JPH03293938A - Uninterruptiple power supply device - Google Patents

Uninterruptiple power supply device

Info

Publication number
JPH03293938A
JPH03293938A JP2093143A JP9314390A JPH03293938A JP H03293938 A JPH03293938 A JP H03293938A JP 2093143 A JP2093143 A JP 2093143A JP 9314390 A JP9314390 A JP 9314390A JP H03293938 A JPH03293938 A JP H03293938A
Authority
JP
Japan
Prior art keywords
power supply
electrolytic capacitor
supply device
power
uninterruptible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2093143A
Other languages
Japanese (ja)
Other versions
JP2534792B2 (en
Inventor
Yoshiaki Miyazawa
宮沢 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2093143A priority Critical patent/JP2534792B2/en
Publication of JPH03293938A publication Critical patent/JPH03293938A/en
Application granted granted Critical
Publication of JP2534792B2 publication Critical patent/JP2534792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

PURPOSE:To enable remaining life of an electrolytic capacitor to be diagnosed without stopping a power supply device for a long time by detecting charging characteristics when the power supply device is operated without any load and by estimating electrostatic capacity of the electrolytic capacitor. CONSTITUTION:After a switch 11 is turned on and a switch 10 is turned off by a sequence control circuit 21 and then switching is made to power-feed by a direct-supply commercial power supply 1 without any interruption, a rectifier 3 is stopped, a battery connection switch is turned off, and only an inverter 8 is operated without any load with residual charge of an electrolytic capacitor 5 as an input. Charging characteristics of the electrolytic capacitor 5 at this time are detected by a voltage detector 22, which is fed to a remaining life detector. An electrostatic capacity C is estimated by voltage and charging time of the electrolytic capacitor 5. The electrostatic capacitor C and an electrostatic capacity C0 of initial value are compared and it is diagnosed that life expired when the electrostatic capacity was reduced remarkably.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、交流電力または蓄電池からの直流電力を入力
とし直流回路に平滑用の電解コンデンサを有し、安定化
した交流電力を供給する無停電電源装置に係り、特に電
解コンデンサの残存寿命を診断できる手段を備えた無停
電電源装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention provides a stabilized alternating current circuit that receives alternating current power or direct current power from a storage battery and has a smoothing electrolytic capacitor in the direct current circuit. The present invention relates to an uninterruptible power supply that supplies electric power, and particularly to an uninterruptible power supply equipped with a means for diagnosing the remaining life of an electrolytic capacitor.

(従来の技*) 従来より無停電電源装置として商用電源停電時でも蓄電
池からの直流電力を入力として無停電の電力を供給する
インバータ装置が広く用いられ、通常その直流回路には
、平滑用として大容量の電解コンデンサが多数使われて
いる。
(Conventional technique*) Conventionally, inverter devices have been widely used as uninterruptible power supplies to supply uninterrupted power by inputting DC power from storage batteries even during commercial power outages, and the DC circuit usually has a smoothing function. Many large capacity electrolytic capacitors are used.

第4図は、上述の如き無停電電源装置の一例を示すブロ
ック図である。
FIG. 4 is a block diagram showing an example of the above-described uninterruptible power supply device.

同図において、1は直送商用電源、2は商用電源、3は
整流器、4は平滑リアクトル、5は平滑用の電解コンデ
ンサ、6は蓄電池、7は商用電源2の停電時に蓄電池6
を接続する蓄電池接続スイッチ、8はインバータ、9は
インバータフの矩形波出力を正弦波に改善する交流フィ
ルタ、10.11は静止形の切換スイッチ(サイリスタ
スイッチ)。
In the figure, 1 is a direct commercial power supply, 2 is a commercial power supply, 3 is a rectifier, 4 is a smoothing reactor, 5 is a smoothing electrolytic capacitor, 6 is a storage battery, and 7 is a storage battery 6 when the commercial power supply 2 is out of power.
8 is an inverter, 9 is an AC filter that improves the rectangular wave output of the inverter to a sine wave, and 10.11 is a static changeover switch (thyristor switch).

12は負荷である。常時は交流フィルタ9.切換スイッ
チ10を介してインバータ8にて負荷へ給電し。
12 is a load. Always AC filter 9. Power is supplied to the load by the inverter 8 via the changeover switch 10.

インバータ8の故障時あるいは装置保守点検時には切換
スイッチ10より切換スイッチ11へ無瞬断で切換えて
直送商用電源1で給電し、故障復旧後あるいは保守点検
終了後、再び切換スイッチをインバータ8の方に切換え
て、負荷へ連続的に給電できるようにしている。
When the inverter 8 is out of order or equipment maintenance/inspection is performed, the changeover switch 10 is switched to the changeover switch 11 without a momentary interruption to supply power from the direct commercial power supply 1, and after the failure is recovered or the maintenance/inspection is completed, the changeover switch is switched to the inverter 8 again. This allows continuous power to be supplied to the load.

直流回路に平滑用として設けられるコンデンサとしては
、一般に小形化、経済性の点より、大容量電解コンデン
サが使われ、特に大容量の無停電電源装置においては、
多数並列接続して使われる。
Large-capacity electrolytic capacitors are generally used as smoothing capacitors in DC circuits from the standpoint of miniaturization and economic efficiency, especially in large-capacity uninterruptible power supplies.
Used by connecting many in parallel.

(発明が解決しようとする課題) しかし、電解コンデンサは周知のように電気化学反応を
利用するものであり、使用時間とともに、静電容量が減
少し損失が増大するため、使用条件に応じた寿命が規定
されている。
(Problem to be solved by the invention) However, as is well known, electrolytic capacitors utilize electrochemical reactions, and as the capacitance decreases and losses increase with time of use, the lifespan of electrolytic capacitors is limited depending on the usage conditions. is stipulated.

そこで、従来より電解コンデンサの残存寿命をチエツク
し新品への交換安否を判断するため、定期的に点検を実
施し、1個毎に外してコンデンサの静電容量を実測し、
容量初期値に対する減少率から交換要否を判断するとい
う方法をとっており。
Therefore, in order to check the remaining life of an electrolytic capacitor and determine whether it is safe to replace it with a new one, we conduct periodic inspections, remove each capacitor one by one, and measure the capacitance of the capacitor.
We use a method to determine whether or not replacement is necessary based on the rate of decrease in capacity relative to the initial capacity.

これは装置を長時間停止する必要があることに加え点検
作業も容易でないという問題があった。
This has the problem of not only requiring the equipment to be stopped for a long time, but also making inspection work difficult.

また、通常、年に1回程度しか点検を実施しないので、
その間寿命に至った場合は、最悪、装置の故障停止に至
る恐れもあった。
Also, since inspections are usually only carried out once a year,
In the worst case, if the life of the device reached its end, there was a risk that the device would fail and stop.

本発明は、上述の点に鑑みなされたものであり、装置を
長時間停止することなく、直流回路の電解コンデンサの
残存寿命を診断することができる無停電電源装置を提供
することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide an uninterruptible power supply device that can diagnose the remaining life of an electrolytic capacitor in a DC circuit without stopping the device for a long time. .

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、上記の目的を達成するため、直流回路に平滑
用の電解コンデンサを有し安定化した交流電力を供給す
る電源装置と、他の予備電源と、電源装置の出力と予備
電源とを無瞬断で切換える無瞬断スイッチとで構成され
た無停電電源装置において、無瞬断スイッチにより予備
電源給電に切換えるとともに電源装置を電解コンデンサ
の残留電荷のみを入力として無負荷運転させるように制
御する手段と、この無負荷運転時の放電特性に対応した
信号を初期特性または前回点検時の特性に対応した信号
と比較して前記電解コンデンサの残存寿命を診断する手
段を設けたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a power supply device that has a smoothing electrolytic capacitor in a DC circuit and supplies stabilized AC power, and another backup power supply, In an uninterruptible power supply that is configured with an uninterruptible switch that switches between the output of the power supply and a standby power source without momentary interruption, the uninterruptible switch switches to the standby power supply and the power supply only drains the residual charge of the electrolytic capacitor. A means for controlling the no-load operation as an input, and a signal corresponding to the discharge characteristic during the no-load operation is compared with a signal corresponding to the initial characteristic or the characteristic at the time of the previous inspection to diagnose the remaining life of the electrolytic capacitor. This means that there is a means to do so.

また、直流回路に平滑用の電解コンデンサを有し安定化
した交流電力を供給する電源装置を複数台並列接続して
成る無停電電源装置においては。
Also, in an uninterruptible power supply system, which is constructed by connecting multiple power supply units in parallel, each having a smoothing electrolytic capacitor in the DC circuit and supplying stabilized AC power.

電源装置のうち1台を並列接続より切離すとともに切離
した電源装置を電解コンデンサの残留電荷のみを入力と
して無負荷運転させるように制御する手段と、この無負
荷運転時の電解コンデンサの放電特性に対応した信号を
初期特性または前回点検時の特性に対応した信号と比較
して電解コンデンサの残存寿命を診断する手段を設けた
ものである。
A means for disconnecting one of the power supply devices from the parallel connection and controlling the disconnected power supply device to operate with no load using only the residual charge of the electrolytic capacitor as input, and a discharge characteristic of the electrolytic capacitor during this no-load operation. A means is provided for diagnosing the remaining life of the electrolytic capacitor by comparing the corresponding signal with the signal corresponding to the initial characteristic or the characteristic at the time of the previous inspection.

(作用) このような構成の無停電電源装置にあっては。(effect) In an uninterruptible power supply with such a configuration.

電解コンデンサの静電容量が使用時間とともに減少して
いくことから、電源装置を電解コンデンサの残留電荷の
みを入力として無負荷運転させた時の電解コンデンサの
放電特性より静電容量が初期値の何%まで減少している
かを推定し電解コンデンサの残存寿命を診断するもので
ある。
Since the capacitance of an electrolytic capacitor decreases with usage time, the discharge characteristics of the electrolytic capacitor when the power supply is operated with no load using only the residual charge of the electrolytic capacitor as input determines how much the capacitance is from its initial value. The remaining life of the electrolytic capacitor is diagnosed by estimating whether the capacitance has decreased to %.

(実施例) 以下、本発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

第1図において、第4図と同一部分には同一符号を付し
てその説明を省略し、ここでは異なる点についてのみ述
べる。すなわち、第1図において。
In FIG. 1, the same parts as those in FIG. 4 are given the same reference numerals, and the explanation thereof will be omitted, and only the different points will be described here. That is, in FIG.

21は切換スイッチ10をオフ、切換スイッチ11をオ
ンとし直送商用電源1による給電に切換えるとともに整
流器3を停止し蓄電池接続スイッチをオフとするシーケ
ンス制御回路、22は電解コンデンサ5の放電特性を検
出する電圧検出器、23は電解コンデンサの残存寿命検
出器である。
21 is a sequence control circuit that turns off the changeover switch 10 and turns on the changeover switch 11 to switch to power supply from the direct commercial power supply 1, stops the rectifier 3, and turns off the storage battery connection switch; 22 detects the discharge characteristics of the electrolytic capacitor 5; The voltage detector 23 is an electrolytic capacitor remaining life detector.

次に、上記のように構成された無停電電源装置の作用に
ついて述べる。通常の運転状態は、切換スイッチ11は
オフ、切換スイッチ10はオンであり、インバータ8に
よる給電となっている。
Next, the operation of the uninterruptible power supply configured as described above will be described. In normal operating conditions, the changeover switch 11 is off, the changeover switch 10 is on, and power is supplied by the inverter 8.

電解コンデンサ5の残存寿命を判定するため、先ずシー
ケンス制御回路21により、切換スイッチ11をオン、
切換スイッチ10をオフとし直送商用電源1による給電
に無瞬断で切換えた後、整流器3を停止しく入力開閉器
をオフまたは整流器サイリスタのゲートを停止)、蓄電
池接続スイッチをオフ(商用電源2、健全時は元々オフ
)とし、電解コンデンサ5の残留電荷を入力としてイン
バータ8のみを無負荷運転させる。この時の電解コンデ
ンサ5の放電特性を電圧検出器22により検出し、残存
寿命検出器に入力する。
In order to determine the remaining life of the electrolytic capacitor 5, first, the sequence control circuit 21 turns on the changeover switch 11.
After turning off the changeover switch 10 and switching to power supply from the direct commercial power supply 1 without momentary interruption, the input switch is turned off to stop the rectifier 3 or the gate of the rectifier thyristor is turned off), and the storage battery connection switch is turned off (the commercial power supply 2, (Originally off when in good condition), and only the inverter 8 is operated with no load using the residual charge of the electrolytic capacitor 5 as input. The discharge characteristics of the electrolytic capacitor 5 at this time are detected by the voltage detector 22 and input to the remaining life detector.

第2図の実線波形は、電圧検出器22により検出された
電解コンデンサ5の放電特性を示す。破線波形は製作当
初の電解コンデンサ5の初期の放電特性に相当するもの
である。
The solid line waveform in FIG. 2 shows the discharge characteristics of the electrolytic capacitor 5 detected by the voltage detector 22. The broken line waveform corresponds to the initial discharge characteristics of the electrolytic capacitor 5 at the time of manufacture.

第2図の時間t1での電解コンデンサ5の電圧Eは、放
電開始時の電圧をEo、インバータ8および交流フィル
タ9の無負荷運転時の損失分に相当する等価抵抗をR1
電解コンデンサ5の静電容量をCとすると次の関係式で
表わされる。
The voltage E of the electrolytic capacitor 5 at time t1 in FIG.
Letting the electrostatic capacitance of the electrolytic capacitor 5 be C, it is expressed by the following relational expression.

E  = Eo  (1eXP(ti/RC))すなわ
ち、上記の関係式より静電容量Cを推定することが可能
であり、残存寿命検出器23においては、このm理に基
づき静電容量Cを算定し、第2図の破線波形に該当する
静電容量C0とを比較し、静電容量の減少分を計算し、
残存寿命を判定する。
E = Eo (1eXP(ti/RC)) In other words, it is possible to estimate the capacitance C from the above relational expression, and the remaining life detector 23 calculates the capacitance C based on this m principle. Then, compare it with the capacitance C0 corresponding to the broken line waveform in Figure 2, calculate the decrease in capacitance,
Determine remaining life.

(例えば静電容量が30%程度減少している場合は寿命
に達していると診断する。) これにより、交換要否を容易に把握できる。
(For example, if the capacitance has decreased by about 30%, it is determined that the life span has been reached.) This makes it easy to determine whether or not replacement is necessary.

このようにして、本実施例では、電解コンデンサ5の残
留電荷を入力としてインバータ5を無負荷運転させて、
その際の電解コンデンサ5の放電特性より電解コンデン
サ静電容量を推定し静電容量初期値と比較することによ
り、電解コンデンサ5の残存寿命を判定するので、従来
のように装置を長時間停止して、1個毎に静電容量を測
定するこ・となく、容易に判定できる。
In this way, in this embodiment, the inverter 5 is operated with no load using the residual charge of the electrolytic capacitor 5 as input,
The remaining life of the electrolytic capacitor 5 is determined by estimating the capacitance of the electrolytic capacitor 5 from the discharge characteristics of the electrolytic capacitor 5 at that time and comparing it with the initial value of capacitance. Therefore, the capacitance can be easily determined without having to measure the capacitance of each individual piece.

また、本実施例の如き構成とすれば、従来の定期点検の
ように年に1回程度という制約はされず、任意の時期あ
るいは例えば月1回という周期でチエツクすることがで
き、従来のように点検周期の間に寿命に至り装置の故障
停止となる危険性も回避できる。
Furthermore, with the configuration of this embodiment, instead of being limited to once a year like conventional periodic inspections, it is possible to check at any time or, for example, once a month. It is also possible to avoid the risk that the equipment will reach the end of its service life during the inspection period and the equipment will fail and stop.

第1図の実施例において、蓄電池接続スイッチ7のない
構成であってもよく、この場合は蓄電池を切離すために
は、蓄電池入力の開閉器をオフとすればよい、また、第
1図の実施例の説明においては、電解コンデンサ5の静
電容量Cの算定値を静電容量初期値と比較するようにし
ているが、過去の測定時の値と比較するようにしてもよ
い。
In the embodiment shown in FIG. 1, the configuration may be such that the storage battery connection switch 7 is not provided. In this case, in order to disconnect the storage battery, it is sufficient to turn off the switch for the storage battery input. In the description of the embodiment, the calculated value of the capacitance C of the electrolytic capacitor 5 is compared with the initial capacitance value, but it may also be compared with a value from a past measurement.

更に、本発明は、第1図における電源装置の出力を並列
接続した並列システムによる無停電電源装置にも適用で
き、第3図は、その実施例を示すものである。同図は、
2台並列システムへの適用例を示すものであり、32は
並列投入解列のための開閉器、31は第1図の21の代
りに設けたもので。
Furthermore, the present invention can also be applied to an uninterruptible power supply device using a parallel system in which the outputs of the power supply devices shown in FIG. 1 are connected in parallel, and FIG. 3 shows an embodiment thereof. The figure is
This shows an example of application to a two-unit parallel system, where 32 is a switch for parallel connection/disconnection, and 31 is provided in place of 21 in FIG.

開閉器をオフして並列接続を切離すとともに整流器3を
停止し蓄電池接続スイッチ7をオフとするシーケンス制
御回路である。
This is a sequence control circuit that turns off the switch to disconnect the parallel connection, stops the rectifier 3, and turns off the storage battery connection switch 7.

また、1号機の電源装w3^と2号機の電源装置3Bの
構成は5全く同一のものである。
Furthermore, the configurations of the power supply unit w3^ of the first machine and the power supply unit 3B of the second machine are exactly the same.

例えば1号機の電源装置3Aの電解コンデンサ5の残存
寿命を判定するには、シーケンス制御回路31により開
閉器32をオフとし、2号機の電源装置3Bのみによる
給電とした後、整流器3を停止し、蓄電池接続スイッチ
をオフとし、電解コンデンサ5の残留電荷を入力として
インバータ8を無負荷運転させる。電解コンデンサ5の
残存寿命の判定手段については、第1図の実施例と全く
同様である。
For example, to determine the remaining life of the electrolytic capacitor 5 of the power supply device 3A of the first unit, the sequence control circuit 31 turns off the switch 32, the power is supplied only by the power supply unit 3B of the second unit, and then the rectifier 3 is stopped. , the storage battery connection switch is turned off, and the inverter 8 is operated with no load using the residual charge of the electrolytic capacitor 5 as input. The means for determining the remaining life of the electrolytic capacitor 5 is exactly the same as in the embodiment shown in FIG.

また、第3図の実施例では、2台並列システムとしてい
るが、3台以上であっても同様な効果が得られることは
勿論のことである。
Further, in the embodiment shown in FIG. 3, a two-unit parallel system is used, but it goes without saying that the same effect can be obtained even if there are three or more units.

〔発明の効果〕〔Effect of the invention〕

以上、述べたように本発明によれば、電解コンデンサの
残留電荷を入力として電源装置を無負荷運転させた時の
放電特性より、電解コンデンサの静電容量を推定し初期
値と比較するようにして、電源装置を長時間停止するこ
となく電解コンデンサの残存寿命を診断する手段を備え
た無停電電源装置を提供することができる。
As described above, according to the present invention, the capacitance of the electrolytic capacitor is estimated from the discharge characteristics when the power supply is operated with no load using the residual charge of the electrolytic capacitor as input, and is compared with the initial value. Accordingly, it is possible to provide an uninterruptible power supply device having a means for diagnosing the remaining life of an electrolytic capacitor without stopping the power supply device for a long time.

【図面の簡単な説明】 第1図は本発明の一実施例を示すブロック図、第2図は
第1図の実施例におけるインバータ無負荷運転による電
解コンデンサの放電特性を示す特性図、第3図は本発明
の他の実施例を示すブロック図、第4図は従来の無停電
電源装置の構成例を示すブロック図である。 1・・・直送商用電源、2・・・商用電源、3・・・整
流器、4・・・平滑リアクトル、 5・・・電解コンデ
ンサ。 6−・・蓄電池、 7・・・蓄電池接続スイッチ。 8・・・インバータ、  9・・・交流フィルタ、10
.11・・・切換スイッチ、  12・・・負荷、21
・・・シーケンス制御回路、 22・・・電圧検出器、
23・・・残存寿命検出器、31・・・シーケンス制御
回路、32・・・開閉器。 第1図 第3図 第2図
[Brief Description of the Drawings] Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the discharge characteristics of an electrolytic capacitor due to no-load operation of the inverter in the embodiment of Fig. The figure is a block diagram showing another embodiment of the present invention, and FIG. 4 is a block diagram showing an example of the configuration of a conventional uninterruptible power supply. 1... Direct commercial power supply, 2... Commercial power supply, 3... Rectifier, 4... Smoothing reactor, 5... Electrolytic capacitor. 6-...Storage battery, 7...Storage battery connection switch. 8... Inverter, 9... AC filter, 10
.. 11... Selector switch, 12... Load, 21
... sequence control circuit, 22 ... voltage detector,
23... Remaining life detector, 31... Sequence control circuit, 32... Switch. Figure 1 Figure 3 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)交流電力または直流電力を入力とし、直流回路に
平滑用の電解コンデンサを有し安定化した交流電力を供
給する電源装置と、他の予備電源と、前記電源装置の出
力と予備電源とを無瞬断で切換える無瞬断スイッチとで
構成された無停電電源装置において、前記無瞬断スイッ
チにより前記予備電源による給電に切換えるとともに前
記電源装置を前記電解コンデンサの残留電荷のみを入力
として無負荷運転させるように制御する手段と、この無
負荷運転時の前記電解コンデンサの放電特性に対応した
信号を初期特性または過去の点検時の特性に対応した信
号と比較して前記電解コンデンサの残存寿命を診断する
手段を具備したことを特徴とする無停電電源装置。
(1) A power supply device that receives AC power or DC power as input, has a smoothing electrolytic capacitor in the DC circuit, and supplies stabilized AC power, another backup power source, and the output of the power supply device and the backup power source. In an uninterruptible power supply device configured with an uninterruptible switch that switches the power supply without instantaneous interruption, the uninterruptible switch switches the power supply from the standby power source, and at the same time, the power supply device is operated without interruption using only the residual charge of the electrolytic capacitor as input. A means for controlling the electrolytic capacitor to operate under load, and comparing a signal corresponding to the discharge characteristics of the electrolytic capacitor during no-load operation with a signal corresponding to the initial characteristic or the characteristic at the time of past inspection to determine the remaining life of the electrolytic capacitor. An uninterruptible power supply characterized by comprising means for diagnosing.
(2)交流電力または直流電力を入力とし直流回路に平
滑用の電解コンデンサを有し安定化した交流電力を供給
する電源装置を複数台並列接続して成る無停電電源装置
において、前記電源装置のうち1台を並列接続より切離
すとともに切離した電源装置を前記電解コンデンサの残
留電荷のみを入力として無負荷運転させるように制御す
る手段と、この無負荷運転時の前記電解コンデンサの放
電特性に対応した信号を初期特性または過去の点検時の
特性に対応した信号と比較して前記コンデンサの残存寿
命を診断する手段を具備したことを特徴とする無停電電
源装置。
(2) In an uninterruptible power supply device, which is constructed by connecting in parallel a plurality of power supply devices that input AC power or DC power, have a smoothing electrolytic capacitor in the DC circuit, and supply stabilized AC power, Means for disconnecting one of the units from the parallel connection and controlling the disconnected power supply unit to perform no-load operation using only the residual charge of the electrolytic capacitor as input, and corresponding to the discharge characteristics of the electrolytic capacitor during this no-load operation. 1. An uninterruptible power supply device comprising means for diagnosing the remaining life of the capacitor by comparing the signal corresponding to the initial characteristic or the characteristic at the time of past inspection.
JP2093143A 1990-04-10 1990-04-10 Uninterruptible power system Expired - Lifetime JP2534792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2093143A JP2534792B2 (en) 1990-04-10 1990-04-10 Uninterruptible power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2093143A JP2534792B2 (en) 1990-04-10 1990-04-10 Uninterruptible power system

Publications (2)

Publication Number Publication Date
JPH03293938A true JPH03293938A (en) 1991-12-25
JP2534792B2 JP2534792B2 (en) 1996-09-18

Family

ID=14074308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2093143A Expired - Lifetime JP2534792B2 (en) 1990-04-10 1990-04-10 Uninterruptible power system

Country Status (1)

Country Link
JP (1) JP2534792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004084395A1 (en) * 2003-03-17 2006-06-29 三菱電機株式会社 Inverter device
CN114144685A (en) * 2019-10-01 2022-03-04 株式会社日立产机系统 Power supply capacitor electrostatic capacitance measuring device and power supply capacitor electrostatic capacitance measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193368U (en) * 1987-05-29 1988-12-13
JPH0240572A (en) * 1988-08-01 1990-02-09 Hitachi Ltd Inverter apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193368U (en) * 1987-05-29 1988-12-13
JPH0240572A (en) * 1988-08-01 1990-02-09 Hitachi Ltd Inverter apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004084395A1 (en) * 2003-03-17 2006-06-29 三菱電機株式会社 Inverter device
CN114144685A (en) * 2019-10-01 2022-03-04 株式会社日立产机系统 Power supply capacitor electrostatic capacitance measuring device and power supply capacitor electrostatic capacitance measuring method

Also Published As

Publication number Publication date
JP2534792B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
US6977448B2 (en) Backup power supply
JP3725015B2 (en) Uninterruptible power system
TWI608686B (en) Uninterruptible power supply device
JP2848554B2 (en) System for supplying power to a device and method for evaluating the life and capacity of a power storage device
EP2278686B1 (en) Method and apparatus for providing uninterruptible power
KR100868372B1 (en) Uninterruptible power supply apparatus and power failure compensating system
JP2012182911A (en) Cell system
JP5875214B2 (en) Power conversion system
CN103427474A (en) Uninterruptible power supply device control method, the uninterruptible power supply unit
US6956305B2 (en) Voltage fluctuation compensating apparatus
JP3598799B2 (en) Uninterruptible power system
KR20140087930A (en) Battery energy storage system and controlling method using the same
US11462936B2 (en) Power supply system with UPS, PCS and circuit diagnosis capabilities
JP3523706B2 (en) Power converter
JPH0888941A (en) Determining device of quality of storage battery for uninterruptible power supply unit
JPH03293938A (en) Uninterruptiple power supply device
JP2001103679A (en) Emergency power supply device
JP2006238514A (en) Uninterruptible power supply device
JP2002218674A (en) Uninterruptible power supply system and its operating method
KR100981792B1 (en) 3 phase ups and battery charging method
JP7350706B2 (en) Uninterruptible power supply system and uninterruptible power supply
JP2004153890A (en) Power supply device and uninterruptible power supply unit
Doishita et al. Highly reliable uninterruptible power supply using a bi-directional converter
US8760005B2 (en) Control method of an uninterruptible power supply for extending a discharge time under a no-load condition
JPH03118727A (en) Power supply

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

EXPY Cancellation because of completion of term