の外周に遊嵌し、入力軸1に固定されて
いるセンターアダプタ11に噛合させて回り止めするド
ライブマスタである。このドライブマスタは、11との
噛合部に軸方向の遊びがあるので、軸方向には移動可能
である。13は太陽歯車7と一体のロケーティングブロ
ックで、これとドライブマスタ12は、相互突き合わせ
面に一方向性の係止歯12a、13a (第2図参照)
を刃具数nに等しくそれぞれn個存している。その歯の
分割角は勿論φ即ち360 ’ / nに等しい、14
はドライブマスタ12をロケーティングブロック13側
に復帰させるスプリングであり、これを含めた12.1
3.14の3者力咄力軸3を順次転換位置に位置決めし
て入力軸の正転連動を出力軸に伝達する一方向の噛合い
クラッチ15を構成している。
Reference numeral 12 denotes a drive master that loosely fits around the outer circumference of the output shaft 3 and engages with the center adapter 11 fixed to the input shaft 1 to prevent rotation. This drive master is movable in the axial direction since there is play in the axial direction at the meshing portion with 11. 13 is a locating block integrated with the sun gear 7, and this and the drive master 12 have unidirectional locking teeth 12a, 13a on their abutting surfaces (see Figure 2).
There are n pieces of each tool, which are equal to the number of cutting tools n. The dividing angle of that tooth is of course equal to φ or 360'/n, 14
is a spring that returns the drive master 12 to the locating block 13 side, and 12.1 including this
A one-way dog clutch 15 is configured in which the three-way force shafts 3 of 3.14 are sequentially positioned at the switching position to transmit the forward rotation of the input shaft to the output shaft.

16は相対回転角の規制手段である。この規制手段は、
出力軸3の外周に固定したボジショニングリング17、
そのリングに設けた溝の中に周方向に定ピツチφでn個
設ける軸方向スライドの可能なドグ18とそのドグを下
向きに押すスプリングtea、ポジシッニングリング1
7に接して出力軸外周に回転可能に嵌めたチェンジリン
グ19、。
16 is a relative rotation angle regulating means. This regulatory measure is
a positioning ring 17 fixed to the outer periphery of the output shaft 3;
N dogs 18 that can be slid in the axial direction are provided in a groove provided in the ring at a constant pitch φ in the circumferential direction, a spring tea that pushes the dogs downward, and a positive thinning ring 1
A change ring 19 is rotatably fitted to the outer periphery of the output shaft in contact with the change ring 7.

針状ころ20を介してチェンジリング19をボジシーニ
ュ/々′リング17側に押すスプリング21、そのスプ
リングのセット荷重調整ナツト22、入力軸1に固定し
てボジシ5ニングリング17の外周の溝17a内に進入
させたドライブピン23、及び入力軸内に設けてスプリ
ング力で偏心孔2内C突出させる戻し爪24によって構
成されている。
A spring 21 that pushes the change ring 19 toward the position ring 17 via the needle roller 20, a set load adjustment nut 22 for the spring, and a spring 21 that is fixed to the input shaft 1 and inserted into the groove 17a on the outer periphery of the position ring 17. It is composed of a drive pin 23 that is inserted into the input shaft, and a return pawl 24 that is provided inside the input shaft and is caused to protrude into the eccentric hole 2 by a spring force.

チェンジリング19は、受けリング側の端面にドグ18
の位置を切換える一方向のカム溝19aを、また、外周
の等分位置に戻し爪24を係止させるためのサイドカム
19bをそれぞれ(n−1)個有している。ドグ18は
、カム溝19gに落ち込むとドライブピン23の移動路
、即ち、周溝17a内から退避し、カム溝1Saの斜面
に押されてその溝19aから抜は出ると上記移動路上に
待機L7てドライブピン23の移動を阻止する。
The change ring 19 has a dog 18 on the end face on the receiving ring side.
Each side cam 19b has (n-1) side cams 19b for locking the return claws 24 at equal positions on the outer periphery. When the dog 18 falls into the cam groove 19g, it retreats from the movement path of the drive pin 23, that is, from inside the circumferential groove 17a, and when it is pushed by the slope of the cam groove 1Sa and comes out of the groove 19a, it is placed on the waiting path L7. to prevent movement of the drive pin 23.

第1図及び第3図の25は固定ハウジング5内に回転可
能に設けたスリーブ、26はスリーブ25に回転抵抗を
与える目的で弾性的に圧接させた制動子である。この両
者は差動歯車機構を保護する安全装置として働く、この
装置は、制動子によってスリー・ブ25に加える回転抵
抗を圧力調整ねじ26aのねじ込み量を変えて変化させ
ことができる。
In FIGS. 1 and 3, 25 is a sleeve rotatably provided within the fixed housing 5, and 26 is a brake that is elastically pressed against the sleeve 25 for the purpose of providing rotational resistance. Both act as a safety device to protect the differential gear mechanism. This device can change the rotational resistance applied to the sleeve 25 by the brake by changing the screwing amount of the pressure adjusting screw 26a.

第3図の27は、スリーブ25と内歯歯1t8の間に設
けた一方向クラッチである。このクラッチはランプ溝内
にローラ(ポールでもよい)を挿入し7た周知のクラッ
チであって1、スリーブ内のどの位置にあっても、入り
、切りが行われる。
Reference numeral 27 in FIG. 3 is a one-way clutch provided between the sleeve 25 and the internal tooth 1t8. This clutch is a well-known clutch in which a roller (or a pole may be used) is inserted into a ramp groove, and the clutch can be engaged or disengaged at any position within the sleeve.

第1図の28は出力軸3に引込み力を加える皿ばね、2
Sば工具の回転停止時に係止軸6aに設けたロックビン
6bを外周の■溝29a(第4図参照)に係止させて工
具の停止位置を一定させるロックリング(これは人力軸
に固定)、30は偏心孔2の入口部の隙間を塞ぐシール
リング、31は回り止め用のキーである。
28 in FIG. 1 is a disc spring that applies a retracting force to the output shaft 3;
A lock ring (fixed to the manual shaft) that locks the lock pin 6b provided on the locking shaft 6a into the groove 29a (see Figure 4) on the outer periphery to keep the tool at a constant stop position when the tool stops rotating. , 30 is a seal ring that closes the gap at the entrance of the eccentric hole 2, and 31 is a key for preventing rotation.

量子から成る例示の工具は、刃具数nを3と仮定して係
止歯12a、13aとドグ18を刃具の分割角≠(−1
20°)と等しい角度でそれぞれ3個設け、さらに、カ
ム溝19aとサイドカム19bはそれぞれ2個を180
0の等分位置に設けている。また、3個の刃具Tは出力
軸の軸心からの距離を異ならせて設けたが、先に述べた
ように、加工径を変化させる必要がなければ出力軸軸心
から等距離離れた位置に設けてもよい。
In the exemplary tool made of quantum metal, assuming that the number n of cutting tools is 3, the locking teeth 12a, 13a and the dog 18 are arranged so that the dividing angle of the cutting tool ≠ (-1
Two cam grooves 19a and two side cams 19b are provided at angles equal to 180 degrees.
It is provided at equally divided positions of 0. In addition, the three cutting tools T were installed at different distances from the output shaft axis, but as mentioned earlier, if there is no need to change the machining diameter, they should be placed at positions equidistant from the output shaft axis. may be provided.

以下、か−る中ぐり工具の動作について第5図を参照し
て説明する。
The operation of the boring tool will be explained below with reference to FIG.

同図は、各要素の位置関係を展開して表わしたものであ
って、横軸は入力軸1と出力軸3の相対回転角を示し、
相対回転は0°の位置から始まる。
The figure shows the expanded positional relationship of each element, and the horizontal axis indicates the relative rotation angle between the input shaft 1 and the output shaft 3.
Relative rotation starts from the 0° position.

また、図は正転方向を(+)の矢印、逆転方向を(−)
の矢印で示している。縦軸は動作順序を表わし、ステッ
プ■〜■で刃具転換が完了する0図中、係止歯12a、
T3a、ドグ18、カム溝19a、サイドカム19bに
はそれぞれ順位を示す符号を付記している。
Also, in the figure, the forward direction is indicated by a (+) arrow, and the reverse direction is indicated by a (-) arrow.
It is indicated by the arrow. The vertical axis represents the order of operation, and in Figure 0, the cutting tool change is completed in steps ■ to ■, the locking teeth 12a,
T3a, dog 18, cam groove 19a, and side cam 19b are each labeled with a code indicating their ranking.

今、ステップ■の状態から入力軸1を逆転させると、差
動歯車機構10を介して出力軸3に回転力が伝わり、そ
の軸3が減速された速度で(+)方向に回転する。これ
により、1と3の間に相対回転が起こり、入力軸側の各
部材は(+)方向に、出力軸側の各部材は(−)方向に
移動するが、図は相対回転角を表わすので、入力軸側の
部材は動かしていない。
Now, when the input shaft 1 is reversed from the state of step (2), rotational force is transmitted to the output shaft 3 via the differential gear mechanism 10, and the shaft 3 rotates in the (+) direction at a reduced speed. As a result, relative rotation occurs between 1 and 3, and each member on the input shaft side moves in the (+) direction, and each member on the output shaft side moves in the (-) direction, but the figure shows the relative rotation angle. Therefore, the members on the input shaft side are not moving.

ステップ■は、ドグ18−1の退避によりここで・のド
ライブピン通過が許容されて相対回転が刃具分割角φ(
120°)と等しくなるところまで進み、ドライブマス
タ12がスプリング14を圧縮して軸方向に逃げた結果
、歯12a、13aの噛合いが外れたことを示している
In step ■, the retraction of the dog 18-1 allows the drive pin to pass through, and the relative rotation changes to the cutting tool division angle φ(
120°), the drive master 12 compresses the spring 14 and escapes in the axial direction, indicating that the teeth 12a and 13a are disengaged.

このステップ■では、ドグによるドライブピン23の移
動規制がまだ無く、相対回転はこの後も続く。
In this step (2), the movement of the drive pin 23 is not yet restricted by the dog, and the relative rotation continues thereafter.

次に、ステップ■の状態では、ドライブピン23が周溝
1?a内に進入しているドグ184に当たり、この位置
で相対回転が止まる。また、ビン23と共に移動する戻
し爪24はサイドカム19b−、に係止する。この時点
での1と3の相対回転角αは1806である。
Next, in the state of step ■, the drive pin 23 is in the circumferential groove 1? It hits the dog 184 that has entered inside a, and the relative rotation stops at this position. Further, the return pawl 24 that moves together with the bin 23 is engaged with the side cam 19b-. The relative rotation angle α between 1 and 3 at this point is 1806.

この後、ステップ■の状態から入力軸1を正転させると
、戻し爪24がチェンジリング19を(+)方向に回転
させる。そして、この入力軸正転による相対回転角の戻
り角δが60@に達すると係止歯12a、13aが噛合
い位置を1つチェンジした位置で係合し、入力軸正転時
の相対回転が止まる。これは、角φでの刃具転換が完了
したことを意味し、以後、噛合いクラッチ15経出で切
削トルクの伝達が行われ、転換後の刃具による中ぐり加
工が可能になる。
Thereafter, when the input shaft 1 is rotated in the normal direction from the state of step (2), the return pawl 24 rotates the change ring 19 in the (+) direction. When the return angle δ of the relative rotation angle due to normal rotation of the input shaft reaches 60@, the locking teeth 12a and 13a engage at a position where the meshing position has been changed by one, and the relative rotation during normal rotation of the input shaft stops. This means that the cutting tool conversion at the angle φ has been completed, and the cutting torque is then transmitted through the dog clutch 15, making it possible to perform boring with the converted cutting tool.

また、相対回転の停止によりチェンジリング19の回転
もここで止まり(リング19は、スプリング21の力で
ブロック13との間に摩擦を生じているので、惰性回転
による位置ずれが出ない)、α−φ即ちδのチェンジリ
ング回転によるカム溝19aの変位によりステップ■で
ビン23を止めたドグ18−8がドライブピンの移動路
から退避して改番のドグ18−5がビンの移動路上に待
機する。
Also, due to the stoppage of relative rotation, the rotation of the change ring 19 also stops here (the ring 19 generates friction with the block 13 due to the force of the spring 21, so there is no positional shift due to inertial rotation), α - Due to the displacement of the cam groove 19a due to the change ring rotation of φ, that is, δ, the dog 18-8 that stopped the bin 23 in step ■ is retracted from the movement path of the drive pin, and the dog 18-5 with the new number is placed on the movement path of the bottle. stand by.

つまり、次回転換の準備も整う。In other words, you will be ready for the next conversion.

このステップ■の状態での各要素の位置関係は、ステッ
プ■の状態と同しになっており、従って、以後の転換動
作も同一ステップに基いて実行される。
The positional relationship of each element in the state of step (2) is the same as in the state of step (2), so subsequent conversion operations are also performed based on the same steps.

以下は、ステップ■から■に至る間の他の要素の動作で
ある。
The following is the operation of other elements during steps ① to ②.

一方向クラッチ27は、ステップのでの入力軸逆転と同
時に「入り」となり、内歯歯車8の回転を止める。そし
て「入り」時にランプ溝内のボールやローラが模止めの
状態になるので、ステップ■から■での入力軸正転時も
出力軸3に不測の回転抵抗が加わらない限り「入り」の
状態を持続するが、ステップ■から■の間で仮に「切り
」の状態になったとしても、転換に若干の時間的なずれ
が出るだけであって転換動作は何ら妨げられない。
The one-way clutch 27 becomes "engaged" at the same time as the input shaft is reversed at the step, and stops the rotation of the internal gear 8. Since the balls and rollers in the ramp groove are in a semi-locked state when "entered", the input shaft remains in the "entered" state even when the input shaft rotates forward in steps ■ to ■ unless unexpected rotational resistance is applied to the output shaft 3. However, even if the "off" state were to occur between steps (2) and (2), there would only be a slight time lag in the conversion, and the conversion operation would not be hindered in any way.

この一方向クラッチ27は、ステップ■において軸1.
3の戻し相対回転が止まると瞬時にr切り」になり、切
削トルクの差動歯車機構経由での伝達を防止する。
This one-way clutch 27 is connected to the shaft 1.
When the return relative rotation of step 3 stops, R-cutting occurs instantly, which prevents the cutting torque from being transmitted via the differential gear mechanism.

また、内歯歯車8が固定ハウジング5に対して固定され
ていると、ステップ■の状態になった後に入力軸1が惰
性で更に逆転しようとしたとき差動歯車機構10に無理
な荷重負担がか−る恐れがあるが、スリーブ25と制動
子26があると、これ等がこのときに安全装置として働
き、内歯歯車8をスリーブ25と共にスリップ回転させ
て入力軸の惰性回転を許容するので、差動歯車機構10
に無理な負荷が加わらない、なお、入力軸1がスリーブ
25のスリップ回転を伴なって(−)方向に惰性回転す
るときには、固定ハウジング5と回り止め手段6を除く
他の要素が同体回転するので各要素間の位置関係は変化
せず、そのため以後の転換動作には何ら影響が出ない。
Furthermore, if the internal gear 8 is fixed to the fixed housing 5, when the input shaft 1 attempts to further reverse rotation due to inertia after reaching the state of step (2), an unreasonable load will be applied to the differential gear mechanism 10. However, if there is a sleeve 25 and a brake 26, they act as a safety device at this time, causing the internal gear 8 to slip rotation together with the sleeve 25 and allowing the input shaft to rotate by inertia. , differential gear mechanism 10
Further, when the input shaft 1 rotates by inertia in the (-) direction with the slip rotation of the sleeve 25, the other elements except the fixed housing 5 and the rotation prevention means 6 rotate together. Therefore, the positional relationship between each element does not change, and therefore the subsequent conversion operation is not affected in any way.

このように、25.26.27の各者は、差動歯車機構
を保護するので、耐久性、信顧性の確保の面で非常に好
ましいものである。
In this way, each of 25, 26, and 27 protects the differential gear mechanism, and is therefore very preferable in terms of ensuring durability and reliability.

なお、シールリング30は、出力軸3の軸方向運動を無
くしたことによって設置可能となったものであり、偏心
孔2内への異物侵入防止に効果を奏する。
The seal ring 30 can be installed by eliminating the axial movement of the output shaft 3, and is effective in preventing foreign matter from entering the eccentric hole 2.

次に、差動歯車機構10は、相対運動のロスを無くすた
めに入力軸の回転を出力軸3に逆向きに伝えるものを用
いた。しかし、入力軸の回転を同−向きに出力軸に伝達
するものを用いても転換の目的は達成される。即ち、出
力軸3は減速回転するので、同−向きの回転であっても
回転の速度差を利用して転換のための相対回転を行わし
めることができる。
Next, the differential gear mechanism 10 used is one that transmits the rotation of the input shaft to the output shaft 3 in the opposite direction in order to eliminate loss of relative motion. However, the purpose of conversion can also be achieved by using something that transmits the rotation of the input shaft in the same direction to the output shaft. That is, since the output shaft 3 rotates at a reduced speed, even if the output shafts 3 rotate in the same direction, the relative rotation for conversion can be performed using the difference in rotational speed.

また、刃具転換時の入力軸回転数は工作機械側で制御す
ることも可能であり、一方、出力軸の相対回転量は入力
軸の回転量によって正確に定まるため、17〜24の各
要素によって構成される相対回転角の規制手段16は必
ずしも必要でない。
In addition, the input shaft rotation speed when changing the cutting tool can be controlled on the machine tool side, and on the other hand, the relative rotation amount of the output shaft is accurately determined by the rotation amount of the input shaft. The configured relative rotation angle regulating means 16 is not necessarily required.

但し、この手段16があると、入力軸が必要以上に逆転
しても逆転時相対回転角αがφ〈α〈1゜5φに規制さ
れるので、コストアップを招く逆転時の回転数制御を行
わなくても正確な転換が保証され、実用面で非常に有利
な中ぐり工具を実現できる。
However, with this means 16, even if the input shaft reverses more than necessary, the relative rotation angle α at the time of reverse rotation is regulated to φ〈α〈1゜5φ, so it is difficult to control the rotation speed during reverse rotation, which increases costs. Accurate conversion is guaranteed even without this, making it possible to realize a boring tool that is extremely advantageous from a practical point of view.

なお、実施例は、刃具数nが3個の工具について説明し
たが、この発明の中ぐり工具は、相対回転角の規制手段
を具備するものについても、刃具数を増減させたものを
作り得る。
Although the embodiment has been described with respect to a tool in which the number n of cutting tools is three, the boring tool of the present invention can also be manufactured with an increased or decreased number of cutting tools even if it is equipped with means for regulating the relative rotation angle. .

今2.第5図に示す入力軸逆転時相対回転角をα、入力
軸の正転による相対回転角の戻し角をδ、刃具数nによ
る分割角をφ、カム溝19a、サイドカム19bの設置
数をそれぞれiとすれば、これ等の値は次の関係にある
Now 2. The relative rotation angle when the input shaft is reversed shown in Fig. 5 is α, the return angle of the relative rotation angle due to normal rotation of the input shaft is δ, the division angle according to the number of cutting tools n is φ, and the number of installed cam grooves 19a and side cams 19b is respectively If i, these values have the following relationship.

φ=360°/ n −i・δ、δ≦φ/2α−φ+6 (但し、iはわが偶数値の場合は1を除く奇数となりn
が奇数値の場合は偶数となる最小整数)。
φ=360°/n −i・δ, δ≦φ/2α−φ+6 (However, if i is an even value, it becomes an odd number except 1 and n
is the smallest integer that is even if is odd).

そこで、この関係を利用してn−4(係止歯12a、1
3a及びドグ18の数はnに等しい)のケースを考える
。この場合、φ=90”である、また、iを1以外の最
小奇数3とすると、δ=306α=120となり、各回
の転換毎にチェンジリング19が30°宛回転して今回
の転換でドライブピン23を止めたドグ18が退避し改
番のドグがビン23の移動路に待機するようにドグ位置
を順次切換え、サイドカム19bの位置も戻し爪24か
らαの角度をもつところに移っていくため、φ=90゜
での正確な刃具転換が行われる。
Therefore, using this relationship, n-4 (locking teeth 12a, 1
3a and the number of dogs 18 is equal to n). In this case, φ=90", and if i is the smallest odd number other than 1, 3, then δ=306α=120, and each time the change ring 19 rotates to 30 degrees, it will drive at this time. The dog position is sequentially changed so that the dog 18 that has stopped the pin 23 is retracted and the dog with the new number is on standby in the movement path of the bottle 23, and the position of the side cam 19b is also moved to a position having an angle of α from the return claw 24. Therefore, accurate cutting tool change is performed at φ=90°.

n=2のケースでは、φ−180°であり、iを3とお
いた場合、δ−60°、α−240°となって図示の実
施例と同様の動作でφ=180”での刃具転換が行われ
る。
In the case of n=2, the angle is φ-180°, and when i is set to 3, the angles are δ-60° and α-240°, and the cutting tool is changed at φ=180'' in the same manner as in the illustrated embodiment. will be held.

n−5のケースも、φ−72°、i=4、δ=18、α
−909 n=6のケースも同様に、φ=60°、i−5、δ=1
2、α=72゜ で各々のφによる転換が実施される。
The case of n-5 is also φ-72°, i=4, δ=18, α
-909 Similarly, in the case of n=6, φ=60°, i-5, δ=1
2. Conversion by each φ is carried out at α=72°.

このように、この発明では、n=3以外の刃数にも対応
できる。また、上の説明から判るように、nが2と4と
実用性の高い数である場合には、量を3にしてチェンジ
リング1Sを共通化することができ、経済的に有利とな
る。
In this way, the present invention can accommodate a number of blades other than n=3. Further, as can be seen from the above explanation, when n is a highly practical number such as 2 and 4, the change ring 1S can be shared by setting the quantity to 3, which is economically advantageous.

なお、以上の説明は、1回の転換動作で刃具が1つずつ
チェンジしていくものについて述べたが、転換角はn個
の刃具分割角を2以上の整数で除した角度とすることも
可能である。但し、これは転換動作に遊びが出るので、
あまり好ましいことではない、また、実施例は中ぐり工
具を例に挙げて行ったが、この発明の回転割出し装置は
、他の用途の工具等にも応用できる。
In addition, although the above explanation was based on the case where the cutting tools change one by one in one switching operation, the switching angle can also be the angle obtained by dividing the n cutting tool division angle by an integer of 2 or more. It is possible. However, this causes play in the conversion operation, so
Although this is not particularly desirable, and although the embodiments have been described using a boring tool as an example, the rotary indexing device of the present invention can also be applied to tools for other purposes.

〔効果〕〔effect〕

以上述べたように、この発明の回転割出し装置及びこれ
を用いた中ぐり工具は、差動歯車機構を用いて出力軸を
入力軸に連動させたので転換の信顛性が高まる。
As described above, the rotary indexing device of the present invention and the boring tool using the same use a differential gear mechanism to interlock the output shaft with the input shaft, thereby increasing the reliability of conversion.

また、入力軸の転換持回転量も定量化することができ、
転換作業が楽になる。
It is also possible to quantify the rotation amount of the input shaft.
Makes conversion work easier.

さらに、出力軸の周囲に滑動用の隙間が無いので、その
軸の支持剛性、転換後の径方向位置精度が大きく向上し
、中ぐり工具の場合、加工径が一定し、加工中の軸振れ
も無くなって加工精度が非常に良くなる。
Furthermore, since there is no sliding gap around the output shaft, the support rigidity of the shaft and the radial position accuracy after conversion are greatly improved. The machining accuracy is greatly improved.

このほか、相対回転角の規制手段を存するものは、入力
軸の過剰回転があっても余分な相対回転が起こらず、転
換の信較性が絶対的のものとなる。
In addition, if there is a means for regulating the relative rotation angle, even if there is excessive rotation of the input shaft, no extra relative rotation will occur, and the reliability of conversion will be absolute.

また、安全装置を備えるものは、差動歯車機構に無理な
荷重負担が加わらず、信転性、耐久性も充分に高まる。
Furthermore, those equipped with a safety device do not impose an unreasonable load on the differential gear mechanism, and the reliability and durability are sufficiently increased.

このように、この発明にれば、入力軸の逆転、正転で転
換を行う割り出し装置や中ぐり工具の転換の信転性、転
換精度、使用時の安定性等を飛躍的に高めることができ
、自動加工の効率化、正確化、加工精度間上等に大きく
貢献することができる。
As described above, according to the present invention, it is possible to dramatically improve the reliability, conversion accuracy, stability during use, etc. of indexing devices and boring tools that perform conversion by reversing or forward rotation of the input shaft. This can greatly contribute to improving the efficiency, accuracy, and machining accuracy of automatic machining.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例の中ぐり工具を示す断面
図、第2図はその要部部品の分割斜視図、第3図は第1
図のI[[−[1&1部の断面図、第4図はロックリン
グの斜視図、第5図は転換動作の説明図、第6図は偏心
出力軸を用いた刃具の転換原理を示す線図である。 1・・・・・・人力軸、    2・・・・・・偏心孔
、3・・・・・・出力軸、    3a・・・・・・工
具へ、ド、5・・・・・・固定ハウジング、6・・・・
・・回り止め手段、7・・・・・・太陽歯車、   8
・・・・・・内歯歯車、9・・・・・・遊星歯車、  
 10・・・・・・差動歯車機構、11・・・・・・セ
ンターアダプタ、 12・・・・・・ドライブマスタ、 13・・・・・・ロケーティングブロック、12a、t
3a・・・・・・係止歯、 14・・・・・・スプリング、  15・・ス・・・嗜
合いクラッチ、16・・・・・・相対回転角規制手段、
17・・・・・・ボジショニングリング、18・・・・
・・ドグ、     18a・・・・・・スプリング、
19・・・・・・チェンジリング、 18a・・・・・・カム溝、   ISb・・・・・・
サイドカム、21・・・・・・スプリング、 23・・
−・・ドライブピン、24・・・・・・戻し爪、   
 25・・・・・・スリーブ、26・・・・・・制動子
、   27・・・・・・一方向クラッチ、29・・・
・・・ロックリング、30・・・・・・シールリング。 第6図 第3図 10 第4図 14−
Fig. 1 is a sectional view showing a boring tool according to an embodiment of the present invention, Fig. 2 is an exploded perspective view of its main parts, and Fig.
Figure I[[-[1 & 1 section sectional view, Figure 4 is a perspective view of the lock ring, Figure 5 is an explanatory diagram of the conversion operation, Figure 6 is a line showing the principle of conversion of a cutting tool using an eccentric output shaft. It is a diagram. 1...Human power shaft, 2...Eccentric hole, 3...Output shaft, 3a...To tool, 5...Fixed Housing, 6...
... Rotating means, 7 ... Sun gear, 8
...Internal gear, 9...Planetary gear,
10... Differential gear mechanism, 11... Center adapter, 12... Drive master, 13... Locating block, 12a, t
3a...Latching tooth, 14...Spring, 15...Matching clutch, 16...Relative rotation angle regulating means,
17...Positioning ring, 18...
...Dog, 18a...Spring,
19...Change ring, 18a...Cam groove, ISb...
Side cam, 21...Spring, 23...
-...Drive pin, 24...Return claw,
25...Sleeve, 26...Brake, 27...One-way clutch, 29...
... Lock ring, 30 ... Seal ring. Figure 6 Figure 3 10 Figure 4 14-

Claims (5)

【特許請求の範囲】[Claims] (1)先端側に偏心孔を有する入力軸、上記偏心孔内に
同心的に定位置回転可能に保持する出力軸を有し、その
出力軸を360°/n(n≧2)の等分位置に回転させ
て割出す装置であって、入力軸の外周に同心配置する固
定ハウジング、出力軸に取付ける太陽歯車と固定ハウジ
ング内に同心的に設ける内歯歯車と入力軸で支えて上記
2つの歯車間に介在する遊星歯車を有して入力軸の回転
を出力軸に伝達する差動歯車機構、入力軸逆転時に入力
軸側の歯が逃げて噛合い位置が移るn個の係止歯を36
0°/nの分割点に有してその歯の噛み合い位置で入力
軸の正回転を出力軸に伝達する一方向の噛合いクラッチ
を具備し、出力軸の入力軸に対する相対位置の360°
/nの角度での転換が入力軸の逆転、正転の2動作によ
って生じるようにしてある回転割出し装置。
(1) It has an input shaft with an eccentric hole on the tip side, and an output shaft that is rotatably held in a fixed position concentrically within the eccentric hole, and the output shaft is divided into equal parts of 360°/n (n≧2). It is a device that rotates and indexes a position, and includes a fixed housing arranged concentrically around the outer periphery of the input shaft, a sun gear attached to the output shaft, an internal gear arranged concentrically within the fixed housing, and an input shaft supported by the input shaft. A differential gear mechanism has planetary gears interposed between gears to transmit the rotation of the input shaft to the output shaft, and when the input shaft reverses, the teeth on the input shaft side escape and the meshing position changes. 36
A one-way dog clutch is provided at a dividing point of 0°/n and transmits the positive rotation of the input shaft to the output shaft at the meshing position of its teeth, and the relative position of the output shaft to the input shaft is 360°.
A rotary indexing device in which a change at an angle of /n is caused by two operations of reverse rotation and forward rotation of an input shaft.
(2)入力軸側に設ける1個のドライブピンを出力軸側
に等分ピッチでn個設けるドグに当接させて入力軸と出
力軸の逆転時相対回転角をφ(=360°/n)以上、
1.5φ以下の一定角αに制限する手段と、出力軸上で
回転可能なドグ位置のチェンジリングを入力軸正転時に
(α−φ)の範囲で正転方向に回転させて次番のピン受
けドグをドライブピンの移動路上に待機させ、今回の転
換でドライブピンを止めたドグをドライブピンの移動路
から退避させるドグ位置の切換え手段とから成る相対回
転量の規制手段を含んでいる請求項(1)記載の回転割
出し装置。
(2) One drive pin provided on the input shaft side is brought into contact with n dogs provided at equal pitches on the output shaft side, and the relative rotation angle at the time of reverse rotation between the input shaft and output shaft is set to φ (= 360°/n )that's all,
A means for limiting the angle to a constant angle α of 1.5φ or less, and a change ring with a rotatable dog position on the output shaft are rotated in the forward rotation direction within the range of (α−φ) when the input shaft rotates forward. The apparatus includes means for regulating the amount of relative rotation, which comprises a means for changing the position of the pin, which causes the pin receiving dog to wait on the travel path of the drive pin, and a dog position switching means for retracting the dog that has stopped the drive pin in this conversion from the travel path of the drive pin. A rotary indexing device according to claim (1).
(3)上記一方向の噛合いクラッチを、出力軸に固定す
るロケーティングブロックと、入力軸に回転不可、軸方
向移動可能に取付けるドライブマスタと、それ等に対向
して設ける一方向性の噛合い歯とドライブマスタをロケ
ーティングブロック側に付勢する手段とで構成した請求
項の(1)又は(2)記載の回転割出し装置。
(3) A locating block that fixes the above-mentioned one-way dog clutch to the output shaft, a drive master that is attached to the input shaft so that it can move in the axial direction but cannot rotate, and a one-way dog clutch that is provided opposite them. 2. The rotary indexing device according to claim 1, wherein the rotary indexing device comprises a tooth and a means for biasing the drive master toward the locating block.
(4)固定ハウジング内にスリーブとこのスリーブに所
要の回転抵抗を加える制動子を設け、上記スリーブの内
側に上記内歯歯車をその歯車の逆転で係合状態がONに
なる一方向クラッチを介して取付けた請求項(1)、(
2)又は(3)記載の回転割出し装置。
(4) A sleeve and a brake that applies a required rotational resistance to the sleeve are provided in the fixed housing, and the internal gear is connected to the inside of the sleeve via a one-way clutch that is turned on when the gear is reversed. Claim (1), (
2) or the rotary indexing device described in (3).
(5)請求項の(1)乃至(4)のいずれかに記載の回
転割出し装置の出力軸先端に工具ヘッドを設け、このヘ
ッドの外周に転換対象のn(≧2)個の刃具をφの分割
角で複数個装着して成る中ぐり工具。
(5) A tool head is provided at the tip of the output shaft of the rotary indexing device according to any one of claims (1) to (4), and n (≧2) cutting tools to be converted are mounted on the outer periphery of this head. A boring tool consisting of multiple pieces installed at a dividing angle of φ.
JP9351290A 1990-04-09 1990-04-09 Rotary indexing device and boring tool using the same Expired - Lifetime JPH0773803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9351290A JPH0773803B2 (en) 1990-04-09 1990-04-09 Rotary indexing device and boring tool using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9351290A JPH0773803B2 (en) 1990-04-09 1990-04-09 Rotary indexing device and boring tool using the same

Publications (2)

Publication Number Publication Date
JPH03294102A true JPH03294102A (en) 1991-12-25
JPH0773803B2 JPH0773803B2 (en) 1995-08-09

Family

ID=14084403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9351290A Expired - Lifetime JPH0773803B2 (en) 1990-04-09 1990-04-09 Rotary indexing device and boring tool using the same

Country Status (1)

Country Link
JP (1) JPH0773803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177388A1 (en) * 2020-03-04 2021-09-10 本田技研工業株式会社 Machining tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177388A1 (en) * 2020-03-04 2021-09-10 本田技研工業株式会社 Machining tool

Also Published As

Publication number Publication date
JPH0773803B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US10865853B2 (en) Multi-crankshaft cycloidal pin wheel reducer
US3861221A (en) Linear actuator
US7771307B2 (en) Rolling element screw device
CA2015041A1 (en) Rolling-contact bearing type clutch
US9145919B2 (en) Speed-reduction transmission bearing
CN105782381A (en) Planet pin roller screw rod pair
US3529480A (en) Precision stepping drive
JP5897951B2 (en) Clutch device
EP3406397B1 (en) Electric driven chucking system comprising automatic clutch system
JPH03294102A (en) Rotation dividing device and boring tool using it
CA1118693A (en) Means for coupling a hand drive with a rotatable shaft
CN108843746A (en) A kind of precision speed reduction device for robot
JPS6365465B2 (en)
CN108757865B (en) Transmission mechanism and transmission device
US5031741A (en) Synchronous coupling with locking means
CN109185423A (en) Harmonic reduction assembly and wave producer
US2990043A (en) Clutch adapted for single point actuation
CN208749929U (en) A kind of precision speed reduction device for robot
JPS62224755A (en) Transmission for control
US2464959A (en) Rotary motion transmitting mechanism
US3552146A (en) Device for adjusting the beginning of fuel injection of an injection pump
CN220168476U (en) Device for converting rectilinear motion into rotary motion
JPS58501004A (en) Torque converter
JPH05203009A (en) Reduction gear
US5187992A (en) Rotary to linear motion converter